This invention relates generally to oil and gas exploration, and in particular to the expandable tubular members used to facilitate oil and gas exploration.
Conventionally, when a wellbore is created, a number of expandable tubular members are installed in the borehole to prevent collapse of the borehole wall and to prevent undesired outflow of drilling fluid into the formation or inflow of fluid from the formation into the borehole. Typically, the expandable tubular members are coupled together and may be radially expanded and plastically deformed against the borehole wall. The coupling together of the expandable tubular members and the radially expanding and plastically deforming of the coupled together expandable tubular members can raise a number of issues relating to the seal between adjacent tubular members needed to prevent undesired outflow from or inflow to the wellbore.
The present disclosure is directed to overcoming one or more of the limitations of the existing procedures for coupling expandable tubular members together during oil and gas exploration.
According to one aspect of the present disclosure, an expandable tubular member is provided that includes a first tubular member comprising a first tubular member diameter which decreases from a first outside diameter along the length of the first tubular member to a second outside diameter adjacent a first tubular member connection end on the first tubular member, a second tubular member comprising a second tubular member diameter which decreases from a third outside diameter along the length of the second tubular member to a fourth outside diameter adjacent a second tubular member connection end on the second tubular member, whereby the second tubular member connection end is positioned adjacent the first tubular member connection end, and a connection member coupled to the second outside diameter and the fourth outside diameter, whereby the connection member comprises a connection member diameter which is not substantially greater than the first outside diameter and the third outside diameter.
According to another aspect of the present disclosure, an expandable tubular member is provided that includes a first tubular member comprising a maximum first tubular member diameter, a second tubular member comprising a maximum second tubular member diameter, whereby the second tubular member is positioned adjacent the first tubular member, and means for allowing a connection member to be coupled to the first tubular member and the second tubular without a maximum connection member diameter being substantially greater than the maximum first tubular member diameter and the maximum second tubular member diameter.
According to another aspect of the present disclosure, an expandable tubular member is provided that includes a tubular member comprising an inner surface and an outer surface, a thread member extending from the inner surface, and an expansion channel defined by the tubular member and located on the outer surface and adjacent the thread member.
According to another aspect of the present disclosure, an expandable tubular member is provided that includes a tubular member comprising an inner surface and an outer surface, a thread member extending from the inner surface, and means for providing a stress concentration in the thread member during radial expansion and plastic deformation of the tubular member.
According to another aspect of the present disclosure, an expandable tubular member is provided that includes a first tubular member comprising an inner surface and an outer surface, a thread member extending from the inner surface, an expansion channel defined by the first tubular member and located on the outer surface and adjacent the thread member, and a second tubular member coupled the first tubular member and engaging the thread member.
According to another aspect of the present disclosure, an expandable tubular member is provided that includes a first tubular member comprising an inner surface and an outer surface, a thread member extending from the inner surface, an expansion channel defined by the first tubular member and located on the outer surface and adjacent the thread member, a tubular connection sleeve positioned on the first tubular member, an expansion slot defined by the tubular connection sleeve in a substantially axial orientation with respect to the tubular connection sleeve and located adjacent the expansion channel, a second tubular member coupled the first tubular member and engaging the thread member, whereby upon radial expansion and plastic deformation of the first tubular member and the second tubular member, the first tubular member and the second tubular member can withstand a pressure of up to approximately 4000 pounds per square inch.
According to another aspect of the present disclosure, an expandable tubular member is provided that includes a first tubular member defining a flange channel on a first surface of the first tubular member, and resilient means positioned in the flange channel for forming a seal between the first tubular member and a second tubular member.
According to another aspect of the present disclosure, an expandable tubular member is provided that includes a first tubular member comprising a flange member extending from a surface on the first tubular member, the flange member comprising a resilient beam extending from a distal end of the flange member for forming a seal between the first tubular member and a second tubular member.
According to another aspect of the present disclosure, an expandable tubular member is provided that includes a first tubular member defining a flange channel on a surface of the first tubular member, a second tubular member comprising a flange member extending from a surface on the second tubular member, the second tubular member coupled to the first tubular member with the flange member positioned in the flange channel, whereby a sealing passageway is defined between the flange member and the flange channel, and resilient means for forming a seal between the first tubular member and the second tubular member positioned in the sealing passageway.
According to another aspect of the present disclosure, a connection member for coupling expandable tubular members is provided that includes a tubular connection member comprising an inner surface and an outer surface, a primary sealing member having a substantially diamond shaped cross section and extending from a substantially central location on the inner surface, a reinforced section located on the outer surface and adjacent the primary sealing member, and a plurality of secondary sealing surfaces located on opposite distal ends of the tubular connection member and on opposite sides of the primary sealing member.
According to another aspect of the present disclosure, a connection member for coupling expandable tubular members is provided that includes a tubular connection member, and means for providing a primary and secondary metal to metal seal between the tubular connection member and an expandable tubular member.
According to another aspect of the present disclosure, an expandable tubular member is provided that includes a first tubular member comprising a first connection end, a second tubular member comprising a second connection end, and a connection member coupling together the first tubular member and the second tubular member, the connection member including a tubular connection member comprising an inner surface and an outer surface, the inner surface engaging the first tubular member and the second tubular member, a primary sealing member having a substantially diamond shaped cross section, extending from a substantially central location on the inner surface, and positioned between the first connection end and the second connection end, a reinforced section located on the outer surface and adjacent the primary sealing member, and a plurality of secondary sealing surfaces located on opposite distal ends of the tubular connection member and on opposite sides of the primary sealing member, the secondary sealing surfaces coupled to the first connection end and the second connection end.
According to another aspect of the present disclosure, an expandable tubular member is provided that includes a first tubular member comprising a first connection end, a second tubular member comprising a second connection end, a connection member coupled to the first connection end and the second connection end; and means for providing a primary and secondary metal to metal seal between the connection member and the first tubular member and the second tubular member.
According to another aspect of the present disclosure, a method for coupling expandable tubular members is provided that includes providing a first tubular member comprising a maximum first tubular member diameter, providing a second tubular comprising a maximum second tubular member diameter, and coupling the first tubular member to the second tubular member with a connection member comprising a maximum connection member diameter which is not substantially greater than the maximum first tubular member diameter and the maximum second tubular member diameter.
According to another aspect of the present disclosure, a method for coupling expandable tubular members is provided that includes providing a first tubular member comprising a thread member extending from an inner surface and defining a expansion channel on the outer surface which is located adjacent the thread member, and coupling a second tubular member to the first tubular member by engaging the thread member with a thread channel in the second tubular member.
According to another aspect of the present disclosure, a method for coupling expandable tubular members is provided that includes providing a first tubular member comprising a flange member extending from an inner surface, providing a second tubular member defining a flange channel on an outer surface, positioning a resilient member in the flange channel, and coupling the first tubular member to the second tubular member by positioning the flange member in the flange channel and adjacent the resilient member.
According to another aspect of the present disclosure, a method for coupling expandable tubular members is provided that includes providing a first tubular member comprising a first connection end, providing a second tubular member comprising a second connection end, positioning a connection member adjacent the first connection end and the second connection end such that a primary sealing member on the connection member is positioned between the first connection end and the second connection end, and a plurality of secondary sealing surfaces are positioned adjacent the first tubular member and the second tubular member, and coupling the first tubular member to the second tubular member using the connection member.
According to another aspect of the present disclosure, an expandable tubular member is provided that includes a first tubular member, a second tubular member coupled to the first tubular member, and means for effecting a gas and fluid tight seal between the first tubular member and the second tubular member before, during, and after radial expansion and plastic deformation of the first tubular member and the second tubular member, the means providing a seal which can withstand a pressure of up to 4000 pounds per square inch.
According to another aspect of the present disclosure, an expandable tubular member is provided that includes a first tubular member comprising a first tubular member diameter which decreases from a first outside diameter along the length of the first tubular member to a second outside diameter adjacent a first tubular member connection end on the first tubular member, a second tubular member comprising a second tubular member diameter which decreases from first outside diameter along the length of the second tubular member to the second outside diameter adjacent a second tubular member connection end on the second tubular member, whereby the second tubular member connection end is coupled to the first tubular member connection end, and a connection member coupled to the second outside diameter, whereby the connection member comprises a connection member diameter which is less than or equal to the first outside diameter.
According to another aspect of the present disclosure, an expandable tubular member is provided that includes a tubular member comprising an inner surface and an outer surface, a plurality of thread members extending from the inner surface, and a helical expansion channel defined by the tubular member and located on the outer surface and radially adjacent each of the plurality of thread members, whereby the expansion channel provides a stress concentration in the thread member during radial expansion and plastic deformation of the tubular member.
According to another aspect of the present disclosure, an expandable tubular member is provided that includes a first tubular member comprising an inner surface and an outer surface, a plurality of thread member extending from the inner surface, a helical expansion channel defined by the first tubular member and located on the outer surface and radially adjacent each of the plurality of thread members, a second tubular member coupled the first tubular member and engaging the plurality of thread members, whereby the expansion channel provides a stress concentration in the thread member during radial expansion and plastic deformation of the first tubular member and the second tubular member, a tubular connection sleeve positioned on the first tubular member, and a plurality of spaced apart expansion slots defined by the tubular connection sleeve in a substantially axial orientation with respect to the tubular connection sleeve and oriented substantially perpendicularly adjacent to and with respect to the expansion channel; whereby the plurality of expansion slots on the tubular connection sleeve provides a plurality of discrete point stress concentrations on the thread member during radial expansion and plastic deformation of the first tubular member, the second tubular member, and the connection sleeve.
According to another aspect of the present disclosure, a connection member for coupling expandable tubular members is provided that includes a tubular connection member comprising an inner surface and an outer surface, a primary sealing member having a substantially diamond shaped cross section, extending from a substantially central location on the inner surface, and deformable to provide a metal to metal seal between the tubular connection member and an expandable tubular member, a reinforced section located on the outer surface and adjacent the primary sealing member, and a plurality of secondary sealing surfaces located on opposite distal ends of the tubular connection member on opposite sides of the primary sealing member, and deformable to provide a metal to metal seal between the tubular connection member and an expandable tubular member.
According to another aspect of the present disclosure, an expandable tubular member is provided that includes a first tubular member comprising a first connection end, a second tubular member comprising a second connection end, and a connection member coupling together the first tubular member and the second tubular member, the connection member including a tubular connection member comprising an inner surface and an outer surface, the inner surface engaging the first tubular member and the second tubular member, a primary sealing member having a substantially diamond shaped cross section, extending from a substantially central location on the inner surface, positioned between the first connection end and the second connection end, and deformable to provide a metal to metal seal between the connection member and the first tubular member and the second tubular member, a reinforced section located on the outer surface and adjacent the primary sealing member, and a plurality of secondary sealing surfaces located on opposite distal ends of the tubular connection member and on opposite sides of the primary sealing member, the secondary sealing surfaces coupled to the first connection end and the second connection end and deformable to provide a metal to metal seal between the connection member and the first tubular member and the second tubular member.
