1. Field of the Invention (Technical Field):
The present invention relates to engines, specifically to an engine utilizing an improved method for using external heat to heat a unit mass of working fluid and thereby convert the thermal energy to mechanical energy, where the unit mass is later expelled and a new unit mass of working fluid is introduced to repeat the cycle.
2. Background Art
The conversion of chemical and thermal energy to useful mechanical and electrical energy has been studied for hundreds of years. This interest has led to some engines widely used today that accomplish this feat, well-known examples being the internal combustion engines, and gas combustion- and steam-driven turbines. Unfortunately, all technologies currently in widespread use are limited in efficiency to approximately less than 40% and are constrained in the type of fuel that can be used.
One group of engines for converting energy known variously as heat engines, caloric engines, hot air engines or external combustion engines, have seen very little application. Exemplary engines in this field are the Carnot, Stirling and Ericsson engines. While such engines in theory are capable of remarkably high efficiencies, in practice the engines have failed to reach their full potential within a reasonable cost and package.
There are several reasons why Carnot, Stirling and Ericsson cycle engines have not been proven effective or broadly commercialized. Most important is the difficulty in achieving the heat transfer required during the isothermal heat transfer processes to reach a reasonable power output within a reasonable cost and package.
Because the Stirling and Ericsson engines are closed cycles that are typically under significant pressure, problems with design and sealing abound in containing the working fluid during operation. The stringent sealing requirements of these engines tend to increase mechanical friction.
The effectiveness of the regenerator or “recuperator” used in these engines is limited. There are some indications that they save 75% of the heat during the cooling constant volume process, and return it during the constant volume heating process. Nonetheless, an effectiveness of 75% results in a significant loss of thermal energy and efficiency.
The rate of heat transfer during the isothermal heat transfer process primarily is governed by the temperature difference between the working fluid and the heat exchanger. In order to maintain sufficient heat transfer rates to accomplish a reasonable power output, it is required to have rather large temperature differences. However, increasing the temperature differences effectively causes the working fluid hot temperature to drop and the cold temperature to increase, thereby decreasing efficiency.
Moreover, the critical components in Ericsson and Stirling engines, such as valves, cylinders and pistons, are subject to extremely high temperatures. While high temperatures are regularly seen in automotive engines and turbines, the Stirling and Ericsson engines are also required to maintain extreme temperature gradients to function properly. These extreme temperature gradients as well as high temperatures require that the engine be built primarily with exotic materials.
Because exhaust or waste heat in Ericsson and Stirling engines is typically rejected through the heat exchanger during the cold isothermal heat transfer process, the cooling capabilities required to maintain the heat exchanger temperature are prohibitive. In contrast, an internal combustion engine rejects at least 50% of waste heat through the hot exhaust gases.
The mechanical configurations of Stirling engines are generally divided into three groups. They are typically called Alpha, Beta and Gamma engines, thoroughly discussed in the website www.ent.ohiou.edu/˜urieli/stirling/engines/engines.html. In each of those Stirling designs, the hot exchanger, the regenerator and the cold exchanger are placed in series and in close proximity. The difficulties in thermally isolating each exchanger and preventing the heat from the hot exchanger from being transferred to the other two, and thus wasted, are well known. Additionally because they use three heat exchangers (hot, cold and regenerator), Stirling engines have excessive dead space that reduces specific power and efficiency.
Against the foregoing background, the present invention was developed. Several objects and advantages of the present invention are: (1) to provide a method and apparatus for implementing a new and unique thermodynamic cycle for converting thermal energy to mechanical energy; (2) to provide an engine that can use a wide range of fuels; (3) to provide an engine that performs with a higher efficiency than is achieved with present technology; (4) to provide for power conversion in an engine which operates quietly; (5) to provide an engine design in which the sealing required is the same as in standard engine designs in current use; (6) to provide for an engine with more effective regeneration by eliminating the Stirling regenerator and replacing it with a method of regeneration in the form of isentropic compression and expansion; (7) to eliminate the need for cooling apparatus of any kind; (8) to provide for an engine in which there is only one heat exchange process required of the apparatus; (9) to provide for an engine with simpler thermal management than the Stirling engines; and (10) to provide for a method and apparatus whereby the effective cold temperature of the engine is lower than that achievable in known Ericsson or Stirling engines.
Further objects an advantages of the present invention are: (11) to provide for an engine such that very large thermal gradients across critical components need not be maintained; (12) to provide for an engine in which temperatures required of components is not significantly greater than that already achieved by standard automotive materials; (13) to provide for an apparatus whereby the dead space in the engine is smaller than standard Stirling engines; and (14) to provide an engine that achieves the above objects and advantages in a package that is small and inexpensive to build.
There is provided in accordance with the present invention a method and apparatus for converting thermal energy to mechanical energy using a unique thermodynamic cycle permitting the use of a wide range of fuels and operating at a higher efficiency than is with present art in a package that is reasonably small and inexpensive to build.
Other objects, advantages and novel features, and further scope of applicability of the present invention will be set forth in part in the detailed description to follow, taken in conjunction with the accompanying drawings, and in part will become apparent to those skilled in the art upon examination of the following, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended claims.
