1. Field of the Invention
The present invention relates to a method and apparatus for countering mold deflection and mold misalignment, in which active material elements are used in injection molding machine equipment (e.g., insert stacks), in order to detect and/or counter deflections in the mold structure. “Active materials” are a family of shape altering materials such as piezoactuators, piezoceramics, electrostrictors, magnetostrictors, shape memory alloys, and the like. In the present invention, they are used in an injection mold to counter deflections in the mold structure and thereby improve the quality of the molded article, the life of the mold components, and improve resin sealing. The active material elements may be used as sensors and/or actuators.
2. Related Art
Active materials are characterized as transducers that can convert one form of energy to another. For example, a piezoactuator (or motor) converts input electrical energy to mechanical energy causing a dimensional change in the element, whereas a piezosensor (or generator) converts mechanical energy—a change in the dimensional shape of the element—into electrical energy. One example of a piezoceramic transducer is shown in U.S. Pat. No. 5,237,238 to Berghaus. Marco Systemanalyse und Entwicklung GmbH is a supplier of peizoactuators located at Hans-Böckler-Str. 2, D-85221 Dachau, Germany, and their advertising literature and website illustrate such devices. Typically, an application of 1,000 volt potential to a piezoceramic insert will cause it to “grow” approximately 0.0015″/inch (0.15%) in thickness. Another supplier, Midé Technology Corporation of Medford, Maine, has a variety of active materials including magnetostrictors and shape memory alloys, and their advertising literature and website illustrate such devices, including material specifications and other published details.
U.S. Pat. No. 4,556,377 to Brown discloses a self-centering mold stack design for thin wall applications. Spring loaded bolts are used to retain the core inserts in the core plate while allowing the core inserts to align with the cavity half of the mold via the interlocking tapers. While Brown discloses a means to improve the alignment between core and cavity and to reduce the effects of core shift (“offset”), there is no disclosure of actually measuring and then correcting such shifting, in a proactive manner.
It is an advantage of the present invention to provide injection molding machine apparatus and method to overcome the problems noted above, and to provide an effective, efficient means for detecting and/or correcting deflection and misalignment in a mold provided in an injection molding machine.
According to a first aspect of the present invention, structure and/or function are provided for an injection mold having a core and a core plate. An active material sensor is configured to be disposed between the core and the core plate and configured to sense a force between the core and the core plate and to generate corresponding sense signals. Wiring structure is coupled, in use, to the active material sensor and configured to carry the sense signals.
According to a second aspect of the present invention, structure and/or function are provided for a control apparatus for an injection mold having a first surface and a second surface. An active material sensor is configured to be disposed between the first surface and the second surface of the injection molding machine, for sensing a compressive force between the first surface and the second surface and generating a corresponding sense signal. Transmission structure is configured to transmit, in use, the sense signal from the active material sensor.
According to a third aspect of the present invention, structure and/or steps are provided for controlling deflection between first and second surfaces of an injection molding machine. A piezoceramic actuator is configured to be disposed between the first and second surfaces of the injection molding machine, for receiving an actuation signal, and for generating an expansive force between the first and second surfaces. Transmission structure is configured to transmit an actuation signal to the piezoceramic actuator.
Exemplary embodiments of the presently preferred features of the present invention will now be described with reference to the accompanying drawings in which:
1. Introduction
The present invention will now be described with respect to several embodiments in which active material elements serve to detect and/or correct deflection and misalignment in an injection mold. However, the active material sensors and/or actuators may be placed in any location in the injection molding apparatus in which alignment and/or sealing problems could be encountered. Other applications for such active material elements are discussed in the related applications titled (1) “Method and Apparatus for Assisting Ejection from an Injection Molding Machine Using Active Material Elements”, (2) “Method and Apparatus for Providing Adjustable Hot Runner Assembly Seals and Tip Height Using Active Material Elements”, (3) “Method and Apparatus for Controlling a Vent Gap with Active Material Elements”, (4) “Method and Apparatus for Mold Component Locking Using Active Material Elements”, (5) “Methods and Apparatus for Vibrating Melt in an Injection Molding Machine Using Active Material Elements”, (6) “Method and Apparatus for Injection Compression Molding Using Active Material Elements”, and (7) “Control System for Utilizing Active Material Elements in a Molding System”, all of which are being filed concurrently with the present application.
