The invention relates to inkjet printing. More particularly, the invention relates to a method and apparatus for creating 3D effects with ceramic inkjet inks.
Ceramic inkjet 3D effects are currently being achieved by use of either an additive process that involves jetting ceramic material on to a tile or a subtractive-like process that involves jetting a ceramic fluxing material on to a glazed tile. This results in a relief that is uniform and generally well matched to the under-glaze that it is jetted on. Both methods can create patterns and enhance printed images, for example wood grain.
Texture and 3D glaze effects are known within the traditional ceramic community. These textured glazes are manually applied to produce an artistic effect known as blister, bubble, and wax resist effects. The technique known as wax resist produces textural and relief effects by applying a wax-like material to the ceramic piece prior to glazing. Due to surface tension, an aqueous glaze avoids any region where the wax-like material is applied, thus producing the effect. Currently, the designs produced by this technique are applied by a manual or analogue process.
Embodiments of the invention combine inkjet and wax resist techniques to produce a 3D relief effect using an inkjet ink. The incorporation of inkjet technology allows for precise control over the location and degree of relief.
Embodiments of the invention combine inkjet and wax resist techniques to produce a 3D relief effect using an inkjet ink. The incorporation of inkjet technology allows for precise control over the location and degree of relief.
Embodiments of the invention provide a method and apparatus for using an ink jet ink to form a specific artistic effect on, for example ceramic tiles. Such effects can include, for example, wood grain, cobblestone, picture frames, text, custom designs, and custom artwork.
This effect is often referred to as a wax resist. In embodiments of the invention, this effect is produced when an aqueous glaze slurry, having a high surface tension, is layered on top of a printed effect ink, having a low surface tension. The difference in surface tensions causes the glaze material to move away from the printed ink. This results in a relief pattern at the location of the printed image.
The area and depth of the relief is dependent on the area and quantity of printed ink. This 3D effect on tile was demonstrated with the application of a single 84 picoliter drop of the effect ink with the aqueous glaze applied by the waterfall method, although smaller drops may also result in the effect. The largest area successfully voided of glaze material with the 3D effect ink was 1 sq. in., but larger areas may demonstrate the effect.
In embodiments of the invention, the effect ink may or may not be a curable fluid and may or may not contain solid components. Non-curable effect inks may include inks containing the following fluids and solvents: aliphatic and aromatic hydrocarbons, natural and synthetic oils, fatty acid esters, ketones, ethers, alcohols, amides, amines, esters, silicone oils, silanes, siloxanes, water, and others. Non-curable effect inks may include inks containing the following polymers and oligomers in solution or dispersion: polyolefins, polyurethanes, polyesters, polyamides, polyamines, polyketones, polystyrene, polycarbonates, polybutadiene and other rubbers, fluorinated polymers (such as polytetrafluoroethylene), and others. Non-curable effect inks may include inks containing the following solid components: clays, feldspars, silicas, frits, alumina, metals, metal-oxides, metal-nitrides, organic dyes and pigments, inorganic dyes and pigments. Curable effects inks may include inks containing the previous and following materials: acrylates, epoxies, melamines, isocyanates, unsaturated triglycerides, and other hydrophobic fluids, polymers, resins, and solids. The curing may or may not be promoted by radiation (such as UV or microwave), heat, solvent evaporation, chemical equilibrium, air exposure, and/or water exposure.
The effect ink can be printed on dry tile; engobe, i.e. a clay slip coating applied to a ceramic body; or glaze. For ceramics, this method is compatible with glossy to matte glazes. Glaze and engobes are composed of various clays, feldspars, frits and elemental oxides. Exact elemental compositions and blend ratios are region dependent due to the variability in composition of locally sourced earth.
Depending on the desired final appearance or performance, the ratios of the previously mentioned materials is distributed; for example, the main difference between a glossy and matte glaze is the amount of silica used in the formula.
The effect ink must be printed before at least one application of an aqueous mixture, e.g. engobe and glaze slurries, as described above.
In embodiments of the invention, one or more aqueous mixtures may be applied by analog or digital methods that are well known within the art, e.g. spray and waterfall.
Further, embodiments of the invention may be used for applications other than ceramics by changing the substrate and top mixture.
At Step 1, a pre-glazed tile is printed with a digital ink to provide a 3D effect. The 3D effect ink is printed as an image generated by a designer. The effect ink can be clear and colorless. A dye or pigment may be included for visual inspection purposes, but is not necessary to produce the effect. The amount of ink applied to the substrate is determine by the following variables: the digital image used by the printer, the print head make and model, print head parameters (piezo voltage, waveform, jet temperature, etc.) and number of print passes. Ink properties, such as viscosity, density, electrical conductivity, and maximum particle diameter, if applicable, are limited only by the capabilities of the printer and print head used to print the image. The image printed with the 3D effect ink can be generated in any software capable of producing image files, such as Adobe Photoshop.
At Step 2, an aqueous glaze is applied to the tile. As can be seen, the nature of the ink and aqueous glaze is such as to cause a separation.
At Step 3, the glaze is dried according to industry standards that are well known within the art. The glaze should be dry enough to absorb the printed ink without distorting the image. This could be accomplished by naturally air drying or accelerated through the use of drying ovens, fans, and/or vacuum systems for a predetermined amount of time.
At Step 4, the final image is printed. In
At Step 5, the printed tile is fired according to industry standards that are well known within the art. Typical temperatures may range from 1060° C. to 1250° C. and firing durations vary from 35 minutes to 120 minutes per firing cycle.
In
For the tile of
In
Although the invention is described herein with reference to the preferred embodiment, one skilled in the art will readily appreciate that other applications may be substituted for those set forth herein without departing from the spirit and scope of the present invention. Accordingly, the invention should only be limited by the Claims included below.
Number | Name | Date | Kind |
---|---|---|---|
6402823 | Garcia Sainz | Jun 2002 | B1 |
20100291362 | Vignali | Nov 2010 | A1 |
20130265376 | Gil-Torrente et al. | Oct 2013 | A1 |
20140196618 | Pervan | Jul 2014 | A1 |
Number | Date | Country | |
---|---|---|---|
20160311231 A1 | Oct 2016 | US |