The present invention relates to wireless communication systems. More particularly, the present invention is related to a method and apparatus for controlling transmissions via an enhanced dedicated channel (E-DCH).
Methods for improving uplink (UL) coverage, throughput, and transmission latency are currently being investigated in the third generation partnership project (3GPP). In order to achieve these goals, enhanced uplink (EU) transmissions have been proposed in 3GPP, in which control, (i.e., scheduling and assigning), of UL resources, (i.e., physical channels), is moved from a radio network controller (RNC) to a Node-B.
The MAC-es/MAC-e entity 105 controls access to an E-DCH 130, whereby the MAC-d 120 may access the E-DCH 130 via a connection 135, and the MAC control SAP 125 may access the E-DCH 130 via a connection 140.
An efficient MAC architecture for controlling the transmission of E-DCH data is desired.
The present invention is related to a method and apparatus for controlling transmissions via an E-DCH. A list of available transport format combinations (TFCs) is generated based on a plurality of MAC-d flows. A MAC-e PDU is generated using a TFC which is selected from the list of available TFCs. The MAC-e PDU is forwarded to an H-ARQ process unit for transmission. The list of available TFCs is continuously updated by eliminating and recovering TFCs based on remaining E-DCH power, an E-DCH transport format combination set (TFCS), a power offset of a highest priority MAC-d flow that has E-DCH data to transmit, and a gain factor for each TFC.
A more detailed understanding of the invention may be had from the following description of a preferred example, given by way of example and to be understood in conjunction with the accompanying drawing wherein:
Hereafter, the terminology “WTRU” includes but is not limited to a user equipment (UE), a mobile station, a fixed or mobile subscriber unit, a pager, or any other type of device capable of operating in a wireless environment. When referred to hereafter, the terminology “Node-B” includes but is not limited to a base station, a site controller, an access point or any other type of interfacing device in a wireless environment.
Hereinafter, the terminology “MAC-e” will be used to reference both MAC-e and MAC-es collectively.
The features of the present invention may be incorporated into an integrated circuit (IC) or be configured in a circuit comprising a multitude of interconnecting components.
The E-TFC selection and multiplexing unit 305 receives a scheduled grant signal 320, which indicates the amount of transmit power that can be used by scheduled MAC-d flows 325. The amount of transmit power indicated by the scheduled grant signal 320 can be identified either as a ratio to the DPCCH power or the maximum transmit power 330 provided by the lower layer management unit 315 that can be used for scheduled MAC-d flows 325.
The WTRU sends scheduled MAC-d flows 325 in accordance with a scheduling grant and may also send non-scheduled MAC-d flows 335 at any time up to a configured bit rate.
The E-TFC selection and multiplexing unit 305 comprises a TFC recovery and elimination unit 355, a multiplexer 360 and a TFC selection and padding unit 365. The E-TFC selection and multiplexing unit 305 receives scheduled and non-scheduled MAC-d flows 325, 335 and generates a MAC-e PDU 348 after selecting a TFC for the MAC-e PDU 348. The TFC recovery and elimination unit 355 receives remaining E-DCH power signal 340, based in part on the maximum allowed power 330. The multiplexer 360 receives rate request bits 345 from a rate request unit 370 which is generated based in part on a signal 350 output by the H-ARQ process unit 310 which indicates an H-ARQ failure from a serving cell.
The TFC recovery and elimination unit 355 computes the allowed E-DCH TFCS subset. The TFCS subset is continuously updated by eliminating and recovering TFCs based on the remaining E-DCH power 340, an E-DCH TFCS 342, the power offset of the highest priority MAC-d flow that has E-DCH data to transmit, (based on MAC-d flow power offsets 344), a gain factor for each E-TFC, (inferred from the MAC-d flow power offsets 344), and an E-DCH minimum set rate (included in the E-DCH TFCS 342).
Referring to
For each TTI, the E-TFC recovery and elimination procedure may be initiated. When the E-TFC recovery and elimination procedure is initiated, the TFC recovery and elimination unit 355 receives and stores the remaining E-DCH power 340 (step 404). Based on buffer occupancy and priority of each logical channel and MAC-d flow mapped to the E-DCH, the MAC-d flow with the highest priority data is determined among all MAC-d flows mapped to the E-DCH that contains logical channel(s) with non-zero buffer occupancy (step 406). The power offset of this MAC-d flow is used in subsequent steps.
For the power offset of the highest priority MAC-d flow, the associated list of TFCs sorted by the power requirements is determined (step 408). The list of the TFCs is then indexed with the remaining E-DCH power requirement (step 410). E-TFCs are eliminated if the transmit power required by the E-TFC exceeds the remaining power for the E-DCH (PE-TFC>Premain) and recovered if the transmit power required by the E-TFC is supported by the remaining power for the E-DCH (step 412). Preferably a minimum set of E-TFCs is defined such that the E-DCH TFCs within the minimum set are never blocked due to transmit power restriction. The E-TFC recovery and elimination unit 355 outputs a TFCS subset 358 to the multiplexer 360 (step 414).
The multiplexer 360 concatenates multiple MAC-d PDUs into MAC-es PDUs, and to multiplex one or multiple MAC-es PDUs into a single MAC-e PDU 348. The multiplexer 360 also manages and sets the transmission sequence number (TSN) per logical channel for each MAC-es PDU. The multiplexer 360 takes into account the transmit power indicated by the scheduled grant signal 320 for the E-DCH, (i.e., a ratio to DPCCH power), rate grants 352 for non-scheduled MAC-d flows, maximum TFC allowed by the E-DCH remaining power, allowed MAC-d flow combinations 354, relative priority of each logical channel and a header of rate request bits 345, (if the rate request is transmitted in this TTI).