In the following description, piezoceramic inserts are described as the preferred active material. However, other materials from the active material family, such as magnetostrictors and shape memory alloys, could also be used in accordance with the present invention. A list of possible alternate active materials and their characteristics is set forth below in Table 1, and any of these active materials could be used in accordance with the present invention:
(information derived from www.mide.com)
The first preferred embodiment of the present invention is shown in
The piezo-electric element 131 may comprise a piezo-electric sensor or a piezo-electric actuator (or a combination of both), and may, for example, comprise any of the devices manufactured by Marco Systemanalyse und Entwicklung GmbH. The piezo-electric sensor will detect the pressure applied to the element 131 and transmit a corresponding sense signal through the wiring connections 133. The piezo-electric actuator will receive an actuation signal through the wiring connections 133 and apply a corresponding force between the core plate 129 and the core 123. Note that more than one piezo-electric sensor may be provided to sense pressure from any desired position in the annular groove 130 (or any other desired location). Likewise, more than one piezo-electric actuator may be provided, mounted serially or in tandem with each other and/or with the piezo-electric sensor, in order to effect extended movement, angular movement, etc., of the core 123 with respect to the core plate 129.
The piezoceramic actuator is preferably a single actuator that is annular or cylindrical in shape. According to a presently preferred embodiment, the actuator increases in length by approximately 0.15% when a voltage of 1000 V is applied via wiring 233. However, use of multiple actuators and/or actuators having other shapes are contemplated as being within the scope of the invention, and the invention is therefore not to be limited to any particular configuration of the piezoceramic actuator.
Preferably, one or more separate piezoceramic sensors may be provided adjacent the actuator (or between any or the relevant surfaces described above) to detect pressure caused by injection of the plastic. Preferably, the sensors provide sense signals to the controller 143. The piezo-electric elements used in accordance with the preferred embodiments of the present invention (i.e., the piezo-electric sensors and/or piezo-electric actuators) may comprise any of the devices manufactured by Marco Systemanalyse und Entwicklung GmbH. The piezo-electric sensor will detect the pressure applied to the actuator and transmit a corresponding sense signal through the wiring connections 133, thereby allowing the controller 143 to effect closed loop feedback control. The piezo-electric actuator will receive an actuation signal through the wiring connections 133, change dimensions in accordance with the actuation signal, and apply a corresponding force to the adjacent mold component, adjustably controlling the mold deflection.
Note that the piezo-electric sensors may be provided to sense pressure at any desired position. Likewise, more than one piezo-electric actuator may be provided, mounted serially or in tandem, in order to effect extended movement, angular movement, etc. Further, each piezo-electric actuator may be segmented into one or more arcuate, trapezoidal, rectangular, etc., shapes which may be separately controlled to provide varying sealing forces at various locations between the sealing surfaces. Additionally, piezo-electric actuators and/or actuator segments may be stacked in two or more layers to effect fine sealing force control, as may be desired.
The wiring connections 133 may be coupled to any desirable form of controller or processing circuitry 143 for reading the piezo-electric sensor signals and/or providing the actuating signals to the piezo-electric actuators. For example, one or more general-purpose computers, Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), gate arrays, analog circuits, dedicated digital and/or analog processors, hard-wired circuits, etc., may control or sense the piezo-electric element 131 described herein. Instructions for controlling the one or more processors may be stored in any desirable computer-readable medium and/or data structure, such floppy diskettes, hard drives, CD-ROMs, RAMs, EEPROMs, magnetic media, optical media, magneto-optical media, etc.
Use of the piezoceramic elements according to the present embodiment allows the various components of the injection mold assembly described above to be manufactured to lower tolerance, thereby decreasing the cost of manufacturing the injection molding machine components themselves. Previously, tolerances of 5-10 microns were used in order to achieve a functional injection mold. Further benefits include the ability to adjust the alignment of the mold components, thereby preventing mold deflection and reducing the length of any equipment down time.
In operation, when the mold is closed and clamping tonnage is applied to the mold, the molding stack 101 aligns its components as follows. The gate insert 120 is fitted within the cavity 121 by locating diameters (not shown), the cavity female taper 134 aligns the corresponding male taper 135 on the neck ring inserts 122a, 122b, the neck ring male taper 136 aligns the corresponding female taper 137 in the core sleeve 124, and the core sleeve inner female taper 138 aligns the core male taper 139. The core sleeve 124 and core 123 are able to shift to conform to this taper alignment method since the spring loaded fastening means (biasing means) at the base of the core sleeve 124 allow a slight movement and the core spigot 140 has a corresponding clearance in the core base 129 without jeopardizing the sealing of the core cooling circuits 141. Element 131 is preferably slightly thicker than the depth of its annular groove 130 so that when assembled there is a slight gap 142, typically less than 0.1 mm, between the base of the core 123 and the core plate 129.
While clamped, and during injection of the resin into the cavity, and as injection pressure builds and is maintained inside the cavity, the injection pressure acts on the projected area of the core and core sleeve to exert a force toward the core plate that element 131 senses as a compressive load. The insert will transmit an electronic signal that preferably varies according to the force applied to it. This signal is transmitted to a device (not shown) that processes the signal for communication to a controller 143 that determines if a command signal should be transmitted for countering the compressive load. For example, command signals can be transmitted to adjust the clamping force or injection pressure or injection rate to alter the conditions in the mold cavity.