The accompanying drawings, which are incorporated into and form a part of the specification, illustrate several embodiments of the present invention and, together with the description, serve to explain the principles of the invention. The drawings are only for the purpose of illustrating a preferred embodiment of the invention and are not to be construed as limiting the invention. In the drawings:
The present invention relates to an innovative apparatus and method for converting thermal energy into mechanical energy. Reference is made to a thermodynamic cycle that will sometimes be called the “Crow Thermodynamic Cycle,” the “Crow Cycle” or “the subject cycle.” Also in the course of this disclosure reference will be made to a number of mathematical variables. For convenience, the several variables and their meanings are set forth in Table 1.
Thermodynamic Cycle
A full understanding of the invention is first had with an understanding of the Crow Thermodynamic Cycle. Reference is made to
The cycle begins with a unit of working fluid at an ambient pressure and temperature A. The working fluid preferably is air, but other working fluids, including liquids, may be suited to alternative embodiments of the invention. The working fluid is then isentropically compressed to a higher temperature and pressure point B. Then, the working fluid is isothermally expanded to point C. The working fluid is then isentropically expanded to point D, such that PD=PA. Between points A and D, the working fluid is expelled to the ambient environment at constant pressure, and new working fluid is drawn in from ambient at constant pressure.
Referring to
During process 3, the working fluid is expanded adiabatically, cooling it to TD as the pressure is reduced to ambient. It is important to recognize that by expanding to PA, the resulting volume υD is greater than the volume υA in state A. This results in a piston stroke that is longer than that required to intake the volume νA. During Process 3, work energy is recovered from the gas as it expands and cools. Process 3 effectively recaptures as much of the energy as possible that is supplied during process 1. Process 3 of the subject cycle thus is corollary to the regenerative cooling process in conventional Stirling engines.
Notably, the rapid compression and expansion of the working fluid in Processes 1 and 3 has the major benefit of not being limited by the ability of a heat exchanger to transfer heat into or out of the fluid. Rather, the engine is only limited in the mechanical ability of the machinery. It should also be recognized that the energy not recovered in process 3 represents the Carnot inefficiency inherent in every thermodynamic cycle.
Finally, Process 4, the constant pressure heat rejection process, is achieved by simply rejecting the working gas to the environment at constant pressure, as is done in Otto and Diesel cycle engines. The overriding and distinct advantage to this process is that the engine now requires no cold heat exchanger to remove the heat from the warm exhaust air. By dumping the exhaust to ambient at an elevated temperature, the engine is using the atmosphere as a heat exchanger with infinite capacity and eliminating the need for a cooler from the design. An advantage in this change is not only in the elimination of the machinery, but also in allowing for the design of an engine with whatever exhaust temperature is desired (above ambient temperature).
Again, an advantage to this thermodynamic cycle is that no cooling is required. In fact, cooling in this engine is undesirable and should be avoided if the mechanical design and material properties allow it. The engine should be thermally insulated where possible and where materials permit in order to limit external cooling as much as possible. The only desirable heat loss in this engine is through the exhaust. Heat loss by any other path decreases efficiency.
Continuing reference is made to
are at least as high (hot) or low (cold) as those of a reasonable Stirling or Ericsson cycle engine.
Thermodynamic Cycle Energy Balance
Attention is invited to
During Process 1 of the subject cycle, the only energy added to the working fluid is work energy W1. During isothermal Process 2, heat energy added Q2 is balanced exactly by work energy extracted W2. Work energy W3 is recovered during Process 3. This energy can be viewed as a recovery of some of the energy added during Process 1 and is corollary to a regenerator in Stirling engines. Importantly, W3 must be smaller than W2. During Process 4, heat energy Q4 is removed from the cycle by the exhaust.
For the energy balance to be correct, Q4=W1−W3. Energy balance is achieved in Process 2 by W2=Q2. Since W3<W1, the net energy not recovered by W3 must be removed by Q4. The energy flow diagram of
Theory Underlying Thermodynamic Cycle
The Crow Thermodynamic Cycle has been discussed hereinabove in generally qualitative terms. The following provides additional disclosure of the mathematical underpinnings and thermodynamic theory supporting the concept.
For analysis purposes is it assumed that the working fluid is air and that it behaves as an ideal gas (Pυ=RT). Additionally, the constant pressure specific heat of air Cp, the kinematic viscosity ν and the thermal diffusivity μ of air are all assumed constant. Over relatively small temperature differences, this assumption is reasonable.
While a discussion of key equations is in order, it suffices for this disclosure that all equations for the significant characteristics of the thermodynamic cycle can be derived from the following equations (1), (2) and (3):
The thermodynamic efficiency of the cycle is a figure of primary interest. Considering the energy flows, efficiency is defined as:
It is noted that TB=TC=Th. Only the high temperature and the isentropic expansion ratio E4 govern the amount of energy input during process 2. The derivation for Qout, is rather long, so much detail has been omitted:
Qout=hD−hA; (h is enthalpy)→Qout=Cp(TD−TA) (10)
Interestingly, the temperature at state D is dependent solely on the isothermal expansion ratio Er (given ambient temperature TA and assuming constant Cp). That is, the exhaust temperature for any engine regardless of Th is the same if Er is the same provided Th is higher than ambient temperature. In this way, Er can be tailored to achieve whatever exhaust temperature is desired. While this seems unlikely, it can be understood in that Er can be seen as a measure of the increase in entropy. Understanding that increasing entropy reduces efficiency in any thermodynamic cycle, one would expect then that TD (determinant in efficiency) should be governed by the Er, a measure of increase in entropy. Assuming constant Cp in the vicinity of the temperature it's calculated in,
The derived efficiency is quite close to that of the Carnot efficiency,
The portion of the equation with Er in it is a function of Er only. Therefore, the Crow Thermodynamic Cycle efficiency ηCTC is the Carnot efficiency with a function of Er as a slight reduction. Interestingly, if one solves
for the effective Carnot cycle low temperature Tc,e, one finds that TA<Tc,e<TD, with Tc,e falling nearly in the middle of TA and TD. (Importantly, the above equation for thermodynamic efficiency does not take into account the various inevitable losses arising from the machinery employed to utilize the thermodynamic cycle.)