According to another aspect of the present disclosure, a method for coupling expandable tubular members is provided that includes providing a first tubular member comprising a maximum first tubular member diameter, providing a second tubular comprising a maximum second tubular member diameter, coupling the first tubular member to the second tubular member with a connection member comprising a maximum connection member diameter which is not substantially greater than the maximum first tubular member diameter and the maximum second tubular member diameter, positioning the first tubular member, the second tubular member, and the connection member in a wellbore, and radially expanding and plastically deforming the first tubular member and the second tubular member, wherein the radially expanding and plastically deforming comprises one of either radially expanding and plastically deforming a first reduced diameter section on the first tubular member to substantially the maximum first tubular member diameter and radially expanding and plastically deforming a second reduced diameter section on the second tubular member to substantially the maximum second tubular member diameter or radially expanding and plastically deforming the first tubular member and the second tubular member into engagement with the wellbore.
According to another aspect of the present disclosure, a method for coupling expandable tubular members is provided that includes providing a first tubular member comprising a thread member extending from an inner surface and defining a expansion channel on the outer surface which is located adjacent the thread member, coupling a connection sleeve to the outer surface of the of the first tubular member, the connection sleeve defining an expansion slot oriented axially with respect the connection sleeve and which is positioned substantially perpendicularly to the expansion channel, coupling a second tubular member to the first tubular member by engaging the thread member with a thread channel in the second tubular member, positioning the first tubular member, the second tubular member, and the connection sleeve in a wellbore, and radially expanding and plastically deforming the first tubular member, the second tubular member, and the connection sleeve, whereby the expansion slot and the expansion channel provide a stress concentration which increases the deformation of the thread member in the thread channel during the radially expanding and plastically deforming and provides a metal to metal seal between the thread member and the thread channel.
According to another aspect of the present disclosure, a method for coupling expandable tubular members is provided that includes providing a first tubular member comprising a flange member extending from an inner surface, providing a second tubular member defining a flange channel on an outer surface, positioning a resilient member in the flange channel, coupling the first tubular member to the second tubular member by positioning the flange member in the flange channel and adjacent the resilient member, positioning the first tubular member and the second tubular member in a wellbore, and radially expanding and plastically deforming the first tubular member and the second tubular member, whereby the radially expanding and plastically deforming compresses the resilient member and provides a seal between the flange member and the flange channel; whereby the radially expanding and plastically deforming provides a metal to metal seal between the flange member and the flange channel.
According to another aspect of the present disclosure, a method for coupling expandable tubular members is provided that includes providing a first tubular member comprising a first connection end, providing a second tubular member comprising a second connection end, positioning a connection member adjacent the first connection end and the second connection end such that a primary sealing member on the connection member is positioned between the first connection end and the second connection end, and a plurality of secondary sealing surfaces are positioned adjacent the first tubular member and the second tubular member, coupling the first tubular member to the second tubular member using the connection member, whereby the coupling includes providing a metal sealing member between the first tubular member, the second tubular member, and the secondary sealing surfaces, positioning the first tubular member, the second tubular member, and the connection member in a wellbore, and radially expanding and plastically deforming the first tubular member and the second tubular member, whereby the radially expanding and plastically deforming provides a primary seal between the primary sealing member and the first tubular member and the second tubular member, and the radially expanding and plastically deforming provides a secondary seal between the secondary sealing surfaces and the first tubular member and the second tubular member.
a is a flow chart illustrating an exemplary embodiment of a method for coupling expandable tubular members.
b is a cross sectional view illustrating an exemplary embodiment of the expandable tubular members of
c is a cross sectional view illustrating an exemplary embodiment of the expandable tubular members of
d is a cross sectional view illustrating an exemplary embodiment of the expandable tubular members and the connection member of
e is a cross sectional view illustrating an exemplary embodiment of the expandable tubular members and the connection member positioned in the wellbore of
f is a cross sectional view illustrating an exemplary embodiment of the expandable tubular members and the connection member positioned in the wellbore of
g is a cross sectional view illustrating an exemplary embodiment of the expandable tubular members and the connection member positioned in the wellbore of
a is a side view illustrating an exemplary embodiment of an expandable tubular member.
b is a cross sectional view illustrating an exemplary embodiment of the expandable tubular member of
a is a flow chart illustrating an exemplary embodiment of a method for coupling expandable tubular members.
b is a side view illustrating an exemplary embodiment of the expandable tubular members of
c is a cross sectional view illustrating an exemplary embodiment of the expandable tubular members of
d is a cross sectional view illustrating an exemplary embodiment of the expandable tubular members of
e is a cross sectional view illustrating an exemplary embodiment of the expandable tubular members positioned in the wellbore of
f is a cross sectional view illustrating an exemplary embodiment of the expandable tubular members positioned in the wellbore of
g is a schematic view illustrating an exemplary embodiment of the stress concentrations on the expandable tubular members of
a is a side view illustrating an exemplary embodiment of a connection sleeve.
b is a cross sectional view illustrating an exemplary embodiment of the connection sleeve of
a is a flow chart illustrating an exemplary embodiment of a method for coupling expandable tubular members.
b is a side view illustrating an exemplary embodiment of the expandable tubular members of
c is a cross sectional view illustrating an exemplary embodiment of the expandable tubular members of
d is a side view illustrating an exemplary embodiment of the expandable tubular members and the connection sleeve of
e is a fragmentary cross sectional view illustrating an exemplary embodiment of the expandable tubular members and the connection sleeve positioned in the wellbore of
f is a cross sectional view illustrating an exemplary embodiment of the expandable tubular members and the connection sleeve positioned in the wellbore of
g is a schematic view illustrating an exemplary embodiment of the stress concentrations on the expandable tubular members of
h is a graph of the results of an experimental embodiment of the method illustrated in
a is a flow chart illustrating an exemplary embodiment of a method for coupling expandable tubular members.
b is a side cross sectional view illustrating an exemplary embodiment of the expandable tubular members of
c is a top cross sectional view illustrating an exemplary embodiment of the expandable tubular members of
d is a cross sectional view illustrating an exemplary embodiment of the expandable tubular members of
e is a cross sectional view illustrating an exemplary embodiment of the expandable tubular members of
a is a flow chart illustrating an exemplary embodiment of a method for coupling expandable tubular members.
b is a cross sectional view illustrating an exemplary embodiment of the expandable tubular members of
c is a cross sectional view illustrating an exemplary embodiment of the expandable tubular members of
d is a cross sectional view illustrating an exemplary embodiment of the expandable tubular members of
e is a cross sectional view illustrating an exemplary embodiment of the expandable tubular members of
a is a flow chart illustrating an exemplary embodiment of a method for coupling expandable tubular members.
b is a cross sectional view illustrating an exemplary embodiment of the expandable tubular members of
c is a cross sectional view illustrating an exemplary embodiment of the expandable tubular members of
d is a cross sectional view illustrating an exemplary embodiment of the expandable tubular members of
e is a cross sectional view illustrating an exemplary embodiment of the expandable tubular members of
a is a flow chart illustrating an exemplary embodiment of a method for coupling expandable tubular members.
b is a cross sectional view illustrating an exemplary embodiment of the expandable tubular members of
c is a cross sectional view illustrating an exemplary embodiment of the expandable tubular members of
d is a cross sectional view illustrating an exemplary embodiment of the expandable tubular members of
e is a cross sectional view illustrating an exemplary embodiment of the expandable tubular members of
a is a flow chart illustrating an exemplary embodiment of a method for coupling expandable tubular members.
b is a cross sectional view illustrating an exemplary embodiment of the expandable tubular members of
c is a cross sectional view illustrating an exemplary embodiment of the expandable tubular members of
d is a cross sectional view illustrating an exemplary embodiment of the expandable tubular members of
e is a cross sectional view illustrating an exemplary embodiment of the expandable tubular members of
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
The method 500 then proceeds to step 504 where the expandable tubular members 200 and 300 are coupled together with the connection member 400. The connection member 400 is engaged with the expandable tubular member 200 such that the inner surface 402b of the connection member 400 engages the outer surface 202a of the expandable tubular member 200 adjacent the connection end 204. The connection member 400 is then engaged with the expandable tubular member 300 such that the inner surface 402b of the connection member 400 engages the outer surface 302a of the expandable tubular member 300 adjacent the connection end 304. With the connection member 400 engaging the expandable tubular members 200 and 300, the connection ends 204 and 304 or expandable tubular members 200 and 300, respectively, are positioned in the passageway 406 on connection member 400 and engage each other, as illustrated in
With the connection member 400 engaging the expandable tubular members 200 and 300, an expandable tubular member 502a is provided in which the connection member diameter 408 is not substantially greater than the maximum outside diameter 206 on the expandable tubular member 200 or the maximum outside diameter 306 on the expandable tubular member 300. Thus, an expandable tubular member 502a is provided which has a maximum diameter that is the maximum diameter of the expandable tubular members 200 or 300 which are coupled together to form the expandable tubular member 502a, rather than the diameter of the connection member 400 which couples together the expandable tubular members 200 and 300. In an exemplary embodiment, an outer protective sleeve 502b may be coupled to the outer surface 402a of the connection member 400 and an inner protective sleeve 502c may be coupled to the inner surfaces 202b and 302b of the expandable tubular members 200 and 300, respectively, adjacent the connection ends 204 and 304, respectively, as illustrated in
Referring now to
Referring now to
Continued movement of the expansion device 508a in direction A expands the length 210 of the expandable tubular member 200 and the portion of the expandable tubular member 200 with outside diameter 208 to a inside diameter equal to the outside diameter of the expansion device 508a, as illustrated in
Thus, the expandable tubular member 502a may be positioned in a wellbore 100 with tight clearance between the expandable tubular member 502a and the passageway surface 104a and then radially expanded and plastically deformed to a monodiameter tubular member. In an exemplary embodiment, an expansion device 508c which is coupled to a drill string 50 db is provided which has larger outside diameter than the inside diameters of the portions of the expandable tubular members 200 and 300 with maximum outside diameters 206 and 306, respectively. The expansion device 508c is then moved in a direction B, radially expanding and plastically deforming the expandable tubular member 502a into engagement with the passageway surface 104a of wellbore 100, as illustrated in
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
With the provision of the stress concentrator, shown as the plurality of expansion channels in this embodiment, the deformation of the plurality of thread members in the plurality of thread channels is increased relative to the deformation of a thread member in a thread channel without the stress concentrator. For example, during deformation, the expansion channel 606 allows increased deformation of the thread member 604 in the thread channel 704 by increasing the stress experienced by the thread member 604 during radial expansion and plastic deformation of the expandable tubular members 600 and 700 and increasing the deformation of the thread member 604, as illustrated in
Thus, a method and apparatus are provided which provide stress concentrations on the expandable tubular members 600 and 700 in order increase the deformation of thread members in thread channels such as, for example, the thread member 604 in the thread channel 704, to provide a seal between the thread member 604 and the thread channel 704 after the expansion of coupled together expandable tubular members 600 and 700. In an exemplary embodiment, the stress concentrator provided on the expandable tubular member 804a is a circumferential and helical stress concentration 810, as illustrated in
Referring now to
Referring now to
The method 1000 then proceeds to step 1004 where the expandable tubular members 600 and 700 are coupled together. The distal end 602c of expandable tubular member 600 is positioned in the passageway 902d on the connection sleeve 900 such that the inner surface 902b of the connection sleeve 900 engages the outer surface 602a of the expandable tubular member 600. With the connection sleeve 900 coupled to the expandable tubular member 600, the expansion slots 904 on connection sleeve 900 are oriented substantially perpendicularly to the plurality of expansion channels such as, for example, expansion channel 606 on expandable tubular member 600. Coupling the connection sleeve 900 to the expandable tubular member 600 provides a plurality of discrete point stress concentrators located at the intersection of the expansion slots 904 and the expansion channels.
