This invention relates in general to cooling techniques and, more particularly, to a method and apparatus for cooling a system that generates a substantial amount of heat through use of coolant at a subambient pressure.
Some types of electronic circuits use relatively little power, and produce little heat. Circuits of this type can usually be cooled satisfactorily through a passive approach, such as convection cooling. In contrast, there are other circuits that consume large amounts of power, and produce large amounts of heat. One example is the circuitry used in a phased array antenna system.
More specifically, a modern phased array antenna system can easily produce 25 to 30 kilowatts of heat, or even more. One known approach for cooling this circuitry is to incorporate a refrigeration unit into the antenna system. However, suitable refrigeration units are large, heavy, and consume many kilowatts of power in order to provide adequate cooling. For example, a typical refrigeration unit may weigh about 200 pounds, and may consume about 25 to 30 kilowatts of power in order to provide about 25 to 30 kilowatts of cooling. Although refrigeration units of this type have been generally adequate for their intended purposes, they have not been satisfactory in all respects.
In this regard, the size, weight and power consumption characteristics of these known refrigeration systems are all significantly larger than desirable for an apparatus such as a phased array antenna system. And given that there is an industry trend toward even greater power consumption and heat dissipation in phased array antenna systems, continued use of refrigeration-based cooling systems would involve refrigeration systems with even greater size, weight and power consumption, which is undesirable. In such systems, it is often important that stable cooling is achieved during both startup and when the cooled device is subjected to wide swings in required cooling capacities.
According to one embodiment an apparatus includes a fluid coolant and structure which reduces a pressure of the fluid coolant through a subambient pressure at which the coolant has a cooling temperature less than a temperature of the heat-generating structure. The apparatus also includes structure that directs a flow of the fluid coolant in the form of a liquid at a subambient pressure in a manner causing the liquid coolant to be brought into thermal communication with the heat-generating structure. The heat from the heat-generating structure causes the liquid coolant to boil and vaporize so that the coolant absorbs heat from the heat-generating structure as the coolant changes state. The structure is configured to circulate the fluid coolant through a flow loop while maintaining the pressure of the fluid coolant within a range having an upper bound less than ambient pressure. The apparatus also includes a first heat exchanger for exchanging heat between the fluid coolant flowing through the loop and a second coolant in an intermediary loop so as to condense the fluid coolant flowing through the loop to a liquid. The apparatus also includes a second heat exchanger for exchanging heat between the second coolant in the intermediary cooling loop and a body of water on which the ship is disposed.
According to another embodiment, a method for cooling includes providing a primary fluid coolant in reducing a pressure of the primary fluid coolant to a subambient pressure at which the primary coolant has a cooling temperature less than a temperature of the heat of the heat-generating structure. The method also includes bringing the primary coolant at the subambient pressure into thermal communication with the heat-generating structure so that the primary coolant boils and vaporizes to thereby absorb heat from the heat-generating structure. The method also includes circulating the primary coolant through a flow loop while maintaining the pressure of the primary coolant within a range having an upper bound less than the ambient pressure. The flow loop is in thermal communication with a heat exchanger for removing heat from the primary coolant so as to condense the primary coolant to a liquid. The method also includes providing an intermediary cooling loop in thermal communication with the heat exchanger and exchanging, by the heat exchanger, heat from the primary coolant with an intermediary loop coolant in the intermediary cooling loop. The method also includes exchanging heat from the intermediary cooling loop coolant with a sink fluid.
Some embodiments of the invention may provide numerous technical advantages. Other embodiments may realize some, none, or all of these advantages. For example, according to one embodiment, the temperature of a plurality of heat-generating devices on a ship, such as phase array antennas, may be maintained at a desired temperature through a subambient cooling system that sinks the generated heat to the body of water through an intermediary cooling loop. Such an approach can in some embodiments result in substantial heat dissipation without use of compressors. The avoidance of the use of compressors frees up valuable space on the ship. Further, in some embodiments, large vapor lines can be avoided.
Other advantages may be readily ascertainable by those skilled in the art.
