The present invention relates to a method for correcting the lateral position of a printing material, which includes gripping the printing material with a transport unit. The invention also relates to an apparatus for correcting the lateral position of a printing material, a printing material conveying system and a machine for processing printing material.
Transport systems for printing materials, for example for printing material sheets, which transport the sheets through the use of an electric linear drive, are known from the prior art. There, the electric linear drive as a rule includes a primary part on each machine side. The primary part interacts in a known manner with secondary parts which are configured as runners. A transport system of that type is described, for example, in German Published, Non-Prosecuted Patent Application DE 103 51 619 A1, corresponding to U.S. Patent Application Publication No. US 2005/0093224 A1.
Furthermore, it is known to correct the position of erroneously oriented sheets which deviate from a setpoint or desired position, for example in the conveying direction, in the lateral direction or in their angular position, through the use of register adjusting apparatuses.
German Published, Non-Prosecuted Patent Application DE 44 06 740 A1 describes an apparatus for register correction in a sheet-fed printing press, having sheet holders which are disposed in such a way that they can be displaced by motor. The sheet-fed printing press permits positional correction both in the conveying direction as well as transversely with respect to the conveying direction of the sheets. There, for example, linear motors can be used as actuators for a carriage which carries the sheet holders. In order to carry out diagonal sheet correction, that is to say in order to correct the angular position of the sheet, the sheet is oriented on additional front lays before it is gripped by the apparatus, that is to say the diagonal sheet correction is not possible only with the apparatus for register correction and without the additional front lays. Pivoting of the carriage is not described.
European Patent EP 0 907 515 B1, corresponding to U.S. Pat. Nos. 5,809,892; 6,044,760; and 6,092,801, describes a sheet transport system for a rotary printing press having first and second advance elements which are configured as runners of an electric linear drive and drive sheet transport apparatuses which have sheet holding devices. The sheet holding devices can be fastened to a crossmember which is connected in an articulated manner to the advance elements. In order to set the diagonal register of the transported sheets, the advance elements can be controlled and regulated independently of one another, with the result that the relative position between the advance elements can be changed. Correction of the lateral register of the sheets is not described.
German Published, Non-Prosecuted Patent Application DE 102 16 758 A1, corresponding to European Patent EP 1 354 833 B1, describes a method for orienting sheets according to the side edge, having a gripper system in a feed cylinder. The gripper system can be moved laterally, that is to say in the axial direction. In order to carry out diagonal register correction, additional front lays are provided as in German Published, Non-Prosecuted Patent Application DE 44 06 740 A1. Pivoting of the gripper system is not described.
German Patent DE 44 16 564 C2, corresponding to U.S. Pat. No. 5,322,273, describes a sheet orienting apparatus for diagonal and lateral register correction through the use of three rollers which are driven by respective stepping motors and are segmented in the circumferential direction. Pivoting of the apparatus is not described.
It is accordingly an object of the invention to provide a method for correcting the lateral position of a printing material, which overcomes the hereinafore-mentioned disadvantages of the heretofore-known methods of this general type.
It is another object of the present invention to provide an improved method for correcting the lateral position of a printing material, in which the movement of a transport unit for the printing material at the same time brings about the correction of the lateral position. It is a further object of the present invention to provide a printing material conveying system having an alternative use. It is an alternative object of the present invention to provide an improved apparatus for correcting the position of a printing material in the lateral direction. It is an additional object of the present invention to provide an improved apparatus for correcting the position of a printing material in the lateral direction, in which the number of required actuators and the associated costs are kept low.
With the foregoing and other objects in view there is provided, in accordance with the invention, a method for correcting a position of a printing material. The method comprises correcting a lateral position of the printing material by gripping the printing material with a transport unit, rotating the transport unit in a lateral position correction angular range for correcting the lateral position of the printing material, and rotating the transport unit out of the lateral position correction angular range while retaining the correction of the lateral position of the printing material.
