1. Field of the Invention
The disclosure relates to a method and apparatus for sensing and controlling the temperature of an electrically resistive heater which may be integrated with a discharge nozzle of a print-head. More specifically, the disclosure relates to a novel controller for controlling temperature of a discharge nozzle. The discharge nozzle can be used for depositing substantially dry ink on a surface to be used for electronic applications.
2. Description of Related Art
The manufacture of organic light emitting devices (OLEDs) requires depositing one or more organic films on a substrate and coupling the top and bottom of the film stack to electrodes. The film thickness is a prime consideration. The total layer stack thickness is about 100 nm and each layer is optimally deposited uniformly with an accuracy of better than +/−1 nm. Film purity is also important. Conventional apparatuses form the film stack using one of two methods: (1) thermal evaporation of organic material in a relative vacuum environment and subsequent condensation of the organic vapor on the substrate; or (2) dissolution of organic material into a solvent, coating the substrate with the resulting solution, and subsequent removal of the solvent.
Another consideration in depositing the organic thin films of an OLED is placing the films precisely at the desired location. There are two conventional technologies for performing this task, depending on the method of film deposition. For thermal evaporation, shadow masking is used to form OLED films of a desired configuration. Shadow masking techniques require placing a well-defined mask over a region of the substrate followed by depositing the film over the entire substrate area. Once deposition is complete, the shadow mask is removed. The regions exposed through the mask define the pattern of material deposited on the substrate. This process is inefficient, as the entire substrate must be coated, even though only the regions exposed through the shadow mask require a film. Furthermore, the shadow mask becomes increasingly coated with each use, and must eventually be discarded or cleaned. Finally, the use of shadow masks over large areas is made difficult by the need to use very thin masks (to achieve small feature sizes) that make said masks structurally unstable. However, the vapor deposition technique yields OLED films with high uniformity and purity and excellent thickness control.
For solvent deposition, ink jet printing can be used to deposit patterns of OLED films. Ink jet printing requires dissolving organic material into a solvent that yields a printable ink. Furthermore, ink jet printing is conventionally limited to the use of single layer OLED film stacks, which typically have lower performance as compared to multilayer stacks. The single-layer limitation arises because printing typically causes destructive dissolution of any underlying organic layers. The ink jet printing technique is capable of providing patterns of OLED films over very large areas with good material efficiency.
Large area printing capabilities of ink jet printing allow relatively high uniformity, purity, and thickness control for vapor deposition of organic thin films over a large surface area. Large area printing is enabled by arranging a multitude of discharge nozzles in an array formation over a substrate. Ink deposition from the array can be controlled by controlling ink metering discharge at each nozzle.
Because a discharge array can include as few as 20 and as many as 120 discharge nozzles, monitoring operability of each nozzle is critical. If one or more discharge nozzles should fail in a array of, for example, 120 discharge nozzles, this may not be immediately detected and the printed substrate will prove faulty after much time and labor has been expended. Accordingly, there is a need for fault monitoring of each discharge nozzle in a large array of discharge nozzles.
The disclosure relates to a method and apparatus for fault monitoring and controlling operation of a discharge nozzle in a large array of discharge nozzles. In one embodiment, the apparatus comprises a thin, thermally conductive membrane, with an integrated thin-film electrical heater. The resistance of the heater and its temperature can have monotonic increasing relationship. When a fixed voltage is applied to the heater, as the heater heats, the resistance of the heater will increase, which will cause a concomitant decrease in the electrical current flowing through the heater. Alternatively, when a fixed electrical current is flown through the heater, the temperature of the heater will increase and so will the resistance of the heater. Thus, the voltage measured across the heater will increase.
In another embodiment, each discharge nozzle in an array of discharge nozzles is provided with a separate detection circuit for detecting failure mode at the discharge nozzle. Each discharge nozzle communicates with a controller for controlling the temperature of the discharge nozzle. The controller can be interposed between a power supply and the discharge nozzle. By controlling the power supplied to the discharge nozzle, the controller can increase or decrease the temperature of the discharge nozzle. The controller may optionally include a sensor for detecting the temperature of the nozzle either directly or indirectly. The sensor can also detect failure mode at the discharge nozzle. With each nozzle in the array having a sensor, the operator can readily identify a failing sensor in a large array of sensors.
In another embodiment, the disclosure relates to a method for controlling the temperature of a discharge nozzle. The method includes the steps of: providing a discharge nozzle for dispensing ink, the discharge nozzle having a thermally-conductive membrane with an integrated thin film electric heater and the thin film electric heater defining a resistance; receiving a quantity of ink in liquid-form at the discharge nozzle; energizing the thin-film heater by applying a substantially constant current to the thin-film heater; measuring a voltage across the heater and a current through the heater; and determining temperature of the heater as a function of the voltage and the current; and determining the temperature of the ink droplet as a function of the heater temperature. In one embodiment, the ink drop temperature is determined by measuring the voltage across the heater for a substantially constant current.
These and other embodiments of the disclosure will be discussed with reference to the following exemplary and non-limiting illustrations, in which like elements are numbered similarly, and where:
The thermal jet print-head of
Alternatively, a port (not shown) can be integrated into top structure 142 to receive transport gases. The port can include a flange adapted to receive a transport gas, which according to one embodiment comprises a substantially inert mixture of one or more gases. The mixture can include gases which are substantially non-reactive with the materials being deposited by the apparatus, such as nitrogen or argon when used with typical organic materials. The transport gas can transport particles from discharge nozzle 180 by flowing through micro-pores 160.