The significance of this result is that although the exhaust temperature TD may be some value above the ambient temperature, by exhausting it to the ambient rather than cool it using a heat exchanger, the effective cold temperature Tc,e is decreased from TD. This decrease serves to increase efficiency as compared to if the engine cooled the air isothermally at TD. The importance of this is clear when one considers that a typical Stirling engine would likely be cooled at TD or higher. The difficulty in achieving ever lower Tc cannot be exaggerated. While it may be possible that the Tc of a Stirling or Ericsson is lower than TD, it is very unlikely that it would be lower than Tc,e. In effect, the Tc,e can be seen as a free increase in efficiency achieved by rejecting the warm exhaust to the environment rather than cooling the working fluid with added machinery.
Net power output per cycle is Wnet,
Equation (16) shows the net power output per cycle, but it also shows which variables can be tweaked in the thermodynamic cycle to increase power output per cycle. Specifically, there are three variables affecting power output. Th can be increased to improve power output. TA can be reduced to improve power, but since this cycle is assumed to utilize ambient air for TA, this variable is not within the control of the designer. It is unlikely that any engine design can rely on a temperature below ambient since all waste heat is eventually rejected to the atmosphere. Finally, Er can be increased to increase power output per cycle. Note that increasing Th and decreasing TA both increase efficiency while increasing Er actually decreases efficiency.
While Er can be modified to tailor the output per cycle, it must be understood that the adjustment affects only the output per thermodynamic cycle. That is, it does not necessarily increase the actual engine net engine power output. If Er is increased, then Qin has also increased. Consequently, the amount of heat transferred through the heat exchanger per cycle has increased. The heat flux through the heat exchanger is essentially limited by temperature between the hot reservoir and the heated working fluid. As a result, the amount of time for the heat transfer must likely also increase. This results in a slower engine speed, fewer power cycles per second, and hence a small change if any in net power output. Additionally, increasing Er reduces efficiency. The various equations and energy losses must be balanced to achieve the optimal engine operating regime.
Decreasing Er of course, increases efficiency. If Er is allowed to be too small, the efficiency is maximized but the amount of heat transfer per cycle is so small that the cycle speed of the engine must be increased. This causes excessive pumping losses in moving the air into and out of the engine as well as excess mechanical friction. The optimal Er for the engine design therefore must be tailored to meet the constraints presented by pumping losses in the valving, heat transfer capability of the heat exchanger, etc.
Using equations (2) and (3), the pressure at state B PB and the Compression ratio during process 1 Cr are calculated,
Increasing Th (Th=TB) is the most effective method of increasing power output per cycle, as doing so also increases efficiency of the cycle. However, material and design limitations are expected to constrain Th. See equations (17) and (18). As temperature increases, the resulting pressure PB required increases exponentially as does the compression ratio Cr. The exponential increase in pressure is clearly a difficult limitation to overcome. The compression ratio seems to be less of an obstacle until one realizes that at extremely high temperatures of say 1000C, a compression ratio of sixty (60) may be needed.
It appears an easily achievable value for Th is probably around 550° C. resulting in a reasonable PB of about 610 psi and a Cr of about 15. With an expansion ratio Er of five (5), the resulting thermodynamic efficiency is about 54% This represents an enormous gain over known and available technologies. Upon finding a reasonable engineering solution to reaching a Cr of sixty-one (61), the resulting pressure PB would be 3800 psi, Th would be 1000° C. and with an Er of ten (10), the resulting thermodynamic efficiency could approach 69%. Naturally, higher temperatures achieved by the engine result in higher efficiencies and higher power output.
While the thermal efficiencies used here are examples that would not be achieved in net efficiency due to friction and pumping losses, it is expected that the mechanical design is very efficient such that at least 90% of thermodynamic efficiency is reached.
Notably, the thermodynamic theory does not account for other obvious means of increasing engine net power output. Although increasing Th presents problems, the temperature of the hot supply reservoir TRh, can be increased to increase power output. Larger temperature differences between TRh and Th cause a greater heat transfer rate. Raising TRh is not expected to be as difficult as increasing Th because the hot reservoir is expected to be either a combustor/furnace or solar concentrator or some other device where temperatures of existing designs already often far exceed the temperatures of a piston type engine. It is expected that the reservoir temperature can be kept very high while keeping the temperature sensitive components of the engine shielded from excessive heat.