The expandable tubular member 600 and connection sleeve 900 are then positioned adjacent the expandable tubular member 700 such that the distal ends 602c and 902c on the expandable tubular member 600 and connection sleeve 900, respectively, are adjacent the distal end 702c on expandable tubular member 700. The distal end 702c on expandable tubular member 700 is then positioned in the passageway 602d on expandable tubular member 600 such that the plurality of thread members such as, for example, the thread member 604, engage the plurality of thread channels such as, for example, the thread channel 704, and are positioned adjacent the expansion slot 904, as illustrated in
Referring now to
Referring now to
With the provision of the discrete point stress concentrators, shown as the intersection of the expansion slots 904 and the expansion channels, the deformation of the plurality of thread members in the plurality of thread channels is increased relative to the deformation of a thread member in a thread channel without the discrete point stress concentrators. For example, during deformation, the expansion channel 606 and the expansion slot 904 allow increased deformation of the thread member 604 in the thread channel 704 by increasing the stress experienced by the thread member 604 during radial expansion and plastic deformation of the expandable tubular members 600 and 700 and increasing the deformation of the thread member 604, as illustrated in
Thus, a method and apparatus are provided which provide stress concentrations on the expandable tubular member 1004a in order increase the deformation of thread members in thread channels such as, for example, the thread member 604 in the thread channel 704, to provide a seal between the thread member 604 and the thread channel 704 after the expansion of coupled together expandable tubular members 600 and 700. In an exemplary embodiment, the stress concentrator may provide stress concentrations on the expandable tubular member 1004a in discrete point stress concentrations 1010, illustrated in
Referring now to
Referring now to
Referring now to
Referring now to
The expandable tubular member 1100 is then coupled to the expandable tubular member 1200 by positioning the flange members 1104 in the flange channels 1204. In an exemplary embodiment, the flange members 1104 are positioned in the flange channels 1204 by heating the expandable tubular member 1100, causing the expandable tubular member 1100 to expand, which increases the diameter of the passageway 1102d and allows the distal end of expandable tubular member 1200 to be positioned in the passageway 1102d of the expandable tubular member 1100. In an exemplary embodiment, the flange members 1104 are positioned in the flange channels 1204 by forcing the distal end of expandable tubular member 1200 into the passageway 1102d of the expandable tubular member 1100, causing the expandable tubular member 1100 to elastically deform to allow the distal end of expandable tubular member 1200 to be positioned in the passageway 1102d of the expandable tubular member 1100. In an exemplary embodiment, the flange members 1104 are conventional thread members known in the art and the flange channels 1204 are conventional thread channels known in the art, and the flange members 1104 are positioned in the flange channels 1204 by threading the thread members into the thread channels. In an exemplary embodiment, the flange members 1104 may be positioned in the flange channels 1204 using a variety of other conventional methods known in the art.
With the expandable tubular member 1200 coupled to the expandable tubular member 1100, a sealing channel is defined between the flange member 1104 and the flange channel 1204 and the wave spring resilient member 1304a is positioned in the sealing channel, as illustrated in
Referring now to
The method 1300 proceeds to step 1308 where the expandable tubular members 1100 and 1200 are radially expanded and plastically deformed. An expansion device 1308a which is coupled to a drill string 1308b is provided which has larger outside diameter than the inside diameters of the expandable tubular members 1100 and 1200. The expansion device 1308a is positioned in the expandable tubular member 1304b and moved in a direction E, as illustrated in
Referring now to
The expandable tubular member 1100 is then coupled to the expandable tubular member 1200 by positioning the flange members 1204 in the flange channels 1204. In an exemplary embodiment, the flange members 1104 are positioned in the flange channels 1204 by heating the expandable tubular member 1100, causing the expandable tubular member 1100 to expand, which increases the diameter of the passageway 1202d and allows the distal end of expandable tubular member 1200 to be positioned in the passageway 1202d of the expandable tubular member 1100. In an exemplary embodiment, the flange members 1104 are positioned in the flange channels 1204 by forcing the distal end of expandable tubular member 1200 into the passageway 1202d of the expandable tubular member 1100, causing the expandable tubular member 1100 to elastically deform to allow the distal end of expandable tubular member 1200 to be positioned in the passageway 1202d of the expandable tubular member 1100. In an exemplary embodiment, the flange members 1104 are conventional thread members known in the art and the flange channels 1204 are conventional thread channels known in the art, and the flange members 1104 are positioned in the flange channels 1204 by threading the thread members into the thread channels. In an exemplary embodiment, the flange members 1104 may be positioned in the flange channels 1204 using a variety of other conventional methods known in the art.
With the expandable tubular member 1200 coupled to the expandable tubular member 1100, a sealing channel is defined between the flange member 1104 and the flange channel 1204 and the wave spring resilient member 1404a is positioned in the sealing channel, as illustrated in
Referring now to
The method 1400 proceeds to step 1408 where the expandable tubular members 1100 and 1200 are radially expanded and plastically deformed. An expansion device 1408a which is coupled to a drill string 1408b is provided which has larger outside diameter than the inside diameters of the expandable tubular members 1100 and 1200. The expansion device 1408a is positioned in the expandable tubular member 1404b and moved in a direction F, as illustrated in
Referring now to
The expandable tubular member 1100 is then coupled to the expandable tubular member 1200 by positioning the flange members 1104 in the flange channels 1204. In an exemplary embodiment, the flange members 1104 are positioned in the flange channels 1204 by heating the expandable tubular member 1100, causing the expandable tubular member 1100 to expand, which increases the diameter of the passageway 1102d and allows the distal end of expandable tubular member 1200 to be positioned in the passageway 1102d of the expandable tubular member 1100. In an exemplary embodiment, the flange members 1104 are positioned in the flange channels 1204 by forcing the distal end of expandable tubular member 1200 into the passageway 1102d of the expandable tubular member 1100, causing the expandable tubular member 1100 to elastically deform to allow the distal end of expandable tubular member 1200 to be positioned in the passageway 1102d of the expandable tubular member 1100. In an exemplary embodiment, the flange members 1104 are conventional thread members known in the art and the flange channels 1204 are conventional thread channels known in the art, and the flange members 1104 are positioned in the flange channels 1204 by threading the thread members into the thread channels. In an exemplary embodiment, the flange members 1104 may be positioned in the flange channels 1204 using a variety of other conventional methods known in the art.
With the expandable tubular member 1200 coupled to the expandable tubular member 1100, a sealing channel is defined between the flange member 1104 and the flange channel 1204 and the O-ring resilient member 1504a is positioned in the sealing channel, as illustrated in
Referring now to
Referring now to
Referring now to
The method 1700 then proceeds to step 1704 where the expandable tubular members 1200 and 1600 are coupled together. The expandable tubular member 1600 is coupled to the expandable tubular member 1200 by positioning the flange members 1604 in the flange channels 1204. In an exemplary embodiment, the flange members 1604 are positioned in the flange channels 1204 by heating the expandable tubular member 1100, causing the expandable tubular member 1100 to expand, which increases the diameter of the passageway 1602d and allows the distal end of expandable tubular member 1200 to be positioned in the passageway 1602d of the expandable tubular member 1600. In an exemplary embodiment, the flange members 1604 are positioned in the flange channels 1204 by forcing the distal end of expandable tubular member 1200 into the passageway 1602d of the expandable tubular member 1600, causing the expandable tubular member 1600 to elastically deform to allow the distal end of expandable tubular member 1200 to be positioned in the passageway 1602d of the expandable tubular member 1100. In an exemplary embodiment, the flange members 1604 are conventional thread members known in the art and the flange channels 1204 are conventional thread channels known in the art, and the flange members 1604 are positioned in the flange channels 1204 by threading the thread members into the thread channels. In an exemplary embodiment, the flange members 1604 may be positioned in the flange channels 1204 using a variety of other conventional methods known in the art. With the expandable tubular member 1600 coupled to the expandable tubular member 1200, a sealing channel is defined between the flange member 1604 and the flange channel 1204 and the resilient beam 1604a is positioned in the sealing channel, as illustrated in
Referring now to
The method 1700 proceeds to step 1708 where the expandable tubular members 1200 and 1600 are radially expanded and plastically deformed. An expansion device 1708a which is coupled to a drill string 1708b is provided which has larger outside diameter than the inside diameters of the expandable tubular members 1200 and 1600. The expansion device 1708a is positioned in the expandable tubular member 1704a and moved in a direction H, as illustrated in
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
The method 2100 proceeds to step 2108 where the expandable tubular members 1800 and 1900 are radially expanded and plastically deformed. An expansion device 2108a which is coupled to a drill string 2108b is provided which has larger outside diameter than the inside diameters of the expandable tubular members 1800 and 1900. The expansion device 2108a is positioned in the expandable tubular member 2104b and moved in a direction I, as illustrated in
Furthermore, the expansion of the connection member 2000 deforms the coupling member 2104a against the secondary sealing surfaces 1804, 1904, and 2004, and deforms the primary sealing member 2006 again the primary sealing surfaces 1806 and 1906, as illustrated in
An expandable tubular member has been described that includes a first tubular member comprising a first tubular member diameter which decreases from a first outside diameter along the length of the first tubular member to a second outside diameter adjacent a first tubular member connection end on the first tubular member, a second tubular member comprising a second tubular member diameter which decreases from a third outside diameter along the length of the second tubular member to a fourth outside diameter adjacent a second tubular member connection end on the second tubular member, whereby the second tubular member connection end is positioned adjacent the first tubular member connection end, and a connection member coupled to the second outside diameter and the fourth outside diameter, whereby the connection member comprises a connection member diameter which is not substantially greater than the first outside diameter and the third outside diameter. In an exemplary embodiment, the first outside diameter is substantially equal to the third outside diameter. In an exemplary embodiment, the second outside diameter is substantially equal to the fourth outside diameter. In an exemplary embodiment, the connection member diameter is less than or equal to the first outside diameter and the third outside diameter. In an exemplary embodiment, the connection member diameter is less than the first outside diameter and the third outside diameter. In an exemplary embodiment, the first tubular member connection end is coupled the second tubular member connection end. In an exemplary embodiment, a protective sleeve is coupled to the connection member. In an exemplary embodiment, the first tubular member, the second tubular member, and the connection member are positioned in a wellbore.
