The problem of security bootstrapping is acute for a wireless device that has access to multiple wireless base stations without obvious means for selecting one over the other, which frequently occurs in dense neighborhoods where wireless signals overlap. Today, the vast majority of wireless devices in homes are not secure owing to the challenges faced in configuring security in network equipment.
For example, a consumer might own a video library device and a television both having wireless ports. However, if the consumer activates the wireless port on the video library without security then unknown parties could access the content of the library.
Smart cards and similar devices serve to bootstrap a security association as well as to authenticate employees, users and households in consumer electronics and enterprise-security applications. Unfortunately, devices such as the CableCard and other types of smart cards typically require a special-purpose reader, which makes them very expensive by consumer-electronic standards. Authentication “dongles” are hardware devices, containing memory, that attach to a computer port to control access to a particular application or applications. Dongles that attach to computer USB ports are known in the art, but network devices frequently lack a USB port.
For example, the Windows XP Smart Network manufactured by Microsoft Corporation utilizes a flash memory plugged into a USB port to store a 26-digit hex number. The user may use the USB flash drive to add network settings to other devices and must plug the USB flash drive into the access point of any other devices (PCs, notebooks, printers, scanners) to be added to the network and then bring the USB flash drive back to the original PC. Each device writes a small file to the USB flash drive and the USB flash drive drops all the information on the original PC when inserted into its USB port, allowing the original PC to recognize all devices on the network.
The challenges in the field of network security continue to increase with demands for more and better techniques having greater flexibility and adaptability. Therefore, a need has arisen for a new low-cost system and method for providing for secure transaction devices without adding special ports or readers to the device.
Reference will now be made in detail to various embodiments of the invention. Examples of these embodiments are illustrated in the accompanying drawings. While the invention will be described in conjunction with these embodiments, it will be understood that it is not intended to limit the invention to any embodiment. On the contrary, it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the various embodiments. However, the present invention may be practiced without some or all of these specific details. In other instances, well known process operations have not been described in detail in order not to unnecessarily obscure the present invention.
An embodiment of the invention will now be described that is a simple technique, which is as intuitive as inserting a car key into a lock. As depicted in
The embodiment includes a device that plugs into an Ethernet port but is not a complete Ethernet device. The device includes an Ethernet PHY but does not include MAC (Media Access Control) or LLC (Logical Link Control). The device does not have an included power source and derives its power from the Ethernet port of the host. The dongle of this embodiment has the following features and components:
In this embodiment, the dongle has a microchip to store and transmit the data, and has diodes and capacitors to present an identity network of resistors and diodes to enable the PHY in the host to recognize an attached dongle and power it.
The dongle of this embodiment uses diodes and a capacitor to make a power supply out of the 5V that the Ethernet Host provides. This power supply serves to power the delivery of data using continuous pulses to the Host.
In the simplest embodiment, the dongle memory is read-only and the dongle is shipped with a device where both device and dongle contain the same data. In this embodiment, the dongle serves only to convey the data from the device to another device through its Ethernet interface, which is modified to detect a dongle and process its signals as described below. Signals used to share information with the Host may be standard Ethernet i.e. (regular Ethernet packets) auto-negotiation FLPs (or fast link pulses) and any proprietary signals attenuated in amplitude to help reduce the power consumption while insuring proper delivery of data.
For example, in the scenario described above, the video library device could be shipped with a dongle, each holding secret security data. When the user wants to access video data from the video library to the television the dongle would be inserted into an Ethernet port on the television. The television could then use the secret data in the dongle to answer a challenge from the video library device.
Also, incoming AC power pulses intended to deliver power may be encoded in a similar fashion to that of 10 BASET or some other proprietary mode so that a buffered input into the memory and PHY chip allows data and not just power to be supplied over this receive path 20.
As depicted in
The dongle 1 has a transmit path 30, which includes a single pair identity network 32, and a transmit transformer 34 with the transmit path coupled to the transmit side of the Memory Transmit Chip 26. The receive and transmit transformers protect the dongle circuitry from a 48 volt shock if the dongle is plugged into the wrong port. All the circuit elements on the dongle may be mounted on a printed circuit board with traces that connect the various circuit elements. The interface between the dongle and the host can be a TP connector and RJ-45 socket. An 802.3af compatible dongle may avoid using the single pair identity networks to lower cost. Also the Host may use the classification of an 802.3af device to limit the current to a much lower value than specified in the 802.3af standard to keep the power delivered under control and limit damage under a fault condition. For example, the Host may opt to limit such current to 1 Watt or less, which is not currently enabled in the standard.