Heater 110 can be optionally added to chamber 130 for heating and/or dispensing the ink. In
In the embodiment of
When the discharged droplet of liquid encounters discharge nozzle 180, the liquid is drawn into micro-pores 160 with assistance from capillary action. The liquid in the ink may evaporate prior to activation of discharge nozzle 180, leaving behind a coating of the suspended or dissolved particles on the micro-pore walls. The liquid in the ink may comprise one or more solvents with a relatively-low vapor pressure. The liquid in the ink may also comprise one or more solvents with a relatively-high vapor pressure.
The evaporation of the liquid in the ink may be accelerated by heating the discharge nozzle. The evaporated liquid can be removed from the chamber and subsequently collected (not shown), for instance, by flowing gas over one or more of the discharge nozzle faces. Depending on the desired application, micro-pores 160 can provide conduits (or passages) having a maximum linear cross-sectional distance W of a few nanometers to hundreds of microns. The micro-porous region comprising discharge nozzle 180 will take a different a shape and cover a different area depending on the desired application, with a typical maximum linear cross-sectional dimension D ranging from a few hundred nanometers to tens of millimeters. In one embodiment, the ratio of W/D is in a range of about 1/10 to about 1/1000.
Discharge nozzle 180 can be actuated by nozzle heater 150. Nozzle heater 150 is positioned proximal to discharge nozzle 180. Nozzle heater 150 may comprise a thin metal film. The thin metal film can be comprised of, for example, platinum. When activated, nozzle heater 150 provides pulsating thermal energy to discharge nozzle 180, which acts to dislodge the material contained within micro-pores or conduits 160, which can subsequently flow out from the discharge nozzle. In one embodiment, the pulsations can be variable on a time scale of one minute or less.
Dislodging the ink particles may include vaporization, either through sublimation or melting and subsequent boiling. It should be noted again that the term particles is used generally, and includes anything from a single molecule or atom to a cluster of molecules or atoms. In general, one can employ any energy source coupled to the discharge nozzle that is capable of energizing discharge nozzle 180 and thereby discharging the material from micro-pores 160; for instance, mechanical (e.g., vibrational). In one embodiment of the disclosure, a piezoelectric material is used instead of, or in addition to, nozzle heaters 150.
The array 200 of
To address this and other problems, an embodiment of the invention relates to a thin-film heater and a thin-film temperature sensor in communication with the thin-film heater. The thin-film heater and the temperature sensor can be integrated. The sensor enables immediate detection of the heater's temperature. Moreover, because each heater will have a separate sensor, failure detection can be pinpointed immediately.
A number of different circuits can be used to sense the voltage across the heater. The voltage may be sensed directly as a DC voltage or it may be sensed using one or more operational amplifiers (“op-amp”) which are used to drive the current of the heater while having a high-pass filter let through a high frequency current. The high frequency current can be taken by another op-amp to provide a closed loop signal to a controller. Thus, in
In
According to the principles disclosed herein a driving circuit, such as those represented in
The power supply can define an AC or a DC source sufficiently seized to energize the resistive heater. The driving circuit may provide constant current with variable voltage to the resistive heater. Alternatively, the power supply may provide a constant AC voltage with variable pulse width. In such embodiment, the pulse height can define the voltage level and the pulse width can define the duration of voltage supplied to the heater. A feedback to the driving circuit can help adjust the input power by increasing or decreasing the power supplied (or its duration) to the resistive heater.
Driving circuit 930 can be integrated with processor 910 or it can define a separate circuitry. In the embodiment of
In an alternative embodiment, the function of the driving and the processor can be combined into a controller as schematically represented by broken lines 960. The controller can define a single integrated circuit or it can define multiple circuit modules. The controller can receive feedback from heater 940 and determine the temperature of the heater as a function of resistance data stored in memory 920. The controller can also detect failure mode at the heater as a function of, for example, the voltage across heater 940. In the event of failure detection, the controller can communicate the failure to the operator. Control system 860 can be used to control a multitude of heaters 940 in a large array of print-heads and discharge nozzles (see
At the same time, a control circuit can monitor the instantaneous temperature of the heater by detecting the voltage across the resistive heater. If the resistance should exceed a predetermined threshold, the controller may interrupt or decrease the energy supplied to the heater. As stated, the controller may comprise a processor circuit in communication with a memory circuit. The memory circuit can contain data relating the temperature of the resistive heater to its voltage or current. In one embodiment, the memory circuit contains a data table correlating the instantaneous temperature of the heater to the voltage measure across the heater. Using such data, in step 1050, the processor circuit may increase, decrease or leave unchanged the energy supplied to the resistive heater. The processor circuit can communicate with the operator through a graphic user interface and a keyboard. The operator may dial in different temperatures depending on the type of ink, the resistive heater and the deposition parameters.
While the principles of the disclosure have been illustrated in relation to the exemplary embodiments shown herein, the principles of the disclosure are not limited thereto and include any modification, variation or permutation thereof.
The instant application claims priority to Provisional Application No. 61/142,575, which was filed on Jan. 5, 2009, and to U.S. patent application Ser. No. 12/139,391, filed Jun. 13, 2008. The disclosures of both applications are incorporated herein in their entirety.
Number | Date | Country | |
---|---|---|---|
61142575 | Jan 2009 | US |