An expandable tubular member has been described that includes a first tubular member comprising a maximum first tubular member diameter, a second tubular member comprising a maximum second tubular member diameter, whereby the second tubular member is positioned adjacent the first tubular member, and means for allowing a connection member to be coupled to the first tubular member and the second tubular without a maximum connection member diameter being substantially greater than the maximum first tubular member diameter and the maximum second tubular member diameter.
An expandable tubular member has been described that includes a tubular member comprising an inner surface and an outer surface, a thread member extending from the inner surface, and an expansion channel defined by the tubular member and located on the outer surface and adjacent the thread member. In an exemplary embodiment, a plurality of thread members extend from the inner surface, and an expansion channel is defined by the tubular member and located on the outer surface and adjacent each of the plurality of thread members. In an exemplary embodiment, the expansion channel is located radially adjacent the thread member. In an exemplary embodiment, the expansion channel comprises a helical channel on the outer surface of the tubular member. In an exemplary embodiment, the expansion channel provides a stress concentration in the thread member during radial expansion and plastic deformation of the tubular member.
An expandable tubular member has been described that includes a tubular member comprising an inner surface and an outer surface, a thread member extending from the inner surface, and means for providing a stress concentration in the thread member during radial expansion and plastic deformation of the tubular member. In an exemplary embodiment, the means for providing a stress concentration comprises a helical groove on the outer surface of the tubular member. In an exemplary embodiment, the means for providing a stress concentration comprises means for providing a stress concentration along the length of the thread member.
An expandable tubular member has been described that includes a first tubular member comprising an inner surface and an outer surface, a thread member extending from the inner surface, an expansion channel defined by the first tubular member and located on the outer surface and adjacent the thread member, and a second tubular member coupled the first tubular member and engaging the thread member. In an exemplary embodiment, a plurality of thread members extend from the inner surface, whereby the second tubular member is coupled to the first tubular member and engaging the plurality of thread members, and an expansion channel is defined by the first tubular member and located on the outer surface and adjacent each of the plurality of thread members. In an exemplary embodiment, the expansion channel is located radially adjacent the thread member. In an exemplary embodiment, the first tubular member and the second tubular member are positioned in a wellbore. In an exemplary embodiment, the expansion channel comprises a helical channel on the outer surface of the first tubular member. In an exemplary embodiment, the expansion channel provides a stress concentration in the thread member during radial expansion and plastic deformation of the tubular member. In an exemplary embodiment, a tubular connection sleeve is positioned on the first tubular member, and an expansion slot is defined by the tubular connection sleeve in a substantially axial orientation with respect to the tubular connection sleeve and located adjacent the expansion channel. In an exemplary embodiment, the expansion slot is oriented substantially perpendicularly with respect to the expansion channel. In an exemplary embodiment, a plurality of spaced apart expansion slots are defined by the tubular connection sleeve in a substantially axial orientation with respect to the tubular connection sleeve and located adjacent the expansion channel. In an exemplary embodiment, the plurality of spaced apart expansion slots are oriented substantially perpendicularly with respect to the expansion channel. In an exemplary embodiment, the plurality of spaced apart expansion slots are spaced apart about the circumference of the tubular connection sleeve. In an exemplary embodiment, the first tubular member the second tubular member, and the tubular connection sleeve are positioned in a wellbore. In an exemplary embodiment, the expansion slot on the tubular connection sleeve provides at least one discrete point stress concentration on the thread member during radial expansion and plastic deformation of the first tubular member.
An expandable tubular member has been described that includes a first tubular member comprising an inner surface and an outer surface, a thread member extending from the inner surface, an expansion channel defined by the first tubular member and located on the outer surface and adjacent the thread member, a tubular connection sleeve positioned on the first tubular member, an expansion slot defined by the tubular connection sleeve in a substantially axial orientation with respect to the tubular connection sleeve and located adjacent the expansion channel, and a second tubular member coupled the first tubular member and engaging the thread member, whereby upon radial expansion and plastic deformation of the first tubular member and the second tubular member, the first tubular member and the second tubular member can withstand a pressure of up to approximately 4000 pounds per square inch.
An expandable tubular member has been described that includes a first tubular member defining a flange channel on a first surface of the first tubular member, and resilient means positioned in the flange channel for forming a seal between the first tubular member and a second tubular member. In an exemplary embodiment, the resilient means for forming a seal comprises means for forming a metal to metal seal. In an exemplary embodiment, the resilient means comprises a wave spring. In an exemplary embodiment, the resilient means comprises an O-ring.
An expandable tubular member has been described that includes a first tubular member comprising a flange member extending from a surface on the first tubular member, the flange member comprising a resilient beam extending from a distal end of the flange member for forming a seal between the first tubular member and a second tubular member.
An expandable tubular member has been described that includes a first tubular member defining a flange channel on a surface of the first tubular member, a second tubular member comprising a flange member extending from a surface on the second tubular member, the second tubular member coupled to the first tubular member with the flange member positioned in the flange channel, whereby a sealing passageway is defined between the flange member and the flange channel, and resilient means for forming a seal between the first tubular member and the second tubular member positioned in the sealing passageway. In an exemplary embodiment, the resilient means for forming a seal comprises means for forming a metal to metal seal. In an exemplary embodiment, the resilient member comprises a wave spring. In an exemplary embodiment, the wave spring is positioned in the sealing passageway and circumferentially between the flange member and the flange channel. In an exemplary embodiment, the first tubular member, the second tubular member, and the wave spring are positioned in a wellbore. In an exemplary embodiment, the resilient member comprises an O-ring. In an exemplary embodiment, the O-ring is positioned in the sealing passageway and circumferentially between the flange member and the flange channel. In an exemplary embodiment, the first tubular member, the second tubular member, and the O-ring are positioned in a wellbore. In an exemplary embodiment, the resilient member comprises a resilient beam extending from a distal end of the flange member. In an exemplary embodiment, the resilient beam is located in the sealing passageway and circumferentially between the flange member and the flange channel. In an exemplary embodiment, the first tubular member, the second tubular member, and the resilient beam are positioned in a wellbore.
A connection member for coupling expandable tubular members has been described that includes a tubular connection member comprising an inner surface and an outer surface, a primary sealing member having a substantially diamond shaped cross section and extending from a substantially central location on the inner surface, a reinforced section located on the outer surface and adjacent the primary sealing member, and a plurality of secondary sealing surfaces located on opposite distal ends of the tubular connection member and on opposite sides of the primary sealing member. In an exemplary embodiment, the primary sealing member is deformable to provide a metal to metal seal between the tubular connection member and an expandable tubular member. In an exemplary embodiment, the plurality of secondary sealing surfaces are deformable to provide a metal to metal seal between the tubular connection member and an expandable tubular member.
A connection member for coupling expandable tubular members has been described that includes a tubular connection member, and means for providing a primary and secondary metal to metal seal between the tubular connection member and an expandable tubular member.
An expandable tubular member has been described that includes a first tubular member comprising a first connection end, a second tubular member comprising a second connection end, and a connection member coupling together the first tubular member and the second tubular member, the connection member including a tubular connection member comprising an inner surface and an outer surface, the inner surface engaging the first tubular member and the second tubular member, a primary sealing member having a substantially diamond shaped cross section, extending from a substantially central location on the inner surface, and positioned between the first connection end and the second connection end, a reinforced section located on the outer surface and adjacent the primary sealing member, and a plurality of secondary sealing surfaces located on opposite distal ends of the tubular connection member and on opposite sides of the primary sealing member, the secondary sealing surfaces coupled to the first connection end and the second connection end. In an exemplary embodiment, the primary sealing member is deformable to provide a metal to metal seal between the connection member and the first tubular member and the second tubular member. In an exemplary embodiment, the plurality of secondary sealing surfaces are deformable to provide a metal to metal seal between the connection member and the first tubular member and the second tubular member. In an exemplary embodiment, the first tubular member, the second tubular member, and the connection member are positioned in a wellbore.
An expandable tubular member has been described that includes a first tubular member comprising a first connection end, a second tubular member comprising a second connection end, a connection member coupled to the first connection end and the second connection end, and means for providing a primary and secondary metal to metal seal between the connection member and the first tubular member and the second tubular member.
A method for coupling expandable tubular members has been described that includes providing a first tubular member comprising a maximum first tubular member diameter, providing a second tubular comprising a maximum second tubular member diameter, and coupling the first tubular member to the second tubular member with a connection member comprising a maximum connection member diameter which is not substantially greater than the maximum first tubular member diameter and the maximum second tubular member diameter. In an exemplary embodiment, the method further includes coupling a protective sleeve adjacent the connection member. In an exemplary embodiment, the method further includes positioning the first tubular member, the second tubular member, and the connection member in a wellbore. In an exemplary embodiment, the method further includes radially expanding and plastically deforming the first tubular member and the second tubular member. In an exemplary embodiment, the radially expanding and plastically deforming comprises radially expanding and plastically deforming a first reduced diameter section on the first tubular member to substantially the maximum first tubular member diameter and radially expanding and plastically deforming a second reduced diameter section on the second tubular member to substantially the maximum second tubular member diameter. In an exemplary embodiment, the radially expanding and plastically deforming comprises radially expanding and plastically deforming the first tubular member and the second tubular member into engagement with the wellbore.
A method for coupling expandable tubular members has been described that includes providing a first tubular member comprising a thread member extending from an inner surface and defining a expansion channel on the outer surface which is located adjacent the thread member, and coupling a second tubular member to the first tubular member by engaging the thread member with a thread channel in the second tubular member. In an exemplary embodiment, the method further includes positioning the first tubular member and the second tubular member in a wellbore. In an exemplary embodiment, the method further includes radially expanding and plastically deforming the first tubular member and the second tubular member, whereby the expansion channel provides a stress concentration in the thread member which increases the deformation of the thread member in the thread channel during the radially expanding and plastically deforming. In an exemplary embodiment, the radially expanding and plastically deforming provides a metal to metal seal between the thread member and the thread channel. In an exemplary embodiment, the method further includes coupling a connection sleeve to the outer surface of the of the first tubular member, the connection sleeve defining an expansion slot oriented axially with respect the connection sleeve and which is positioned substantially perpendicularly to the expansion channel. In an exemplary embodiment, the method further includes positioning the first tubular member, the second tubular member, and the connection sleeve in a wellbore. In an exemplary embodiment, the method further includes radially expanding and plastically deforming the first tubular member, the second tubular member, and the connection sleeve, whereby the expansion slot and the expansion channel provide a stress concentration which increases the deformation of the thread member in the thread channel during the radially expanding and plastically deforming. In an exemplary embodiment, the radially expanding and plastically deforming provides a metal to metal seal between the thread member and the thread channel.