Alternately, the element 131 may be used as a motor (force generator) wherein electrical power is supplied to (or removed from) the element 131, causing it to expand (or contract) in size and thereby adjust the height of the mold stack 101. In this embodiment, the element 131 preferably comprises an annular cylinder between 55-75 mm in length which will generate an increase in length of about 0.1 mm when approximately 1000 V is applied to it. By individually controlling the height of each stack 101, variations in the stiffness of the mold structure as a whole and the deflection of the manifold plate 114 in particular can be made. For example, in this embodiment, all elements 131 (one per molding stack) may be subjected to the same voltage so that a balanced load distribution among the stacks occurs, provided that the individual height adjustments of the stacks is within the operating range of each element, in this embodiment typically less than 0.1 mm.
Optionally, one or more separate piezoceramic sensors may be provided to detect pressure caused by positional changes within the mold. These sensors may also be connected by conduits 163 to the controller 171. The piezo-electric elements 161 used in accordance with the present invention (i.e., the piezo-electric sensors and/or piezo-electric actuators) may comprise any of the devices manufactured by Marco Systemanalyse und Entwicklung GmbH. The piezo-electric sensors can detect the pressure at various interfaces within the nozzle assembly and transmit a corresponding sense signal through the conduits, thereby effecting closed loop feedback control. The piezo-electric actuators then receive actuation signals through the conduits, and apply corresponding forces. Note that piezo-electric sensors may be provided to sense pressure from any desired position. Likewise, more than one piezo-electric actuator may be provided in place of any single actuator described herein, and the actuators may be mounted serially or in tandem, in order to effect extended movement, angular movement, etc.
As mentioned above, one of the significant advantages of using the above-described active element inserts 161 is to allow the manufacturing tolerances used for the injection molds to be widened, thereby significantly reducing the cost of machining those features in the mold components.
In operation, when the mold is closed and clamping tonnage is applied to the mold, the molding stack 102 aligns its components as follows. The gate insert 150 is fitted within the cavity 151 by locating diameters (not detailed), the cavity female taper 164 aligns the corresponding male taper 165 on the neck ring inserts 152, and the neck ring female taper 166 aligns the corresponding male taper 167 on the core. The core 153 is able to shift to conform to this taper alignment method since the spring loaded fastening means at the base of the core allows a slight movement, and the core spigot 168 has a corresponding clearance in the core base 159 without jeopardizing the sealing of the core cooling circuits 169. The element 161 may be used as a sensor and/or an actuator, as previously described.
An embodiment for overcoming this problem is shown in
The embodiment shown in
In this thinwall molding stack embodiment, a group of sensor elements 110a-h are preferably placed next to (radially inside) a group of actuator elements 189a-h. It is within the scope of the present invention to depart from this preferred configuration, for example, by placing the sensor elements radially outside the actuator elements, or in any other configuration that results in a closed-loop feedback system. The sensor elements 110a-h detect any shifting of the core during molding. The signals emitted by the sensors of this group correspond to the amount and location of shifting that is occurring, and the signals are transmitted to a controller 193 that can calculate an appropriate countering energy level to deliver to the actuator elements 189a-h so that a countering force can be applied to substantially correct the core shifting as it occurs. The signal processing and controller performance is sufficiently fast enough to allow this application of corrective measures to effect correction of the core shift in a real time feedback loop.
Thus, what has been described is a method and apparatus for using active material elements in an injecting molding machine, separately and in combination, to effect useful improvements in injection molding apparatus and minimize mold deflection and misalignment.
Advantageous features according the present invention include: 1. An active material element used singly or in combination to generate a force or sense a force in an injection molding apparatus; 2. The counteraction of deflection in molding apparatus by a closed loop controlled force generator; and 3. The correction of core shifting in a molding apparatus by a locally applied force generator exerting a predetermined force computed from data measured from previously molded parts.
While the present invention provides distinct advantages for injection-molded parts generally having circular cross-sectional shapes perpendicular to the part axis, those skilled in the art will realize the invention is equally applicable to other molded products, possibly with non-circular cross-sectional shapes, such as, pails, paint cans, tote boxes, and other similar products. All such molded products come within the scope of the appended claims.
The individual components shown in outline or designated by blocks in the attached Drawings are all well-known in the injection molding arts, and their specific construction and operation are not critical to the operation or best mode for carrying out the invention.
While the present invention has been described with respect to what is presently considered to be the preferred embodiments, it is to be understood that the invention is not limited to the disclosed embodiments. To the contrary, the invention is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
All U.S. and foreign patent documents (including the applications discussed in paragraph [0019]) discussed above are hereby incorporated by reference into the Detailed Description of the Preferred Embodiment