Increasing TRh can have an additional benefit of indirectly increasing efficiency. If the designer wishes to maintain the same net power output, the efficiency can be increased. If the heat transfer rate is increased by increasing TRh, then the incremental power output per cycle can be reduced by decreasing Er and running the engine faster (completing each cycle more quickly). As seen in equation (14), a decrease in Er increases efficiency. Therefore, by increasing the rate of heat transfer, Er can be decreased and ηCTC is increased. Of course there is a limit to this, where pumping losses through the valves will draw excessive energy from the engine at engines speeds that are too high. The essential effect of increasing TRh is to simply allow the engine to run at higher speeds and greater efficiencies or at the same speed and higher power, all other design variables being equal.
It is observed that the isothermal Process 2 is the only time the engine is receiving energy. As such, it is natural that the desired operation is to have the isothermal Process 2 be as long as possible. Therefore, a variable ctf, cycle time fraction, is defined. The cycle time fraction is the fraction or percentage of the total thermodynamic cycle time taken up by thermodynamic Process 2. It should be clear that every increase in ctf results in a commensurate increase in net power output of the engine, because the heat exchange device is now in contact with the working medium for a longer period of time, allowing for ever more heat transfer into the air. While in theory, a ctf of up to 90% might be possible, it is believed that the practical limit is most likely in the region of 50%. Excessive ctf will likely result in excessive pumping losses as the air is forced out of and sucked into the engine at very high rates. The value for ctf has to be balanced against the pumping losses experienced in the engine to arrive at the optimal operating regime.
Engine Apparatus Design and Operation
Having provided a teaching of the theoretical foundations of the invention, a description of apparatus according to the invention is now supplied. Referring to
The engine comprises a flow-through energy-inputting heat exchanger 10 which has a large surface area exposed to the working fluid, good heat conduction properties, and allows for minimal pressure losses due to working fluid flowing there-through.
A compression cylinder 20 is attached to the top of heat exchanger 10, said cylinder having a hole or slot cut in each side at the bottom forming an intake port 30 on one side and an exhaust port 30a on the other. Compression cylinder 20 is attached to heat exchanger 10 using an appropriate adhesive or sealing compound such that it forms a seal preventing working fluid from leaking from the connection between the heat exchanger 10 and cylinder 20.
A compression piston 40 fits slidably inside the compression cylinder 20, forming a compression chamber 50 within the cylinder and above the heat exchanger 10. The compression piston 40 fits within compression cylinder 20 such that it forms a seal with said cylinder restricting working fluid leakage from compression chamber 50. Compression piston 40 can reciprocate within compression cylinder 20.
A transfer cylinder 20a is attached to the bottom of heat exchanger 10. Transfer cylinder 20a is attached to heat exchanger 10 using an appropriate adhesive or sealing compound such that it forms a seal preventing leakage from between heat exchanger 10 and transfer cylinder 20a. A transfer piston 40a fits slidably inside of transfer cylinder 20a, forming a transfer chamber 50a within the cylinder and above the heat exchanger. The transfer piston 40a fits within transfer cylinder 20a such that is forms a seal with said cylinder restricting leakage from compression chamber 50a. Transfer piston 40a is capable of reciprocating motion within transfer cylinder 20a.
Compression piston 40 and transfer piston 40a function as driving members by which mechanical energy is transmitted from the system. Expansion of working fluid in the compression cylinder 20 and/or the transfer cylinder 20a drives the pistons 40, 40a to move within their respective cylinders, and the moving pistons are operatively connected to, for example, a driveshaft or any other suitable means adapted to convert the reciprocation of the pistons into useable mechanical energy. It should be noted that the pistons 40 and 40a may be moving simultaneously during the practice of the invention. The practicing of the invention involves, among other things, the expansion of the total volume enclosed by the cylinders 50 and 50a, as well as the contraction of that volume, which may be accomplished by moving either one, of the pistons 40 or 40a within its corresponding cylinder while maintaining the other piston motionless, or by moving both pistons simultaneously (although not necessarily of the same length of time).
An intake valve cylinder 60 and an exhaust valve cylinder 60a are attached to opposing lateral sides of the heat exchanger 10 and compression cylinder 20, as seen in
An intake valve piston 70 and an exhaust valve piston 70a fit slidably within their respective cylinders 60 and 60a. The valve pistons fit within their respective valve cylinders such that they form seals with said cylinders restricting leakage from compression chamber 50. The placement of the valve ports 30, 30a is taken to be most beneficial when located as near as possible to the heat exchanger 10. Spatially separating the intake from the exhaust valve prevents warm exhaust air from being drawn in during the intake process. However, in alternative embodiments the valve ports can also be placed further away from the heat exchanger.
The intake valve cylinder 60 and the intake valve piston 70 in combination effectively function as an intake valve means for the compression chamber 50. Accordingly, a means for drawing the working fluid into the compression chamber 50 includes this intake valve means (in fluid communication with the compression chamber) movable between a closed condition and an open condition for allowing, e.g., ambient air into the compression chamber. Similarly, the exhaust valve cylinder 60a and the exhaust valve piston 70a constitute an exhaust valve means, whereby at least a portion (preferably all) the unit mass of working fluid can be discharged from the compression chamber 50. So, this means for exhausting at least a portion of the unit mass includes this exhaust valve means (in fluid communication with the compression chamber), movable between a closed condition and an open condition for allowing working fluid to exhaust from the compression chamber.
The connection and drive of the pistons 40, 40a of the engine are not shown in these figures, but are discussed in association other embodiments. The inventive engine should not be taken to be limited to a particular drive and/or connection method, but may employ any of various connection and drive train components known in the art.