A method for coupling expandable tubular members has been described that includes providing a first tubular member comprising a flange member extending from an inner surface, providing a second tubular member defining a flange channel on an outer surface, positioning a resilient member in the flange channel, and coupling the first tubular member to the second tubular member by positioning the flange member in the flange channel and adjacent the resilient member. In an exemplary embodiment, the method further includes positioning the first tubular member and the second tubular member in a wellbore. In an exemplary embodiment, the method further includes radially expanding and plastically deforming the first tubular member and the second tubular member, whereby the radially expanding and plastically deforming compresses the resilient member and provides a seal between the flange member and the flange channel. In an exemplary embodiment, the radially expanding and plastically deforming provides a metal to metal seal between the flange member and the flange channel.
A method for coupling expandable tubular members has been described that includes providing a first tubular member comprising a first connection end, providing a second tubular member comprising a second connection end, positioning a connection member adjacent the first connection end and the second connection end such that a primary sealing member on the connection member is positioned between the first connection end and the second connection end, and a plurality of secondary sealing surfaces are positioned adjacent the first tubular member and the second tubular member, and coupling the first tubular member to the second tubular member using the connection member. In an exemplary embodiment, the coupling includes providing a metal sealing member between the first tubular member, the second tubular member, and the secondary sealing surfaces. In an exemplary embodiment, the method further includes positioning the first tubular member, the second tubular member, and the connection member in a wellbore. In an exemplary embodiment, the method further includes radially expanding and plastically deforming the first tubular member and the second tubular member, whereby the radially expanding and plastically deforming provides a primary seal between the primary sealing member and the first tubular member and the second tubular member, and the radially expanding and plastically deforming provides a secondary seal between the secondary sealing surfaces and the first tubular member and the second tubular member.
An expandable tubular member has been described that includes a first tubular member, a second tubular member coupled to the first tubular member, and means for effecting a gas and fluid tight seal between the first tubular member and the second tubular member before, during, and after radial expansion and plastic deformation of the first tubular member and the second tubular member, the means providing a seal which can withstand a pressure of up to 4000 pounds per square inch.
An expandable tubular member has been described that includes a first tubular member comprising a first tubular member diameter which decreases from a first outside diameter along the length of the first tubular member to a second outside diameter adjacent a first tubular member connection end on the first tubular member, a second tubular member comprising a second tubular member diameter which decreases from first outside diameter along the length of the second tubular member to the second outside diameter adjacent a second tubular member connection end on the second tubular member, whereby the second tubular member connection end is coupled to the first tubular member connection end, and a connection member coupled to the second outside diameter, whereby the connection member comprises a connection member diameter which is less than or equal to the first outside diameter.
An expandable tubular member has been described that includes a tubular member comprising an inner surface and an outer surface, a plurality of thread members extending from the inner surface, and a helical expansion channel defined by the tubular member and located on the outer surface and radially adjacent each of the plurality of thread members, whereby the expansion channel provides a stress concentration in the thread member during radial expansion and plastic deformation of the tubular member.
An expandable tubular member has been described that includes a first tubular member comprising an inner surface and an outer surface, a plurality of thread member extending from the inner surface, a helical expansion channel defined by the first tubular member and located on the outer surface and radially adjacent each of the plurality of thread members, a second tubular member coupled the first tubular member and engaging the plurality of thread members, whereby the expansion channel provides a stress concentration in the thread member during radial expansion and plastic deformation of the first tubular member and the second tubular member, a tubular connection sleeve positioned on the first tubular member, and a plurality of spaced apart expansion slots defined by the tubular connection sleeve in a substantially axial orientation with respect to the tubular connection sleeve and oriented substantially perpendicularly adjacent to and with respect to the expansion channel; whereby the plurality of expansion slots on the tubular connection sleeve provides a plurality of discrete point stress concentrations on the thread member during radial expansion and plastic deformation of the first tubular member, the second tubular member, and the connection sleeve.
A connection member for coupling expandable tubular members has been described that includes a tubular connection member comprising an inner surface and an outer surface, a primary sealing member having a substantially diamond shaped cross section, extending from a substantially central location on the inner surface, and deformable to provide a metal to metal seal between the tubular connection member and an expandable tubular member, a reinforced section located on the outer surface and adjacent the primary sealing member, and a plurality of secondary sealing surfaces located on opposite distal ends of the tubular connection member on opposite sides of the primary sealing member, and deformable to provide a metal to metal seal between the tubular connection member and an expandable tubular member.
An expandable tubular member has been described that includes a first tubular member comprising a first connection end, a second tubular member comprising a second connection end, and a connection member coupling together the first tubular member and the second tubular member, the connection member including a tubular connection member comprising an inner surface and an outer surface, the inner surface engaging the first tubular member and the second tubular member, a primary sealing member having a substantially diamond shaped cross section, extending from a substantially central location on the inner surface, positioned between the first connection end and the second connection end, and deformable to provide a metal to metal seal between the connection member and the first tubular member and the second tubular member, a reinforced section located on the outer surface and adjacent the primary sealing member, and a plurality of secondary sealing surfaces located on opposite distal ends of the tubular connection member and on opposite sides of the primary sealing member, the secondary sealing surfaces coupled to the first connection end and the second connection end and deformable to provide a metal to metal seal between the connection member and the first tubular member and the second tubular member.
A method for coupling expandable tubular members has been described that includes providing a first tubular member comprising a maximum first tubular member diameter, providing a second tubular comprising a maximum second tubular member diameter, coupling the first tubular member to the second tubular member with a connection member comprising a maximum connection member diameter which is not substantially greater than the maximum first tubular member diameter and the maximum second tubular member diameter, positioning the first tubular member, the second tubular member, and the connection member in a wellbore, and radially expanding and plastically deforming the first tubular member and the second tubular member, wherein the radially expanding and plastically deforming comprises one of either radially expanding and plastically deforming a first reduced diameter section on the first tubular member to substantially the maximum first tubular member diameter and radially expanding and plastically deforming a second reduced diameter section on the second tubular member to substantially the maximum second tubular member diameter or radially expanding and plastically deforming the first tubular member and the second tubular member into engagement with the wellbore.
A method for coupling expandable tubular members has been described that includes providing a first tubular member comprising a thread member extending from an inner surface and defining a expansion channel on the outer surface which is located adjacent the thread member, coupling a connection sleeve to the outer surface of the of the first tubular member, the connection sleeve defining an expansion slot oriented axially with respect the connection sleeve and which is positioned substantially perpendicularly to the expansion channel, coupling a second tubular member to the first tubular member by engaging the thread member with a thread channel in the second tubular member, positioning the first tubular member, the second tubular member, and the connection sleeve in a wellbore, and radially expanding and plastically deforming the first tubular member, the second tubular member, and the connection sleeve, whereby the expansion slot and the expansion channel provide a stress concentration which increases the deformation of the thread member in the thread channel during the radially expanding and plastically deforming and provides a metal to metal seal between the thread member and the thread channel.
A method for coupling expandable tubular members has been described that includes providing a first tubular member comprising a flange member extending from an inner surface, providing a second tubular member defining a flange channel on an outer surface, positioning a resilient member in the flange channel, coupling the first tubular member to the second tubular member by positioning the flange member in the flange channel and adjacent the resilient member, positioning the first tubular member and the second tubular member in a wellbore, and radially expanding and plastically deforming the first tubular member and the second tubular member, whereby the radially expanding and plastically deforming compresses the resilient member and provides a seal between the flange member and the flange channel; whereby the radially expanding and plastically deforming provides a metal to metal seal between the flange member and the flange channel.
A method for coupling expandable tubular members has been described that includes providing a first tubular member comprising a first connection end, providing a second tubular member comprising a second connection end, positioning a connection member adjacent the first connection end and the second connection end such that a primary sealing member on the connection member is positioned between the first connection end and the second connection end, and a plurality of secondary sealing surfaces are positioned adjacent the first tubular member and the second tubular member, coupling the first tubular member to the second tubular member using the connection member, whereby the coupling includes providing a metal sealing member between the first tubular member, the second tubular member, and the secondary sealing surfaces, positioning the first tubular member, the second tubular member, and the connection member in a wellbore, and radially expanding and plastically deforming the first tubular member and the second tubular member, whereby the radially expanding and plastically deforming provides a primary seal between the primary sealing member and the first tubular member and the second tubular member, and the radially expanding and plastically deforming provides a secondary seal between the secondary sealing surfaces and the first tubular member and the second tubular member.
It is understood that variations may be made in the foregoing without departing from the scope of the invention. Furthermore, the elements and teachings of the various illustrative embodiments may be combined in whole or in part in some or all of the illustrative embodiments. In addition, one or more of the elements and teachings of the various illustrative embodiments may be omitted, at least in part, and/or combined, at least in part, with one or more of the other elements and teachings of the various illustrative embodiments.
Although illustrative embodiments of the invention have been shown and described, a wide range of modification, changes and substitution is contemplated in the foregoing disclosure. In some instances, some features of the present invention may be employed without a corresponding use of the other features. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the invention.