The PHY 11 on the Ethernet host port 10 is modified on the Ethernet host to test for a single-pair identity network as depicted in
In this way, the Ethernet host can determine when the dongle of the presently described embodiment is inserted in an Ethernet host port and the host supplies a 5 MHz (AC) signal resembling data to power the dongle. In standard PHYs a 100 ohm differential source is utilized. If the dongle is discovered by the ID sequence, the 100 ohm can be changed to 1 ohm to lower the source impedance to generate more AC power for the dongle. Thus, if necessary the PHY/AC generator on the host port 10 may deliver proprietary signals (amplitude and frequency) for power generation lowering the 100 ohm impedance to enable an increase in the power delivered to a dongle.
This 5 MHz signal is rectified by the power supply circuit in the receive path of the dongle to provide power to the Memory Transmit chip 26.
Following this action, if the host fails to receive pulses within a certain period of time, it repeats its test until it either receives pulses from a dongle or finds a valid Ethernet device.
As depicted in the flow chart of
In a simple embodiment, the string held in the read-only memory is 128 bits in length and is a secret from another device that the host receives into its memory to share the secret with the device. The dongle can recover a clock from the signal on the receive path and use it for transmitting its bits from memory. An embodiment uses the continuous IDLE code of a 10 BaseT switch interface for this purpose.
The memory may be selected to hold more bits to support other security protocols. For example, the Windows USB Smart Network Key, described above, can be a Wireless Wi-Fi WEP (Wireless Equivalent Privacy) key. Accordingly, the memory used in different embodiments of the invention would be selected to have a capacity to support different protocols, for example a WEP that utilizes a 24-bit initialization vector plus a 40, 104, or 232-bit key.
To effect the transfer of the data, the host PHY must further coordinate the reception of the ‘Next Page’ pulses as they are coming over the host receive pair to the host PHY in the host switch while the transmit pair of the switch continuously supplies 5 MHz 5 v peak-peak to power the dongle. The PHY can either interrupt to software or store the data over its MDIO (Management Data I/O) interface into local EEPROM (Electrically Erasable Programmable Read-Only Memory).
The circuit layout of the dongle is the same as in
Alternatively, the data to be written to the Memory Transmit/Receive chip 50 could be input on the receive path 20 of the dongle by modulating the 5 MHz signal to carry the input data. The receive path is coupled to the inputs of the memory by a high-impedance buffer so as to not load the incoming signals and reduce the power available.
In the embodiment depicted in
This embodiment has a small amount of memory to store a shared secret, such as a 128-bit string. A more elaborate embodiment can store more information such as a hash chain. It is known in the art of computer security for an authenticating device to store a one-way hash chain g_i having the property of g_i=H(g_i-1), and g—0 is set to a random constant. In systems such as S/Key, an authenticator device that receives a value, g, from an authenticating device can challenge the authenticating device to produce another value, g′, such that g=H(g′). When the function H is known to be hard to invert, a device can prove that it is the same device that provided a value g when it subsequently provides the generating value g′, which produces g=H(g′).
In an embodiment, the Host has means, such as an LED, to signal the successful transfer. A Host may do a read-back after a memory write to verify the content before declaring a successful transfer with an LED flashing. If a failure of transfer takes place an LED on the dongle may be flashed to indicate an error and alert the user. Such a transfer occurs while the dongle is attached to the port and no standard Ethernet device is attached. The interface that connects to the dongle must be disconnected from the network and all processing ceases when the dongle is no longer attached.
The Host processing includes reception of the data and the execution of a protocol between the switch and another device that shares the received data. In one embodiment, the protocol is a challenge/response protocol between the host and remote device, which are connected together on a network (i.e. through an interface other than the one which connects the dongle).
A protocol for the embodiment that uses a read-only dongle in which the secret is written to the dongle by a manufacturer and shipped to the user with the device will now be described. In this embodiment, the device has a pre-shared secret in non-volatile storage that matches the secret on the dongle; this device does not need to have an Ethernet port. It could be a wireless device, for example, and is labeled as the “Petitioner” in
There is a dongle associated with the Petitioner that a human user inserts into a network device, which has an Ethernet port with a modified Ethernet driver to read the dongle. The network device, labeled “Registrar” in
The dongle may be applied to either the Petitioner or Registrar, and either may initiate the challenge/response protocol, and these alternative embodiments are depicted in
The invention has now been described with reference to the preferred embodiments. Alternatives and substitutions will now be apparent to persons of skill in the art. For example, alternative techniques for powering the dongle such as a battery could be utilized. Additionally, as understood in the art, connectors other than RJ-45 could be utilized to practice the invention. Further, the voltages levels depicted in