Attention is invited to
Referring to
Turning to
It is seen therefore, that the intake valve port 30 provides fluid communication between the compression chamber 50 and the interior of the intake valve cylinder 60 while the exhaust valve port 30a provides fluid communication between the compression chamber 50 and the interior of the exhaust valve cylinder 60a. The intake valve piston 70 is slidable within the intake valve cylinder 60 between an open position wherein the intake valve piston is removed from (does not cover or close) the intake valve port 30, and a closed position wherein the intake valve piston covers the intake valve port. Similarly, the exhaust valve piston 70a is slidable within the exhaust valve cylinder 60a between an open position in which the exhaust valve piston is removed away from the exhaust valve port 30a, and a closed position in which the exhaust valve piston covers the exhaust valve port.
Further description of a preferred embodiment of the engine of the present invention, detailing the design, drive mechanisms and interconnections required to accomplish the motion and action required, is provided in light of
Referring to
A valve push rod 130 with a ball and socket joint 140 on each end connects the intake valve piston 70 to intake valve lever 90, as seen in
Returning to
Referring again to
All the rollers 210, 210a, 210b, and 210c are rotatably disposed upon their respective levers 90, 90a, 100, 120 so to be able to free wheel in relation to the levers.
A valve spring shaft 220 is attached to frame 85, as illustrated in
Referring to
The preferred embodiment for heat exchanger 10 is shown in
Referring to
The pistons of the present invention are graphite and are mated with glass cylinders to achieve very low friction and superb sealing characteristics. The matched pairs are available from Airpot Corporation, www.airpot.com.
The foregoing describes the construction of the engine generally in accordance with the present invention.
Details of Operation
To start the engine running, the heat exchanger 10 is heated to the desired high temperature and then a swift turning of the power shaft 110b by any of several appropriate means will impart sufficient energy to compress the intake air and carry through one isothermal process, generating power. After the isothermal process has finished, isentropic expansion occurs whereby the engine recoups more energy, the flywheel has gained sufficient energy and speed such that subsequent cycles occur automatically and the engine runs in steady operation.
Having disclosed and described the fundamentals of a preferred embodiment of the invention, possible alternative embodiments are now presented.
One alternative embodiment provides for a crankarm compression piston drive, whereby a compression push rod is mounted for reciprocating linear translation in relation to the frame 85, and is operatively connected to the compression piston 40. This alternative embodiment for driving the compression piston is illustrated in
Reference is made to
Crank arms 290 are set in counter rotating motion so as to cause the compression piston 40 to move downward and compress the working fluid. The two crank arms 290 nearest the compression piston axis turn in one direction, while the two outside crank arms rotate in the opposite direction, as indicated by the directional arrows of
An alternative embodiment to the preferred design of the intake and exhaust valves is illustrated in
In the valve embodiment of
In this embodiment, valve rotation is accomplished through the appropriate arrangement of gears, pulleys, belts, sprockets and chains (not shown; any suitable and appropriate transmission means) operatively connected to a valve drive axle 310, such that for each single revolution of drive axle 110b, the valve pistons 70c,70d each rotate through one revolution. An intake valve axle 310 is in operative connection with the intake valve piston 70c and the cam drive axle 110b (
Yet another alternative embodiment to the preferred embodiment is illustrated in
Valve assembly 320 attaches to compression piston 40. Compression piston 40 has two elongated holes or apertures 350 cut through it. Exhaust and intake valve cylinders 60c and 60d both have an elongated slot or aperture 350a in the side wall as seen in
Intake valve piston 70e and exhaust valve piston 70f each have slots 360 cut into their sides which, when overlapped with their respective valve ports, corresponds to the “valve open” condition. The size of each slot or aperture is tailored to the required open time of the respective valve.
In this embodiment, accordingly, the intake valve port is defined at least in part by an intake slot or aperture 350a in the intake valve cylinder 60c, such intake aperture aligned with a corresponding slot or aperture 350 in the compression piston 40, and the exhaust valve port is defined at least in part by the exhaust aperture 350a in the exhaust valve cylinder 60d, such exhaust aperture also being aligned with a corresponding slot or aperture 350 in the compression piston, so that working fluid may flow through the compression piston. The intake valve cylinder 60c and the exhaust valve cylinder 60d are disposed on the compression piston 40, as best illustrated by
Referring to
Another alternative embodiment of the apparatus provides for two or more co-operating compression pistons in the engine, there being at least one supplemental compression piston slidable for reciprocating motion within a supplemental compression cylinder; and a passageway for fluid communication between the main compression cylinder 20 and the supplemental compression cylinder. At higher temperatures, the engine begins to require large compression ratios Cr, in some cases making the required cylinder lengths prohibitively long from manufacturing ease and cost standpoints. Referring to
The supplemental compression piston 40b and supplemental cylinder 20b are provided for the purpose of effectively doubling the length of the compression cylinder, allowing for larger compression ratios and thus higher efficiencies and power outputs. Compression piston 40b and supplemental cylinder 20b form a supplemental compression chamber 50a. A passageway 420 is provided for communication between the compression cylinder 20 and the supplemental cylinder 20b. An intake and exhaust valve 430 is provided for on cylinder 20. A supplemental valve 430 is provided for on cylinder 20b for the purpose of intake and exhaust. The provision for supplemental valves on the supplemental cylinder 20b serves to reduce pumping losses. Separate valves for intake and exhaust purposes may be provided to eliminate working fluid cross-communication during exhaust and intake. Supplemental valve 430a can be eliminated such that the engine has only one valve 430 on cylinder 20 for intake and exhaust. Elimination of valve 430a results in an increase in pumping losses in the engine as a double volume of working fluid is forced through valve 430 during intake and exhaust each cycle.