This application claims the benefit of the filing date of U.S. provisional patent application Ser. No. 60/702,935, attorney docket number 25791.133, filed on Jul. 27, 2005, the disclosure of which is incorporated herein by reference. The present application is a continuation in part of U.S. utility patent application Ser. No. 10/546,084, attorney docket no. 25791.185.05, filed on Aug. 17, 2005, which was the National Stage patent application for PCT patent application serial no. PCT/US04/04740, filed on Feb. 17, 2004, attorney docket no. 25791.185.02, which was a continuation in part of U.S. utility patent application Ser. No. 10/528,222, attorney docket no. 25791.129.03, filed on Mar. 20, 2005, which was the National Stage patent application for PCT patent application serial no. PCT/US03/25716, filed on Aug. 18, 2003, attorney docket no. 25791.129.02, which was a continuation in part of U.S. utility patent application Ser. No. 10/528,223, attorney docket no. 25791.127.03, filed on Mar. 18, 2005, which was the National Stage patent application for PCT patent application serial no. PCT/US03/25707, filed on Aug. 18, 2003, attorney docket number 25791.127.02, which was a continuation in part of U.S. utility patent application Ser. No. 10/525,402, attorney docket no. 25791.120.05, filed on Feb. 23, 2005, which was the National Stage patent application for PCT patent application serial no. PCT/US03/25676, filed on Aug. 18, 2003, attorney docket number 25791.120.02, which was a continuation in part of U.S. utility patent application Ser. No. 10/525,332, attorney docket no. 25791.119.03, filed on Feb. 23, 2005, which was the National Stage patent application for PCT patent application serial no. PCT/US03/25677, filed on Aug. 18, 2003, attorney docket number 25791.119.02, which was a continuation in part of U.S. utility patent application Ser. No. 10/522,039, attorney docket no. 25791.106.05, filed on Jan. 19, 2005, which was the National Stage patent application for PCT patent application serial no. PCT/US03/19993, filed on Jun. 24, 2003, attorney docket number 25791.106.02, which was a continuation in part of U.S. utility patent application Ser. No. 10/511,410, attorney docket no. 25791.101.05, filed on Oct. 14, 2004, which was the National Stage patent application for PCT patent application serial no. PCT/US03/10144, filed on Mar. 31, 2003, attorney docket number 25791.101.02, which was a continuation in part of U.S. utility patent application Ser. No. 10/510,966, attorney docket no. 25791.93.05, filed on Oct. 12, 2004, which was the National Stage patent application for PCT patent application serial no. PCT/US03/06544, filed on Mar. 4, 2003, attorney docket number 25791.93.02, which was a continuation in part of U.S. utility patent application Ser. No. 10/500,745, attorney docket no. 25791.92.05, filed on Jul. 6, 2004, which was the National Stage patent application for PCT patent application PCT/US02/39418, filed on Dec. 10, 2002, attorney docket number 25791.92.02, the disclosures of which are incorporated herein by reference. This application is related to the following co-pending applications: (1) U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, attorney docket no. 25791.03.02, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (2) U.S. patent application Ser. No. 09/510,913, attorney docket no. 25791.7.02, filed on Feb. 23, 2000, which claims priority from provisional application 60/121,702, filed on Feb. 25, 1999, (3) U.S. patent application Ser. No. 09/502,350, attorney docket no. 25791.8.02, filed on Feb. 10, 2000, which claims priority from provisional application 60/119,611, filed on Feb. 11, 1999, (4) U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, attorney docket number 25791.9.02, filed on Nov. 15, 1999, which claims priority from provisional application 60/108,558, filed on Nov. 16, 1998, (5) U.S. patent application Ser. No. 10/169,434, attorney docket no. 25791.10.04, filed on Jul. 1, 2002, which claims priority from provisional application 60/183,546, filed on Feb. 18, 2000, (6) U.S. patent application Ser. No. 09/523,468, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (7) U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (8) U.S. Pat. No. 6,575,240, which was filed as patent application Ser. No. 09/511,941, attorney docket no. 25791.16.02, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,907, filed on Feb. 26, 1999, (9) U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (10) U.S. patent application Ser. No. 09/981,916, attorney docket no. 25791.18, filed on Oct. 18, 2001 as a continuation-in-part application of U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, attorney docket number 25791.9.02, filed on Nov. 15, 1999, which claims priority from provisional application 60/108,558, filed on Nov. 16, 1998, (11) U.S. Pat. No. 6,604,763, which was filed as application Ser. No. 09/559,122, attorney docket no. 25791.23.02, filed on Apr. 26, 2000, which claims priority from provisional application 60/131,106, filed on Apr. 26, 1999, (12) U.S. patent application Ser. No. 10/030,593, attorney docket no. 25791.25.08, filed on Jan. 8, 2002, which claims priority from provisional application 60/146,203, filed on Jul. 29, 1999, (13) U.S. provisional patent application Ser. No. 60/143,039, attorney docket no. 25791.26, filed on Jul. 9, 1999, (14) U.S. patent application Ser. No. 10/111,982, attorney docket no. 25791.27.08, filed on Apr. 30, 2002, which claims priority from provisional patent application Ser. No. 60/162,671, attorney docket no. 25791.27, filed on Nov. 1, 1999, (15) U.S. provisional patent application Ser. No. 60/154,047, attorney docket no. 25791.29, filed on Sep. 16, 1999, (16) U.S. provisional patent application Ser. No. 60/438,828, attorney docket no. 25791.31, filed on Jan. 9, 2003, (17) U.S. Pat. No. 6,564,875, which was filed as application Ser. No. 09/679,907, attorney docket no. 25791.34.02, on Oct. 5, 2000, which claims priority from provisional patent application Ser. No. 60/159,082, attorney docket no. 25791.34, filed on Oct. 12, 1999, (18) U.S. patent application Ser. No. 10/089,419, filed on Mar. 27, 2002, attorney docket no. 25791.36.03, which claims priority from provisional patent application Ser. No. 60/159,039, attorney docket no. 25791.36, filed on Oct. 12, 1999, (19) U.S. patent application Ser. No. 09/679,906, filed on Oct. 5, 2000, attorney docket no. 25791.37.02, which claims priority from provisional patent application Ser. No. 60/159,033, attorney docket no. 25791.37, filed on Oct. 12, 1999, (20) U.S. patent application Ser. No. 10/303,992, filed on Nov. 22, 2002, attorney docket no. 25791.38.07, which claims priority from provisional patent application Ser. No. 60/212,359, attorney docket no. 25791.38, filed on Jun. 19, 2000, (21) U.S. provisional patent application Ser. No. 60/165,228, attorney docket no. 25791.39, filed on Nov. 12, 1999, (22) U.S. provisional patent application Ser. No. 60/455,051, attorney docket no. 25791.40, filed on Mar. 14, 2003, (23) PCT application US02/2477, filed on Jun. 26, 2002, attorney docket no. 25791.44.02, which claims priority from U.S. provisional patent application Ser. No. 60/303,711, attorney docket no. 25791.44, filed on Jul. 6, 2001, (24) U.S. patent application Ser. No. 10/311,412, filed on Dec. 12, 2002, attorney docket no. 25791.45.07, which claims priority from provisional patent application Ser. No. 60/221,443, attorney docket no. 25791.45, filed on Jul. 28, 2000, (25) U.S. patent application serial no. 10/______, filed on Dec. 18, 2002, attorney docket no. 25791.46.07, which claims priority from provisional patent application Ser. No. 60/221,645, attorney docket no. 25791.46, filed on Jul. 28, 2000, (26) U.S. patent application Ser. No. 10/322,947, filed on Jan. 22, 2003, attorney docket no. 25791.47.03, which claims priority from provisional patent application Ser. No. 60/233,638, attorney docket no. 25791.47, filed on Sep. 18, 2000, (27) U.S. patent application Ser. No. 10/406,648, filed on Mar. 31, 2003, attorney docket no. 25791.48.06, which claims priority from provisional patent application Ser. No. 60/237,334, attorney docket no. 25791.48, filed on Oct. 2, 2000, (28) PCT application US02/04353, filed on Feb. 14, 2002, attorney docket no. 25791.50.02, which claims priority from U.S. provisional patent application Ser. No. 60/270,007, attorney docket no. 25791.50, filed on Feb. 20, 2001, (29) U.S. patent application Ser. No. 10/465,835, filed on Jun. 13, 2003, attorney docket no. 25791.51.06, which claims priority from provisional patent application Ser. No. 60/262,434, attorney docket no. 25791.51, filed on Jan. 17, 2001, (30) U.S. patent application Ser. No. 10/465,831, filed on Jun. 13, 2003, attorney docket no. 25791.52.06, which claims priority from U.S. provisional patent application Ser. No. 60/259,486, attorney docket no. 25791.52, filed on Jan. 3, 2001, (31) U.S. provisional patent application Ser. No. 60/452,303, filed on Mar. 5, 2003, attorney docket no. 25791.53, (32) U.S. Pat. No. 6,470,966, which was filed as patent application Ser. No. 09/850,093, filed on May 7, 2001, attorney docket no. 25791.55, as a divisional application of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, attorney docket no. 25791.03.02, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (33) U.S. Pat. No. 6,561,227, which was filed as patent application Ser. No. 09/852,026, filed on May 9, 2001, attorney docket no. 25791.56, as a divisional application of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, attorney docket no. 25791.03.02, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (34) U.S. patent application Ser. No. 09/852,027, filed on May 9, 2001, attorney docket no. 25791.57, as a divisional application of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, attorney docket no. 25791.03.02, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (35) PCT Application US02/25608, attorney docket no. 25791.58.02, filed on Aug. 13, 2002, which claims priority from provisional application 60/318,021, filed on Sep. 7, 2001, attorney docket no. 25791.58, (36) PCT Application US02/24399, attorney docket no. 25791.59.02, filed on Aug. 1, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/313,453, attorney docket no. 25791.59, filed on Aug. 20, 2001, (37) PCT Application US02/29856, attorney docket no. 25791.60.02, filed on Sep. 19, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/326,886, attorney docket no. 25791.60, filed on Oct. 3, 2001, (38) PCT Application US02/20256, attorney docket no. 25791.61.02, filed on Jun. 26, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/303,740, attorney docket no. 25791.61, filed on Jul. 6, 2001, (39) U.S. patent application Ser. No. 09/962,469, filed on Sep. 25, 2001, attorney docket no. 25791.62, which is a divisional of U.S. patent application Ser. No. 09/523,468, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (40) U.S. patent application Ser. No. 09/962,470, filed on Sep. 25, 2001, attorney docket no. 25791.63, which is a divisional of U.S. patent application Ser. No. 09/523,468, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (41) U.S. patent application Ser. No. 09/962,471, filed on Sep. 25, 2001, attorney docket no. 25791.64, which is a divisional of U.S. patent application Ser. No. 09/523,468, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (42) U.S. patent application Ser. No. 09/962,467, filed on Sep. 25, 2001, attorney docket no. 25791.65, which is a divisional of U.S. patent application Ser. No. 09/523,468, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (43) U.S. patent application Ser. No. 09/962,468, filed on Sep. 25, 2001, attorney