The following steps are performed for each logical channel in the order of priorities. The highest priority is selected (step 512). It is determined whether there is at least one logical channel having data with the allowed MAC-d flow combination in the selected priority (step 514). If not, the process proceeds to step 536 to determine whether the selected priority is the lowest priority. If it is not the lowest priority, the next priority is selected (step 538) and the process 500 returns back to step 514. If the priority is the lowest, the process ends.
If it is determined at step 514 that there is a logical channel having data, any logical channel is selected randomly if more than one (step 516) and it is further determined whether there is an available payload (step 518). If there is no available payload, the process 500 ends. If there is available payload, it is further determined whether the logical channel belongs to a MAC-d flow with non-scheduled grants or scheduled grants (step 520).
If the logical channel belongs to the MAC-d flow with non-scheduled grants, it is further determined whether there is an available non-scheduled payload for this MAC-d flow (step 522). If so, the MAC-e PDU 348 is filled up to the minimum of the available payload, the available non-scheduled payload and available data of the logical channel (step 524). The available payload and the available non-scheduled payload are decreased by the filled data bits and related header bits accordingly (step 526) and the process 500 proceeds to step 534.
If the logical channel belongs to the MAC-d flow with scheduled grants, it is determined whether there is an available scheduled payload (step 528). If so, the MAC-e PDU 348 is filled up to the minimum of the available payload, the available scheduled payload and available data of the logical channel (step 530). The available payload and the available scheduled payload are decreased by the filled data bits and related header bits accordingly (step 532) and the process 500 proceeds to step 534.
At step 534, it is determined whether there is another logical channel of this priority having data with allowed MAC-d flow combinations. If there is no other logical channel, the process 500 proceeds to step 536 to select a next priority. If there is another logical channel with the same priority, the process 500 returns to step 516.
The TFC selection and padding unit 365 selects an appropriate E-TFC and applies padding for the MAC-e PDU 348 to fit the selected E-TFC. The TFC selection and padding unit 365 determines the MAC-e PDU size and selects the smallest TFC out of the list of supported TFCs for this power offset, which is larger than the MAC-e PDU size after multiplexing. The TFC selection and padding unit 365 then adds padding to the MAC-e PDU 348 to fit the selected TFC. The E-TFC selection and multiplexing unit 305 outputs a MAC-e PDU 376, a TFC 378, power offset 380, the maximum number of retransmissions 382, a rate request indication 384 and a happy bit 386 to the H-ARQ process unit 310.
The H-ARQ process unit 310 is responsible for managing each H-ARQ process. The H-ARQ process unit 310 provides synchronous operation for transmissions and retransmission, H-ARQ feedback processing on H-ARQ information channel (HICH), (i.e., ACK/NACK), and tracking the maximum number of retransmissions per H-ARQ process. The H-ARQ process unit 310 may output a signal 350 when an H-ARQ failure from a serving cell occurs. When an H-ARQ process is available, an H-ARQ process availability indication 388 is sent to the E-TFC selection and multiplexing unit 305.
Although the features and elements of the present invention are described in the preferred embodiments in particular combinations, each feature or element can be used alone without the other features and elements of the preferred embodiments or in various combinations with or without other features and elements of the present invention.
This application claims the benefit of U.S. Provisional Application No. 60/673,076 filed Apr. 20, 2005, which is incorporated by reference as if fully set forth.
Number | Name | Date | Kind |
---|---|---|---|
6654358 | Park et al. | Nov 2003 | B1 |
6845088 | Terry et al. | Jan 2005 | B2 |
7010317 | Hwang et al. | Mar 2006 | B2 |
7161971 | Tiedemann, Jr. et al. | Jan 2007 | B2 |
7382747 | Hu et al. | Jun 2008 | B2 |
7397790 | Zeira et al. | Jul 2008 | B2 |
7408895 | Zhang et al. | Aug 2008 | B2 |
7509554 | Lohr et al. | Mar 2009 | B2 |
20030112786 | Terry et al. | Jun 2003 | A1 |
20030232622 | Seo et al. | Dec 2003 | A1 |
20040100921 | Khan | May 2004 | A1 |
20040185892 | Iacono et al. | Sep 2004 | A1 |
20040219917 | Love et al. | Nov 2004 | A1 |
20040219919 | Whinnett et al. | Nov 2004 | A1 |
20040219920 | Love et al. | Nov 2004 | A1 |
20050025100 | Lee et al. | Feb 2005 | A1 |
20050030953 | Vasudevan et al. | Feb 2005 | A1 |
20050043062 | Ahn et al. | Feb 2005 | A1 |
20050047416 | Heo et al. | Mar 2005 | A1 |
20050073985 | Heo et al. | Apr 2005 | A1 |
20050076173 | Merril et al. | Apr 2005 | A1 |
20050079865 | Ahn et al. | Apr 2005 | A1 |
20050117559 | Malladi et al. | Jun 2005 | A1 |
20050124372 | Lundby et al. | Jun 2005 | A1 |
20050249138 | Heo et al. | Nov 2005 | A1 |
20050249148 | Nakamata et al. | Nov 2005 | A1 |
20050265301 | Heo et al. | Dec 2005 | A1 |
20060003787 | Heo et al. | Jan 2006 | A1 |
20060111119 | Iochi | May 2006 | A1 |
20060120404 | Sebire et al. | Jun 2006 | A1 |
20060143444 | Malkamaki et al. | Jun 2006 | A1 |
20060187844 | Chun et al. | Aug 2006 | A1 |
20070121542 | Lohr et al. | May 2007 | A1 |
20070168827 | Lohr et al. | Jul 2007 | A1 |
20090034455 | Lee et al. | Feb 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20060268884 A1 | Nov 2006 | US |
Number | Date | Country | |
---|---|---|---|
60673076 | Apr 2005 | US |