In this cooperative supplementary-piston embodiment, compression pistons 40 and 40b operate in tandem with the same position and timing. Valves 430 and 430a operate in tandem with the same timing and open periods. Referring to
Piston drive is accomplished by any of the various well known methods or one of the embodiments herein already described. Power is drawn from the engine in the same way the other engine embodiments or through any other appropriate means depending on piston drive selected.
It will be apparent from the foregoing that an alternative embodiment comprising a multiple piston engine apparatus may be provided in accordance with the teachings of the invention. In normal engineering practice, it is customary to use the machinery and components as much as possible. In the case of the preferred embodiment and the previous alternative embodiment, the transfer piston 40a and heat exchanger 10 use a percentage of total operation time equal to the cycle time fraction. That is, when the engine is not performing isothermal expansion, those components are not being utilized.
Referring to
The timing of the pistons is altered such that the cycle time fraction is 50%. That is, isothermal expansion comprises half the cycle while expansion, intake, exhaust and compression comprise the rest. Pistons 40 and 40b are actuated 180° out of phase such that piston 40 performs isothermal expansion with valve 430 open, allowing the free flow of working fluid through heat exchanger 10 and into transfer chamber 50a. At the same time, piston 40b is performing isentropic expansion, exhaust, intake and isentropic compression with valve 430a closed, preventing flow between the second cylinder 20b and transfer chamber 50a. After half a cycle the rolls are reversed, and the second piston 40b performs isothermal expansion while piston 40 performs expansion, exhaust, intake and compression. Advantageously, in this operation scheme transfer piston 40a and heat exchanger 10 are used substantially full time.
In this multiple-piston embodiment there thus is provided, effectively, a supplemental compression chamber 50b into which a second unit mass of working fluid may be drawn. Such supplemental compression chamber 50b is defined at least in part by the second compression cylinder 20b, with the second compression piston 40b slidable for reciprocating motion within the second compression cylinder to draw the second unit mass into the second compression chamber, and to isentropically compress the second unit mass to a higher temperature and pressure. The passage means 420 and 420a provide for fluid communication between the heat exchanger 10 and the first compression chamber, and between said heat exchanger and the second compression chamber 20b, respectively. The valve means 430b and 430c are for controlling flow of working fluid through said passage means 420, 420a.
The heat exchanger 10 is disposed operatively between the second compression chamber and the transfer chamber, so that the heat exchanger imparts thermal energy to the working fluid while at least a portion of the second unit mass of fluid is moving past the heat exchanger (under the urging of either compression piston 40 or 40b), so that at least a portion of the second unit mass isothermally expands to a first subsequent volume. As with the single-cylinder embodiment, the transfer piston 40a draws away from the heat exchanger to allow the unit mass of fluid to be drawn into transfer chamber 50a while either compression piston 40 or 40b pushes the working fluid (air). At transfer piston 40a bottom dead center, the pistons' roles reverse; transfer piston 40a pushes air out of transfer chamber 50a while either compression piston 40 or 40b draws away from the heat exchanger 10, allowing the unit mass to flow past heat exchanger 10 and into either compression chamber 50 or 50b. Both compression pistons 40 and 40b are responsive at different times to isentropic expansion of the unit mass to a second subsequent volume within the compression chamber. Very most preferably, of course, the compression pistons of a multi-piston embodiment reciprocate out-of-phase in relation to each other.
In the multi-piston embodiment of
The compression piston 40 is movable in the first compression cylinder 20 to push at least a portion of a first unit mass of working from the first compression chamber, past the heat exchanger 10, and toward the transfer chamber defined in part by the transfer cylinder 20a; and, the second compression piston 40b is movable in the second compression cylinder 20b to push at least a portion of a second unit mass of working fluid from the second compression chamber, past the heat exchanger 10, and toward the transfer chamber. Importantly, when the compression piston 40 is isothermally expanding the first unit mass of fluid in tandem with transfer piston 40a, the second compression piston 40b simultaneously is moving. During the isothermal expansion of the first unit mass of fluid, the second compression piston 40b may be isentropically expanding the second unit mass of working fluid, or exhausting the second unit mass of working fluid, or intaking a second unit mass of working fluid, or isentropically compressing the second unit mass of working fluid, thus optimizing the utilization of the heat exchanger 10 and transfer piston 40a.
Cylinders 20 and 20b can each be comprised of multiple cylinders such that very high compression ratios can be achieved. That is, multiple pistons working in tandem can be placed 180° out of phase with an equal number of multiple cylinders working in tandem on the other side to achieve high compression ratios yet still operate substantially the same as the current embodiment.
The engine of the present invention provides a method and apparatus for converting thermal energy to mechanical energy that can use a wide range of fuels and operate with a high efficiency in a package that is reasonably small and inexpensive to build. Because there is no explosive combustion of fuel products, the engine operates quietly.