docket no. 25791.66, which is a divisional of U.S. patent application Ser. No. 09/523,468, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (44) PCT application US 02/25727, filed on Aug. 14, 2002, attorney docket no. 25791.67.03, which claims priority from U.S. provisional patent application Ser. No. 60/317,985, attorney docket no. 25791.67, filed on Sep. 6, 2001, and U.S. provisional patent application Ser. No. 60/318,386, attorney docket no. 25791.67.02, filed on Sep. 10, 2001, (45) PCT application US 02/39425, filed on Dec. 10, 2002, attorney docket no. 25791.68.02, which claims priority from U.S. provisional patent application Ser. No. 60/343,674, attorney docket no. 25791.68, filed on Dec. 27, 2001, (46) U.S. utility patent application Ser. No. 09/969,922, attorney docket no. 25791.69, filed on Oct. 3, 2001, which is a continuation-in-part application of U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, attorney docket number 25791.9.02, filed on Nov. 15, 1999, which claims priority from provisional application 60/108,558, filed on Nov. 16, 1998, (47) U.S. utility patent application Ser. No. 10/516,467, attorney docket no. 25791.70, filed on Dec. 10, 2001, which is a continuation application of U.S. utility patent application Ser. No. 09/969,922, attorney docket no. 25791.69, filed on Oct. 3, 2001, which is a continuation-in-part application of U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, attorney docket number 25791.9.02, filed on Nov. 15, 1999, which claims priority from provisional application 60/108,558, filed on Nov. 16, 1998, (48) PCT application US 03/00609, filed on Jan. 9, 2003, attorney docket no. 25791.71.02, which claims priority from U.S. provisional patent application Ser. No. 60/357,372, attorney docket no. 25791.71, filed on Feb. 15, 2002, (49) U.S. patent application Ser. No. 10/074,703, attorney docket no. 25791.74, filed on Feb. 12, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (50) U.S. patent application Ser. No. 10/074,244, attorney docket no. 25791.75, filed on Feb. 12, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (51) U.S. patent application Ser. No. 10/076,660, attorney docket no. 25791.76, filed on Feb. 15, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (52) U.S. patent application Ser. No. 10/076,661, attorney docket no. 25791.77, filed on Feb. 15, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (53) U.S. patent application Ser. No. 10/076,659, attorney docket no. 25791.78, filed on Feb. 15, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (54) U.S. patent application Ser. No. 10/078,928, attorney docket no. 25791.79, filed on Feb. 20, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (55) U.S. patent application Ser. No. 10/078,922, attorney docket no. 25791.80, filed on Feb. 20, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (56) U.S. patent application Ser. No. 10/078,921, attorney docket no. 25791.81, filed on Feb. 20, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (57) U.S. patent application Ser. No. 10/261,928, attorney docket no. 25791.82, filed on Oct. 1, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (58) U.S. patent application Ser. No. 10/079,276, attorney docket no. 25791.83, filed on Feb. 20, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (59) U.S. patent application Ser. No. 10/262,009, attorney docket no. 25791.84, filed on Oct. 1, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (60) U.S. patent application Ser. No. 10/092,481, attorney docket no. 25791.85, filed on Mar. 7, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (61) U.S. patent application Ser. No. 10/261,926, attorney docket no. 25791.86, filed on Oct. 1, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (62) PCT application US 02/36157, filed on Nov. 12, 2002, attorney docket no. 25791.87.02, which claims priority from U.S. provisional patent application Ser. No. 60/338,996, attorney docket no. 25791.87, filed on Nov. 12, 2001, (63) PCT application US 02/36267, filed on Nov. 12, 2002, attorney docket no. 25791.88.02, which claims priority from U.S. provisional patent application Ser. No. 60/339,013, attorney docket no. 25791.88, filed on Nov. 12, 2001, (64) PCT application US 03/11765, filed on Apr. 16, 2003, attorney docket no. 25791.89.02, which claims priority from U.S. provisional patent application Ser. No. 60/383,917, attorney docket no. 25791.89, filed on May 29, 2002, (65) PCT application US 03/15020, filed on May 12, 2003, attorney docket no. 25791.90.02, which claims priority from U.S. provisional patent application Ser. No. 60/391,703, attorney docket no. 25791.90, filed on Jun. 26, 2002, (66) PCT application US 02/39418, filed on Dec. 10, 2002, attorney docket no. 25791.92.02, which claims priority from U.S. provisional patent application Ser. No. 60/346,309, attorney docket no. 25791.92, filed on Jan. 7, 2002, (67) PCT application US 03/06544, filed on Mar. 4, 2003, attorney docket no. 25791.93.02, which claims priority from U.S. provisional patent application Ser. No. 60/372,048, attorney docket no. 25791.93, filed on Apr. 12, 2002, (68) U.S. patent application Ser. No. 10/331,718, attorney docket no. 25791.94, filed on Dec. 30, 2002, which is a divisional U.S. patent application Ser. No. 09/679,906, filed on Oct. 5, 2000, attorney docket no. 25791.37.02, which claims priority from provisional patent application Ser. No. 60/159,033, attorney docket no. 25791.37, filed on Oct. 12, 1999, (69) PCT application US 03/04837, filed on Feb. 29, 2003, attorney docket no. 25791.95.02, which claims priority from U.S. provisional patent application Ser. No. 60/363,829, attorney docket no. 25791.95, filed on Mar. 13, 2002, (70) U.S. patent application Ser. No. 10/261,927, attorney docket no. 25791.97, filed on Oct. 1, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (71) U.S. patent application Ser. No. 10/262,008, attorney docket no. 25791.98, filed on Oct. 1, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (72) U.S. patent application Ser. No. 10/261,925, attorney docket no. 25791.99, filed on Oct. 1, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (73) U.S. patent application Ser. No. 10/199,524, attorney docket no. 25791.100, filed on Jul. 19, 2002, which is a continuation of U.S. Pat. No. 6,497,289, which was filed as U.S. Patent Application Ser. No. 09/454,139, attorney docket no. 25791.03.02, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (74) PCT application US 03/10144, filed on Mar. 28, 2003, attorney docket no. 25791.101.02, which claims priority from U.S. provisional patent application Ser. No. 60/372,632, attorney docket no. 25791.101, filed on Apr. 15, 2002, (75) U.S. provisional patent application Ser. No. 60/412,542, attorney docket no. 25791.102, filed on Sep. 20, 2002, (76) PCT application US 03/14153, filed on May 6, 2003, attorney docket no. 25791.104.02, which claims priority from U.S. provisional patent application Ser. No. 60/380,147, attorney docket no. 25791.104, filed on May 6, 2002, (77) PCT application US 03/19993, filed on Jun. 24, 2003, attorney docket no. 25791.106.02, which claims priority from U.S. provisional patent application Ser. No. 60/397,284, attorney docket no. 25791.106, filed on Jul. 19, 2002, (78) PCT application US 03/13787, filed on May 5, 2003, attorney docket no. 25791.107.02, which claims priority from U.S. provisional patent application Ser. No. 60/387,486, attorney docket no. 25791.107, filed on Jun. 10, 2002, (79) PCT application US 03/18530, filed on Jun. 11, 2003, attorney docket no. 25791.108.02, which claims priority from U.S. provisional patent application Ser. No. 60/387,961, attorney docket no. 25791.108, filed on Jun. 12, 2002, (80) PCT application US 03/20694, filed on Jul. 1, 2003, attorney docket no. 25791.110.02, which claims priority from U.S. provisional patent application Ser. No. 60/398,061, attorney docket no. 25791.110, filed on Jul. 24, 2002, (81) PCT application US 03/20870, filed on Jul. 2, 2003, attorney docket no. 25791.111.02, which claims priority from U.S. provisional patent application Ser. No. 60/399,240, attorney docket no. 25791.111, filed on Jul. 29, 2002, (82) U.S. provisional patent application Ser. No. 60/412,487, attorney docket no. 25791.112, filed on Sep. 20, 2002, (83) U.S. provisional patent application Ser. No. 60/412,488, attorney docket no. 25791.114, filed on Sep. 20, 2002, (84) U.S. patent application Ser. No. 10/280,356, attorney docket no. 25791.115, filed on Oct. 25, 2002, which is a continuation of U.S. Pat. No. 6,470,966, which was filed as patent application Ser. No. 09/850,093, filed on May 7, 2001, attorney docket no. 25791.55, as a divisional application of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, attorney docket no. 25791.03.02, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (85) U.S. provisional patent application Ser. No. 60/412,177, attorney docket no. 25791.117, filed on Sep. 20, 2002, (86) U.S. provisional patent application Ser. No. 60/412,653, attorney docket no. 25791.118, filed on Sep. 20, 2002, (87) U.S. provisional patent application Ser. No. 60/405,610, attorney docket no. 25791.119, filed on Aug. 23, 2002, (88) U.S. provisional patent application Ser. No. 60/405,394, attorney docket no. 25791.120, filed on Aug. 23, 2002, (89) U.S. provisional patent application Ser. No. 60/412,544, attorney docket no. 25791.121, filed on Sep. 20, 2002, (90) PCT application US 03/24779, filed on Aug. 8, 2003, attorney docket no. 25791.125.02, which claims priority from U.S. provisional patent application Ser. No. 60/407,442, attorney docket no. 25791.125, filed on Aug. 30, 2002, (91) U.S. provisional patent application Ser. No. 60/423,363, attorney docket no. 25791.126, filed on Dec. 10, 2002, (92) U.S. provisional patent application Ser. No. 60/412,196, attorney docket no. 25791.127, filed on Sep. 20, 2002, (93) U.S. provisional patent application Ser. No. 60/412,187, attorney docket no. 25791.128, filed on Sep. 20, 2002, (94) U.S. provisional patent application Ser. No. 60/412,371, attorney docket no. 25791.129, filed on Sep. 20, 2002, (95) U.S. patent application Ser. No. 10/382,325, attorney docket no. 25791.145, filed on Mar. 5, 2003, which is a continuation of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (96) U.S. patent application Ser. No. 10/624,842, attorney docket no. 25791.151, filed on Jul. 22, 2003, which is a divisional of U.S. patent application Ser. No. 09/502,350, attorney docket no. 25791.8.02, filed on Feb. 10, 2000, which claims priority from provisional application 60/119,611, filed on Feb. 11, 1999, (97) U.S. provisional patent application Ser. No. 60/431,184, attorney docket no. 25791.157, filed on Dec. 5, 2002, (98) U.S. provisional patent application Ser. No. 60/448,526, attorney docket no. 25791.185, filed on Feb. 18, 2003, (99) U.S. provisional patent application Ser. No. 60/461,539, attorney docket no. 25791.186, filed on Apr. 9, 2003, (100) U.S. provisional patent application Ser. No. 60/462,750, attorney docket no. 25791.193, filed on Apr. 14, 2003, (101) U.S. provisional patent application Ser. No. 60/436,106, attorney docket no. 25791.200, filed on Dec. 23, 2002, (102) U.S. provisional patent application Ser. No. 60/442,942, attorney docket no. 25791.213, filed on Jan. 27, 2003, (103) U.S. provisional patent application Ser. No. 60/442,938, attorney docket no. 25791.225, filed on Jan. 27, 2003, (104) U.S. provisional patent application Ser. No. 60/418,687, attorney docket no. 25791.228, filed on Apr. 18, 2003, (105) U.S. provisional patent application Ser. No. 60/454,896, attorney docket no. 25791.236, filed on Mar. 14, 2003, (106) U.S. provisional patent application