Before the transport unit is rotated in the lateral position correction angular range, the transport unit is rotated first of all into the lateral position correction angular range (if it has not already taken place). In comparison with the prior art, the correction of the lateral position of the printing material is advantageously brought about by rotation of the transport unit. The rotation of the transport unit can preferably be achieved by a relative movement of two runners of an electric linear drive which moves the transport unit in a transport direction. This results in the advantage that the actuators which are present in any case, that is to say the drive of the transport unit, can also be used, apart from using it to move the printing material, to correct its position, in particular the lateral position and circumferential position.
In accordance with another mode of the invention, in order to correct the lateral position and the angular position of the printing material, the transport unit is moved into the angular position of the printing material and grips the printing material. The transport unit is rotated in the lateral position correction angular range for correcting the lateral position of the printing material. The transport unit is rotated out of the lateral position correction angular range, while retaining the correction of the lateral position of the printing material and correcting the angular position of the printing material. The rotation of the transport unit into two different angular positions (angular position of the printing material, angle within the lateral position correction angular range) and back into the starting position, which rotation is brought about by the actuators that are present in any case and is sequential, advantageously permits the correction both of the lateral position and of the angular position. Correction of the position of the printing material in the transport direction is likewise possible by way of the actuators for moving the printing material.
In accordance with a further mode of the invention, at the beginning of the method, the transport unit is situated in a starting position which is perpendicular with respect to the transport direction, and the transport unit is rotated out of the lateral position correction angular range into the starting position.
In accordance with an added mode of the invention, the transport unit includes a crossmember which, during rotation of the transport unit in the lateral position correction angular range in a first angular direction, performs a translation in the longitudinal direction of the crossmember. According to this mode of the invention, the relative longitudinal movement of the actuators can advantageously be converted into a rotational movement of the transport unit and, further, into a sideways movement of the crossmember.
In accordance with an additional mode of the invention, the transport unit includes a crossmember which, during rotation of the transport unit out of the lateral position correction angular range in a second angular direction, is stationary translationally in the longitudinal direction of the crossmember. The second angular direction is opposed to the first angular direction. According to this mode of the invention, the relative longitudinal movement of the actuators can advantageously be converted into a rotational movement of the transport unit, with the crossmember being stationary in the lateral direction.
In accordance with yet another mode of the invention, the transport unit is rotated by a relative movement of two runners of an electric linear drive of a printing material conveying system.
With the objects of the invention in view, there is also provided a printing material conveying system. The system comprises an electric linear drive including a transport unit for a printing material having two runners and a crossmember. The electric linear drive corrects a lateral position of the printing material by a relative movement of the two runners.
In comparison with the prior art, the correction of the lateral position of the printing material is not brought about by a lateral, uniformly oriented movement of the actuators, but can advantageously be brought about by a relative movement in the transport direction of the actuators which are present in any case. According to the invention, the printing material conveying system is used in a multifunctional manner: firstly for transport, secondly for lateral position correction.
In accordance with another feature of the invention, in order to correct the lateral position and the angular position of the printing material, the correction is carried out by a relative movement of the two runners. According to this feature of the invention, correction both of the lateral position and of the angular position of the printing material can be brought about by a relative movement in or counter to the transport direction of the actuators which are present in any case. As a consequence, the printing material conveying system is used in a multifunctional manner: firstly for transport, secondly for lateral and angular position correction.
With the objects of the invention in view, there is additionally provided an apparatus for correcting a position of a printing material in a lateral direction. The apparatus comprises an electric linear drive having at least two runners to be moved substantially perpendicularly relative to the lateral direction.
In contrast to the prior art, the runners which act as actuators are advantageously not moved parallel to the lateral direction but perpendicularly with respect thereto, preferably in a transport direction of the linear drive.
In accordance with a further feature of the invention, the runners of the electric linear drive can be moved relative to one another.
With the objects of the invention in view, there is concomitantly provided a machine for processing printing material, in particular a printing press, a sheet-processing rotary printing press for lithographic offset printing or a sheet-processing punch, comprising the apparatus according to the invention.
Other features which are considered as characteristic for the invention are set forth in the appended claims.
Although the invention is illustrated and described herein as embodied in a method and an apparatus for correcting the lateral position of a printing material, a printing material conveying system and a machine for processing printing material, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.