A more complete understanding of embodiments of the invention will be apparent from the detailed description taken in conjunction with the accompanying drawings in which:
Example embodiments of the present invention and their advantages are best understood by referring to
In the illustrated embodiment, the electronic circuitry within the antenna system 12 has a known configuration, and is therefore not illustrated and described here in detail. Instead, the circuitry is described only briefly here, to an extent that facilitates an understanding of the present invention. In particular, the antenna system 12 includes a two-dimensional array of not-illustrated antenna elements, each column of the antenna elements being provided on a respective one of the slats, including the slats 14 and 16. Each slat includes separate and not-illustrated transmit/receive circuitry for each antenna element. It is the transmit/receive circuitry which generates most of the heat that needs to be withdrawn from the slats. The heat generated by the transmit/receive circuitry is shown diagrammatically in
Each of the slats is configured so that the heat it generates is transferred to a tube 22 or 24 extending through that slat. Alternatively, the tube 22 or 24 could be a channel or passageway extending through the slat, instead of a physically separate tube. A fluid coolant flows through each of the tubes 22 and 24. As discussed later, this fluid coolant is a two-phase coolant, which enters the slat in liquid form. Absorption of heat from the slat causes part or all of the liquid coolant to boil and vaporize, such that some or all of the coolant leaving the slats 14 and 16 is in its vapor phase. This departing coolant then flows successively through a separator 26, a heat exchanger 28, a pump 30, and a respective one of two orifices 32 and 34, in order to again reach the inlet ends of the tubes 22 and 24. The pump 30 causes the coolant to circulate around the endless loop shown in
Separator 26 separates the vaporized portion of the liquid coolant flowing through tubes 22 and 24 from the unvaporized liquid portion. The vaporized portion is provided to heat exchanger 28, and the liquid portion is provided at separator pump 36.
Separator pump 36 receives the liquid portion of the coolant that has not vaporized in tubes 22 and 24 circulates this fluid back through tubes 22 and 24 via orifices 32 and 34.
The orifices 32 and 34 facilitate proper partitioning of the coolant among the respective slats, and also help to create a large pressure drop between the output of the pump 30 and the tubes 18 and 20 in which the coolant vaporizes. It is possible for the orifices 32 and 34 to have the same size, or to have different sizes in order to partition the coolant in a proportional manner which facilitates a desired cooling profile.
Ambient air or liquid 38 is caused to flow through the heat exchanger 28, for example by a not-illustrated fan of a known type. Alternatively, if the apparatus 10 was on a ship, the flow 38 could be ambient seawater. The heat exchanger 28 transfers heat from the coolant to the air flow 38. The heat exchanger 28 thus cools the coolant, thereby causing any portion of the coolant which is in the vapor phase to condense back into its liquid phase.
The liquid coolant exiting the heat exchanger 28 is supplied to the expansion reservoir 40. Since fluids typically take up more volume in their vapor phase than in their liquid phase, the expansion reservoir 40 is provided in order to take up the volume of liquid coolant that is displaced when some or all of the coolant in the system changes from its liquid phase to its vapor phase. The amount of the coolant that is in its vapor phase can vary over time, due in part to the fact that the amount of heat being produced by the antenna system 12 will vary over time, as the antenna system operates in various operational modes.
Pressure controller 42 maintains the coolant at a desired subambient pressure in portions of the cooling loop downstream of the orifices 32 and 34 and upstream of the pump 30, as described in greater detail in conjunction with
Turning now in more detail to the coolant, one highly efficient technique for removing heat from a surface is to boil and vaporize a liquid which is in contact with the surface. As the liquid vaporizes, it inherently absorbs heat. The amount of heat that can be absorbed per unit volume of a liquid is commonly known as the latent heat of vaporization of the liquid. The higher the latent heat of vaporization, the larger the amount of heat that can be absorbed per unit volume of liquid being vaporized.
The coolant used in the disclosed embodiment of
Water flowing from the pump 30 to the orifices 32 and 34 has a temperature of approximately 60° C. to 65° C., and a pressure in the range of approximately 15 psia to 100 psia. After passing through the orifices 32 and 34, the water will still have a temperature of approximately 60° C. to 65° C., but will have a much lower pressure, in the range about 2 psia to 8 psia. Due to this reduced pressure, some or all of the water will boil as it passes through and absorbs heat from the tubes 22 and 24, and some or all of the water will thus vaporize. After exiting the slats, the water vapor (and any remaining liquid water) will still have the reduced pressure of about 2 psia to 8 psia.