The simplified design and open cycle operation allows for a design with reduced sealing requirements and eliminates the regenerator and cold heat exchanger required in Stirling and Ericsson engines. This significantly reduces dead space as compared to Stirling and Ericsson engines.
Further the engine according to the invention eliminates the cold isothermal process seen in Stirling and Ericsson cycles and thus requires no cooling. Because there is only one heat exchange process, thermal management is simplified and the problem of preventing heat transfer between hot and cold sources inherent in Stirling and Ericsson engines has been eliminated. Further, exhausting the working fluid to the ambient temperature allows for a lower engine effective cold temperature than is reasonably achieved in Stirling and Ericsson engines.
While the description herein above contains many specifics, these should not be construed as limitations on the scope of the invention, but rather as an exemplification of one preferred embodiment thereof. Many other variations are possible. For example, while it is de-emphasized herein, the present invention when run in reverse can be utilized as a refrigeration or heat pump device.
The size and scale of the engine is not limited by any design specifics herein disclosed. The engine in the present invention can be made with components small enough to provide output power on the order of 1 W, and can be made large enough to generate power for even the largest applications. The engine can be scaled such that many engines or many pistons are combined into one to provide power of virtually any magnitude desired.
Plainly, the engine will be utilized as a component in a system. That is, the engine would be a component in a system comprising a fuel storage, delivery and combustion apparatus providing the motive thermal energy thereto. The thermal delivery apparatus can also be a solar concentrating system providing concentrated solar energy to the engine for motive energy. The thermal energy source is not limited to various fuels and solar radiation, but can also be supplied by geothermal, nuclear, industrial waste heat or virtually any other source of heat.
The mechanical power output can be connected to another energy conversion device such as an electrical generator to convert the mechanical power derived from the engine into electrical power. The mechanical shaft power can be used to drive a pump, fan, blower, vehicle, boat or any other device requiring shaft power.
Moreover, the warm exhaust gasses of the engine are suitable for applications requiring heating. Specifically, the exhaust gasses can be used to heat water, air, food, residential and occupational spaces wherein the required temperature is less than say 200° C., which is the expected maximum exhaust temperature of the engine wherein the expansion ratio Er is not excessive. Remember that the exhaust temperature is primarily a function of Er.
An alternative embodiment of the thermodynamic cycle is to expand to point D (
Yet an alternative embodiment to the preferred thermodynamic cycle is to not exhaust to and intake from ambient, but to use a large reservoir with an alternative working fluid such as hydrogen, helium or argon whereby exhaust heat is removed from the working fluid through the walls of the reservoir. The advantage of using alternative working fluids is increased heat transfer. The use of a reservoir allows for a high pressure system whereby average pressure of the cycle is increased and power output of the engine is increased.
There are a great many alternatives for piston and cylinder designs. Standard automotive style metallic pistons with annular sealing rings can be used. Ceramic pistons and cylinders can be used. Pistons and cylinders that represent low sliding friction, good sealing and withstand high temperatures are candidates for use.
Compression cylinder 20 and transfer cylinder 20a are shown having equal diameters. An alternative embodiment of the engine is to have either cylinder larger than the other. The potential benefit of this is to reduce the stroke length of the cylinder that is made larger in diameter.
The pistons and cylinders used in the engine for compression and transfer of working fluid can be replaced by bellows, said bellows forming chambers 50, 50a and 50b with substantially one part. This reduces the complexity and number of parts in the engine and improves the sealing of the working chambers. Thus, reducing or expanding the volume of a given chamber may be accomplished, rather than by moving a piston in a cylinder, by shrinking or collapsing a bellows.
While copper is the preferred material for the heat exchanger 10 due to its superior heat conduction properties, other metals such as aluminum, steel, brass, etc. may be used to reduce cost. More exotic materials such as titanium, nickel alloys, beryllium, tungsten, etc. may be used for their higher melting points. Non-metallic materials such as graphite, carbon and ceramics may also be considered provided they have sufficiently high heat conduction properties and melting points.
The design variations of the heat exchanger 10 are nearly endless, and the exchanger configuration in the drawing figures is by way of example rather than limitation. Any design which has a large surface area, allows the working media to flow through with minimal flow restriction, good material thermal conduction properties, good heat convection properties, and can be produced at a reasonable cost is a potential candidate for use as a heat exchanger. For example, a honeycomb design can be used. A long sheet of thin metal of desired width can be wound in a spiral to achieve large surface area. Concentric rings of equal width can also be used to achieve large surface area. Metallic meshes and foams are well known for providing very large surface areas in a relatively small volume.
Additionally, the hole geometry of the heat exchanger can be changed such that the surface convective properties are improved by inducing turbulent flow. For example, the roughness of the drilled holes can be increased, bumps on the surfaces of the holes, spiral grooves inside the holes, etc. can be made to induce turbulent flow and improve the convective heat transfer. A suitable thermal surface treatment or coating at the top of the heat exchanger to minimize heat transfer from that surface can reduce energy lost during exhaust and intake.
Piston drive can be achieved in any number of well known methods. The standard automotive style drive scheme can be used, as well as more exotic drive schemes used in the Stirling engines such as rhombic drives, scotch yoke designs, wobble yoke designs, etc.