The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.
Referring now in detail to the figures of the drawings, in which features which are identical or correspond to one another are provided with the same designations in each case and first, particularly, to
As is shown in
Furthermore,
The illustration in
According to the invention, the correction of the lateral position of the printing material 102 is achieved by rotation or pivoting of the transport unit 104, with the crossmember 120 moving in the lateral direction toward one runner. When the transport unit 104 is rotated back, according to the invention, in contrast the crossmember 120 is not moved in the lateral direction, that is to say it is stationary in the lateral direction. In this way, the apparatus for carrying out the method according to the invention advantageously requires only the two runners 106, 108, which are present in any case for transporting the printing material, of the electric linear drive 110, as actuators. Further actuators which would be provided only for lateral orientation can therefore advantageously be omitted.
In addition to the correction of the position of the printing material 102 in the movement direction 131, that is to say in addition to what is known as circumferential register correction, lateral register correction and correction of the angular position, that is to say what is known as diagonal sheet correction, are therefore required. For this purpose, the actual position 134 of the sheet 102 is determined by using the recording unit 140 and, as in the example which is shown in
In addition to the lateral register correction, the transport unit 104 is rotated back again into a position (starting position 109) which is perpendicular with respect to the transport direction 105 of the printing material 102, as is shown in
According to the invention, the correction of the lateral position and the angular position of the printing material 102 is achieved by rotation or pivoting of the transport unit 104, with the crossmember 120 moving in the lateral direction toward one runner. In contrast, during the rotation back of the transport unit 104, according to the invention, the crossmember 120 is not moved in the lateral direction, that is to say it is stationary in the lateral direction. In this way, the apparatus for carrying out the method according to the invention advantageously requires only the two runners 106, 108, which are present in any case for transporting the printing material, of the electric linear drive 110 as actuators. Further actuators which would be provided only for the lateral orientation can therefore advantageously be omitted.
If the transport unit 104 is rotated by an angle 0<|φ|<|α′| or 0<|φ|<|α″|, only the angular position of the transport unit 104 and the crossmember 120 is changed, but not the lateral position of the crossmember 120.
If the transport unit 104 is rotated by an angle |α′|<|φ|<|β′| or |α″|<|φ|<|β″|, a lateral movement of the crossmember 120 and therefore lateral register correction are initiated after the limiting angle α′ or α″ has been swept through, that is to say the angular movement is converted into a translational lateral movement of the crossmember 120. In addition, if angle φ=β′ or φ=β″, a mechanical stop can be provided to prevent further rotation.
During rotation back of the transport unit 104 and the crossmember 120, the previously set lateral register correction is maintained.
The lateral register correction can take place in such a way that the printing material is displaced by the apparatus according to the invention depending on the lateral offset (left or right) of the printing material in the direction of the runner 106 or the runner 108. In this case, an adjusting movement of the crossmember is provided in the angular position correction angular ranges β′ and β″. However, there can also be provision for the printing material to always be displaced only in the direction of one of the two runners 106 or 108. In this case, an adjusting movement of the crossmember in one of the angular position correction angular ranges β′ or β″ is sufficient, as long as the crossmember is situated in an off-center lateral position when the procedure begins.
The conversion of the rotational movement of the transport unit 104 into a translational movement of the crossmember 120 can be achieved, for example, through a gear mechanism which is configured suitably and is coupled to the runners and the crossmember.
The apparatus 100 which is shown in
In order to provide for the correction (shown in
In the correction (shown in
The crossmember 120 is moved into its angle-side zero position again by the trailing (shown in
It can be gathered from
Number | Date | Country | Kind |
---|---|---|---|
10 2005 061 839.1 | Dec 2005 | DE | national |
This is a divisional application of application Ser. No. 11/645,835, filed Dec. 26, 2006 which claims priority, under 35 U.S.C. §119, of German Patent Application 10 2005 061 839.1, filed Dec. 23, 2005; the prior applications are herewith incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 11645835 | Dec 2006 | US |
Child | 12713963 | US |