When this subambient coolant water reaches the heat exchanger 28, heat will be transferred from the water to the forced air flow 38. The air flow 38 has a temperature less than a specified maximum of 55° C., and typically has an ambient temperature below 40° C. As heat is removed from the water coolant, any portion of the water which is in its vapor phase will condense, such that all of the coolant water will be in liquid form when it exits the heat exchanger 28. This liquid will have a temperature of approximately 60° C. to 65° C., and will still be at the subambient pressure of approximately 2 psia to 8 psia. This liquid coolant will then flow to the pump 30 with a tee connection prior to the expansion reservoir 40. The pump 30 will have the effect of increasing the pressure of the coolant water, to a value in the range of approximately 15 psia to 100 psia, as mentioned earlier.
It will be noted that the embodiment of
As mentioned above, the coolant used in the embodiment of
Despite the fact that these alternative coolants have a lower latent heat of vaporization than water, there are some applications where use of one of these other coolants can be advantageous, depending on various factors, including the amount of heat which needs to be dissipated. As one example, in an application where a pure water coolant may be subjected to low temperatures that might cause it to freeze when not in use, a mixture of water and ethylene glycol or water and propylene glycol could be a more suitable coolant than pure water, even though the mixture has a latent heat of vaporization lower than that of pure water.
The cooling system of
Cooling system 104 includes a plurality of subambient cooling systems 110, an intermediary cooling loop 160, and a heat exchanger 146. The plurality of subambient cooling systems 110 are disposed on ship 100 in relation to respective heat-generating structures 102.
Each subambient cooling system 110 may be as described in conjunction with
According to the teachings of the invention, it is recognized that a single large subambient cooling system 110 that could be centrally located within ship 100 may be used, but in some implementations the size of associated vapor return lines may be too large that they are not practical for certain applications. The teachings of the invention further recognize that the use of smaller higher pressure liquid lines within an intermediary loop between the heat exchanger of the subambient cooling systems 110, such as condenser heat exchanger 28 (
As illustrated, intermediary loop 160 includes a hot side line 144 and a cold side line 138. Hot side line 144 contains heat received from the associated condenser heat exchanger (such as heat exchanger 28) of each subambient cooling system and provides it to heat exchanger 146. The cold side line 138 of intermediary loop 160 provides a cooling fluid to each subambient cooling system to allow condensation of the vapor created during cooling of phased arrays of the heat-generating structure, as described above. In that connection, a pump 154 may be provided to pump the cooling fluid through intermediary loop 160. Although any suitable cooling fluid may be used, water is one particularly suitable cooling fluid, as are the coolants described above in connection with
When not in use, the SACS 110 loop may be drained to an elastic bladder used as a storage tank. The use of an elastic storage tank alleviates concerns over freezing of the coolant and resultant breakage of the associated lines in the SACS or an inelastic storage tank. An elastic tank may also be used for the coolant used in intermediary loop 160. Upon startup, the coolant stored in such a bladder may be heated and melted for use in the appropriate loop.
Heat exchanger 146 exchanges heat between intermediary loop 160 and the seawater 148. In particular, a cool side inlet 150 provides seawater at ambient temperature, which may be approximately 35° C., and hot side outlet 152 provides heated seawater back to the sea. In this manner, each of the subambient cooling systems 110 may exchange heat generated by process equipment 102 with the eventual heat sink of the sea or ocean. It will be recognized that instead of one heat exchanger 146, a plurality of heat exchangers may also be used. In such a case, intermediary loop 160 may comprise a single loop with multiple outlets to each heat exchanger 146, or may be replaced with a plurality of intermediary loops connecting respective subambient cooling systems 110 with respective heat exchangers 146. The size of lines 138 and 144 may be selected based on the particular heat transfer needs of heat generating structures 102, subambient cooling systems 110, and the temperature of seawater 148.
Although the present invention has been disclosed in the context of a plurality of phased array antenna systems on a ship, it will be recognized that it can be utilized in a variety of other contexts, including but not limited to a power converter assembly, or certain types of directed energy weapon (DEW) systems. Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions, and alterations can be made therein without departing from the spirit and scope of the invention as defined by the appended claims.