Ser. No. 60/450,504, attorney docket no. 25791.238, filed on Feb. 26, 2003, (107) U.S. provisional patent application Ser. No. 60/451,152, attorney docket no. 25791.239, filed on Mar. 9, 2003, (108) U.S. provisional patent application Ser. No. 60/455,124, attorney docket no. 25791.241, filed on Mar. 17, 2003, (109) U.S. provisional patent application Ser. No. 60/453,678, attorney docket no. 25791.253, filed on Mar. 11, 2003, (110) U.S. patent application Ser. No. 10/421,682, attorney docket no. 25791.256, filed on Apr. 23, 2003, which is a continuation of U.S. patent application Ser. No. 09/523,468, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (111) U.S. provisional patent application Ser. No. 60/457,965, attorney docket no. 25791.260, filed on Mar. 27, 2003, (112) U.S. provisional patent application Ser. No. 60/455,718, attorney docket no. 25791.262, filed on Mar. 18, 2003, (113) U.S. Pat. No. 6,550,821, which was filed as patent application Ser. No. 09/811,734, filed on Mar. 19, 2001, (114) U.S. patent application Ser. No. 10/436,467, attorney docket no. 25791.268, filed on May 12, 2003, which is a continuation of U.S. Pat. No. 6,604,763, which was filed as application Ser. No. 09/559,122, attorney docket no. 25791.23.02, filed on Apr. 26, 2000, which claims priority from provisional application 60/131,106, filed on Apr. 26, 1999, (115) U.S. provisional patent application Ser. No. 60/459,776, attorney docket no. 25791.270, filed on Apr. 2, 2003, (116) U.S. provisional patent application Ser. No. 60/461,094, attorney docket no. 25791.272, filed on Apr. 8, 2003, (117) U.S. provisional patent application Ser. No. 60/461,038, attorney docket no. 25791.273, filed on Apr. 7, 2003, (118) U.S. provisional patent application Ser. No. 60/463,586, attorney docket no. 25791.277, filed on Apr. 17, 2003, (119) U.S. provisional patent application Ser. No. 60/472,240, attorney docket no. 25791.286, filed on May 20, 2003, (120) U.S. patent application Ser. No. 10/619,285, attorney docket no. 25791.292, filed on Jul. 14, 2003, which is a continuation-in-part of U.S. utility patent application Ser. No. 09/969,922, attorney docket no. 25791.69, filed on Oct. 3, 2001, which is a continuation-in-part application of U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, attorney docket number 25791.9.02, filed on Nov. 15, 1999, which claims priority from provisional application 60/108,558, filed on Nov. 16, 1998, (121) U.S. utility patent application Ser. No. 10/418,688, attorney docket no. 25791.257, which was filed on Apr. 18, 2003, as a division of U.S. utility patent application Ser. No. 09/523,468, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (122) PCT patent application serial no. PCT/US04/06246, attorney docket no. 25791.238.02, filed on Feb. 26, 2004, (123) PCT patent application serial number PCT/US04/08170, attorney docket number 25791.40.02, filed on Mar. 15, 2004, (124) PCT patent application serial number PCT/US04/08171, attorney docket number 25791.236.02, filed on Mar. 15, 2004, (125) PCT patent application serial number PCT/US04/08073, attorney docket number 25791.262.02, filed on Mar. 18, 2004, (126) PCT patent application serial number PCT/US04/07711, attorney docket number 25791.253.02, filed on Mar. 11, 2004, (127) PCT patent application serial number PCT/US2004/009434, attorney docket number 25791.260.02, filed on Mar. 26, 2004, (128) PCT patent application serial number PCT/US2004/010317, attorney docket number 25791.270.02, filed on Apr. 2, 2004, (129) PCT patent application serial number PCT/US2004/010712, attorney docket number 25791.272.02, filed on Apr. 6, 2004, (130) PCT patent application serial number PCT/US2004/010762, attorney docket number 25791.273.02, filed on Apr. 6, 2004, (131) PCT patent application serial number PCT/2004/011973, attorney docket number 25791.277.02, filed on Apr. 15, 2004, (132) U.S. provisional patent application Ser. No. 60/495,056, attorney docket number 25791.301, filed on Aug. 14, 2003, (133) U.S. provisional patent application Ser. No. 60/600,679, attorney docket number 25791.194, filed on Aug. 11, 2004; (134) PCT patent application serial number PCT/US2005/027318, attorney docket number 25791.329.02, filed on Jul. 29, 2005; (135) PCT patent application serial number PCT/US2005/028936, attorney docket number 25791.338.02, filed on Aug. 12, 2005; (136) PCT patent application serial number PCT/US2005/028669, attorney docket number 25791.194.02, filed on Aug. 11, 2005; (137) PCT patent application serial number PCT/US2005/028453, attorney docket number 25791.371, filed on Aug. 11, 2005; (138) PCT patent application serial number PCT/US2005/028641, attorney docket number 25791.372, filed on Aug. 11, 2005; (139) PCT patent application serial number PCT/US2005/028819, attorney docket number 25791.373, filed on Aug. 11, 2005; (140) PCT patent application serial number PCT/US2005/028446, attorney docket number 25791.374, filed on Aug. 11, 2005; (141) PCT patent application serial number PCT/US2005/028642, attorney docket number 25791.375, filed on Aug. 11, 2005; (142) PCT patent application serial number PCT/US2005/028451, attorney docket number 25791.376, filed on Aug. 11, 2005, and (143). PCT patent application serial number PCT/US2005/028473, attorney docket number 25791.377, filed on Aug. 11, 2005, (144) U.S. utility patent application Ser. No. 10/546,082, attorney docket number 25791.378, filed on Aug. 16, 2005, (145) U.S. utility patent application Ser. No. 10/546,076, attorney docket number 25791.379, filed on Aug. 16, 2005, (146) U.S. utility patent application Ser. No. 10/545,936, attorney docket number 25791.380, filed on Aug. 16, 2005, (147) U.S. utility patent application Ser. No. 10/546,079, attorney docket number 25791.381, filed on Aug. 16, 2005 (148) U.S. utility patent application Ser. No. 10/545,941, attorney docket number 25791.382, filed on Aug. 16, 2005, (149) U.S. utility patent application serial number 546078, attorney docket number 25791.383, filed on Aug. 16, 2005, filed on Aug. 11, 2005., (150) U.S. utility patent application Ser. No. 10/545,941, attorney docket number 25791.185.05, filed on Aug. 16, 2005, (151) U.S. utility patent application Ser. No. 11/249,967, attorney docket number 25791.384, filed on Oct. 13, 2005, (152) U.S. provisional patent application Ser. No. 60/734,302, attorney docket number 25791.24, filed on Nov. 7, 2005, (153) U.S. provisional patent application Ser. No. 60/725,181, attorney docket number 25791.184, filed on Oct. 11, 2005, (154) PCT patent application serial number PCT/US2005/023391, attorney docket number 25791.299.02 filed Jun. 29, 2005 which claims priority from U.S. provisional patent application Ser. No. 60/585,370, attorney docket number 25791.299, filed on Jul. 2, 2004, (155) U.S. provisional patent application Ser. No. 60/721,579, attorney docket number 25791.327, filed on Sep. 28, 2005, (156) U.S. provisional patent application Ser. No. 60/717,391, attorney docket number 25791.214, filed on Sep. 15, 2005, (157) U.S. provisional patent application Ser. No. 60/702,935, attorney docket number 25791.133, filed on Jul. 27, 2005, (158) U.S. provisional patent application Ser. No. 60/663,913, attorney docket number 25791.32, filed on Mar. 21, 2005, (159) U.S. provisional patent application Ser. No. 60/652,564, attorney docket number 25791.348, filed on Feb. 14, 2005, (160) U.S. provisional patent application Ser. No. 60/645,840, attorney docket number 25791.324, filed on Jan. 21, 2005, (161) PCT patent application serial number PCT/US2005/043122, attorney docket number 25791.326.02, filed on Nov. 29, 2005 which claims priority from U.S. provisional patent application Ser. No. 60/631,703, attorney docket number 25791.326, filed on Nov. 30, 2004, (162) U.S. provisional patent application Ser. No. 60/752,787, attorney docket number 25791.339, filed on Dec. 22, 2005, (163) U.S. National Stage application Ser. No. 10/548,934, attorney docket no. 25791.253.05, filed on Sep. 12, 2005; (164) U.S. National Stage application Ser. No. 10/549,410, attorney docket no. 25791.262.05, filed on Sep. 13, 2005; (165) U.S. Provisional Patent Application No. 60/717,391, attorney docket no. 25791.214 filed on Sep. 15, 2005; (166) U.S. National Stage application Ser. No. 10/550,906, attorney docket no. 25791.260.06, filed on Sep. 27, 2005; (167) U.S. National Stage application Ser. No. 10/551,880, attorney docket no. 25791.270.06, filed on Sep. 30, 2005; (168) U.S. National Stage application Ser. No. 10/552,253, attorney docket no. 25791.273.06, filed on Oct. 4, 2005; (169) U.S. National Stage application Ser. No. 10/552,790, attorney docket no. 25791.272.06, filed on Oct. 11, 2005; (170) U.S. Provisional Patent Application No. 60/725,181, attorney docket no. 25791.184 filed on Oct. 11, 2005; (171) U.S. National Stage application Ser. No. 10/553,094, attorney docket no. 25791.193.03, filed on Oct. 13, 2005; (172) U.S. National Stage application Ser. No. 10/553,566, attorney docket no. 25791.277.06, filed on Oct. 17, 2005; (173) PCT Patent Application No. PCT/US2006/002449, attorney docket no. 25791.324.02 filed on Jan. 20, 2006, and (174) PCT Patent Application No. PCT/US2006/004809, attorney docket no. 25791.348.02 filed on Feb. 9, 2006; (175) U.S. Utility patent application Ser. No. 11/356,899, attorney docket no. 25791.386, filed on Feb. 17, 2006, (176) U.S. National Stage application Ser. No. 10/568,200, attorney docket no. 25791.301.06, filed on Feb. 13, 2006, (177) U.S. National Stage application Ser. No. 10/568,719, attorney docket no. 25791.137.04, filed on Feb. 16, 2006, filed on Feb. 16, 2006, (178) U.S. National Stage application Ser. No. 10/569,323, attorney docket no. 25791.215.06, filed on Feb. 17, 2006, (179) U.S. National State patent application Ser. No. 10/571,041, attorney docket no. 25791.305.05, filed on Mar. 3, 2006; (180) U.S. National State patent application Ser. No. 10/571,017, attorney docket no. 25791.306.04, filed on Mar. 3, 2006; (181) U.S. National State patent application Ser. No. 10/571,086, attorney docket no. 25791.307.04, filed on Mar. 6, 2006; and (182) U.S. National State patent application Ser. No. 10/571,085, attorney docket no. 25791.308.07, filed on Mar. 6, 2006, (183) U.S. utility patent application Ser. No. 10/938,788, attorney docket number 25791.330, filed on Sep. 10, 2004, (184) U.S. utility patent application Ser. No. 10/938,225, attorney docket number 25791.331, filed on Sep. 10, 2004, (185) U.S. utility patent application Ser. No. 10/952,288, attorney docket number 25791.332, filed on Sep. 28, 2004, (186) U.S. utility patent application Ser. No. 10/952,416, attorney docket number 25791.333, filed on Sep. 28, 2004, (187) U.S. utility patent application Ser. No. 10/950,749, attorney docket number 25791.334, filed on Sep. 27, 2004, (188) U.S. utility patent application Ser. No. 10/950,869, attorney docket number 25791.335, filed on Sep. 27, 2004; (189) U.S. provisional patent application Ser. No. 60/761,324, attorney docket number 25791.340, filed on Jan. 23, 2006, (190) U.S. provisional patent application Ser. No. 60/754,556, attorney docket number 25791.342, filed on Dec. 28, 2005, (191) U.S. utility patent application Ser. No. 11/380,051, attorney docket number 25791.388, filed on Apr. 25, 2006, and (192) U.S. utility patent application Ser. No. 11/380,055, attorney docket number 25791.389 the disclosures of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60702935 | Jul 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US04/04740 | Feb 2004 | US |
Child | 10546084 | Aug 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10546084 | Aug 2005 | US |
Child | 11494045 | Jul 2006 | US |