Piston drive actuation can be achieved by hydraulic actuation, whereby the valves, compression and transfer pistons are actuated by hydraulic means such as hydraulic cylinders. The piston drive can also be achieved electromechanically, similar to what is currently done in free piston Stirling engines. If an appropriate bi-directional electromechanical device is chosen to drive either the piston push rod or the piston directly, then the electromechanical device performs alternatively as an actuator and as an electrical generator depending on the stage of the cycle the engine is in. The electromechanical device can then be connected electrically to a battery, capacitor or other appropriate electrical energy storage device such that the need for a flywheel is eliminated. The power take off is then electrical. Alternatively, the energy can be stored in a flywheel connected electrically to the electromechanical devices by a rotational electric generator. Control of the pistons is achieved through the use of an appropriately programmed computer or electronic controller.
The exact timing of the compression and transfer pistons can be dynamically controlled by placing temperature and pressure sensors inside the working chambers and feeding the information into an electronic controller such as a programmable logic controller or computer. The computer uses the temperature and pressure information to dynamically control piston movement to achieve the desired performance. In this case the hydraulic, electromechanic and to a lesser extent the cam actuation methods can be used to achieve the desired result.
The thermodynamic cycle can be achieved with the same components being actuated in a slightly different manner. That is, the transfer piston 40a and transfer cylinder 20a can be made exactly the same as compression piston 40 and compression cylinder 20. Additional exhaust and intake valves can be placed on the transfer cylinder such that both cylinders can be used to draw in air and compress it adiabatically. After the adiabatic compression, isothermal expansion begins whereby transfer piston 40a stops before it reaches top dead center and reverses direction while compression piston 40 continues to bottom dead center, pulling working fluid through heat exchanger 10. When piston 40 reaches bottom dead center, they both reverse direction and force the working fluid again through heat exchanger 10. The working fluid is in this way shuttled through the heat exchanger as many times as necessary to reach the desired expansion ratio Er, after which both pistons are used to perform adiabatic expansion, exhaust and intake to repeat the cycle again. The benefit of this embodiment is an effective doubling of the working fluid mass and therefore a doubling of output power provided by the engine.
If the engine of the preferred embodiment is designed for sufficiently high temperatures requiring very large compression ratios, the performance of the current invention can be enhanced by the use of pre-compression and/or post expansion devices, such as a turbo machine, a screw type compressor, or any other compressor whose function is to compress or expand a gas more or less adiabatically. The pre-compression device compresses the air adiabatically and pushes it through an appropriate passageway and valve into the compression chamber whereby further compression, then isothermal expansion and finally isentropic expansion is performed. The working fluid is thereafter pushed through another appropriate passageway and valve to an expansion device whereby the rest of the available expansion energy is recovered.
The present invention does not preclude the use of a single valve for use in both intake and exhaust. That is, a single valve can be designed with appropriate flow passages such that cross talk, or mixing of intake fluid with exhaust fluid is prevented or minimized. The obvious advantage to this is reduced complexity.
Additionally, the type or design of valve used is not limited to those shown in the present invention or its alternative embodiments. The variety of valve designs is nearly limitless and many of them are suitable for use in the engine. For example, standard automotive poppet style valves, rotating butterfly style valves, plug valves, ball valves and any other standard and appropriate valve can be used.
While the current invention does not include an automatic starting means or mechanism, there are many well known methods for doing so, such as the electric starter motors used in the current automotive engines, the use of springs, manual pull strings, manual cranks and others.
The inventive engine does not include the use of a filter to remove damaging particles or contaminants from the intake air. In environments where this is required, an air filter is placed at or before the intake port.
The current engine does not include the use of power and speed limiting or controlling devices. Speed and power limiting and controlling is achieved by controlling the thermal energy input or available as well as the shaft power demands at the output. As such, speed and power limiting devices are dependent on the system in which the engine is used. Nonetheless, the standard means of clutches, brakes, fuel flow control, etc can all be used.
Although the invention has been described in detail with particular reference to these preferred embodiments, other embodiments can achieve the same results. Variations and modifications of the present invention will be obvious to those skilled in the art and it is intended to cover in the appended claims all such modifications and equivalents. The entire disclosures of all references, applications, patents, and publications cited above are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
9909 | Willcox | Aug 1853 | A |
23876 | Wilcox | May 1859 | A |
27180 | Wilcox | Feb 1860 | A |
542846 | Diesel | Jul 1895 | A |
673462 | Thornton et al. | May 1901 | A |
2939286 | Pavlecka | Jun 1960 | A |
3329575 | Burbach et al. | Jul 1967 | A |
3772883 | Davoud et al. | Nov 1973 | A |
3867816 | Barrett | Feb 1975 | A |
3990243 | Davoud | Nov 1976 | A |
4050253 | Eskeli | Sep 1977 | A |
4120161 | Gedeit | Oct 1978 | A |
4196594 | Abom | Apr 1980 | A |
4270351 | Kuhns | Jun 1981 | A |
4490974 | Colgate | Jan 1985 | A |
4715185 | Salo | Dec 1987 | A |
5016441 | Pinto | May 1991 | A |
5209065 | Sakata | May 1993 | A |
5809784 | Kreuter | Sep 1998 | A |
5894729 | Proeschel | Apr 1999 | A |
6109035 | Guruprasad | Aug 2000 | A |
Number | Date | Country | |
---|---|---|---|
20060090467 A1 | May 2006 | US |