The present invention relates to data communications. In particular, the present invention relates to creating a unique audio signature.
Digital audio technology has greatly changed the landscape of music and entertainment. Rapid increases in computing power coupled with decreases in cost have made it possible individuals to generate finished products having a quality once available only in a major studio. Once consequence of modern technology is that legacy media storage standards, such as reel-to-reel tapes, are being rapidly replaced by digital storage media, such as the Digital Versatile Disk (DVD), and Digital Audio Tape (DAT). Additionally, with higher capacity hard drives standard on most personal computers, home users may now store digital files such as audio or video tracks on their home computers.
Furthermore, the Internet has generated much excitement, particularly among those who see the Internet as an opportunity to develop new avenues for artistic expression and communication. The Internet has become a virtual gallery, where artists may post their works on a Web page. Once posted, the works may be viewed by anyone having access to the Internet.
One application of the Internet that has received considerable attention is the ability to transmit recorded music over the Internet. Once music has been digitally encoded into a file, the file may be both downloaded by users for play, or broadcast (“streamed”) over the Internet. When files are streamed, they may be listened to by Internet users in a manner much like traditional radio stations.
Given the widespread use of digital media, digital audio files, or digital video files containing audio information, may need to be identified. The need for identification of digital files may arise in a variety of situations. For example, an artist may wish to verify royalty payments or generate their own Arbitron®-like ratings by identifying how often their works are being streamed or downloaded. Additionally, users may wish to identify a particular work. The prior art has made efforts to create methods for identifying digital audio works.
However, systems of the prior art suffer from certain disadvantages. For example, prior art systems typically create a reference signature by examining the copyrighted work as a whole, and then creating a signature based upon the audio characteristics of the entire work However, examining a work in total can result in a signature may not accurately represent the original work. Often, a work may have distinctive passages which may not be reflected in a signature based upon the total work. Furthermore, often works are electronically processed prior to being streamed or downloaded, in a manner that may affect details of the work's audio characteristics, which may result in prior art systems missing the identification of such works. Examples of such electronic processing include data compression and various sorts of audio signal processing such as equalization.
Hence, there exists a need to provide a system which overcomes the disadvantages of the prior art.
The present invention relates to data communications. In particular, the present invention relates to creating a unique audio signature.
A method for creating a signature of a sampled work in real-time is disclosed herein. One aspect of the present invention comprises: receiving a sampled work; segmenting the sampled work into a plurality of segments, the segments having predetermined segment and hop sizes; creating a signature of the sampled work based upon the plurality of segments; and storing the sampled work signature. Additional aspects include providing a plurality of reference signatures having a segment size and a hop size. An additional aspect may be characterized in that the hop size of the sampled work signature is less than the hop size of the reference signatures.
An apparatus for creating a signature of a sampled work in real-time is also disclosed. In a preferred aspect, the apparatus comprises: means for receiving a sampled work; means for segmenting the sampled work into a plurality of segments, the segments having predetermined segment and hop sizes; means for creating a signature of the sampled work based upon the plurality of segments; and storing the sampled work signature. Additional aspects include means for providing a plurality of reference signatures having a segment size and a hop size. An additional aspect may be characterized in that the hop size of the sampled work signature is less than the hop size of the reference signatures.
A method for identifying an unknown audio work is also disclosed. In another aspect of the present invention, the method comprises: providing a plurality of reference signatures each having a segment size and a hop size; receiving a sampled work; creating a signature of the sampled work, the sampled work signature having a segment size and a hop size; storing the sampled work signature; comparing the sampled work signature to the plurality of reference signatures to determine whether there is a match; and wherein the method is characterized in that the hop size of the sampled work signature is less than the hop size of the reference signatures.
Further aspects of the present invention include creating a signature of the sampled work by calculating segment feature vectors for each segment of the sampled work. The segment feature vectors may include MFCCs calculated for each segment.
Persons of ordinary skill in the art will realize that the following description of the present invention is illustrative only and not in any way limiting. Other embodiments of the invention will readily suggest themselves to such skilled persons having the benefit of this disclosure.
It is contemplated that the present invention may be embodied in various computer and machine-readable data structures. Furthermore, it is contemplated that data structures embodying the present invention will be transmitted across computer and machine-readable media, and through communications systems by use of standard protocols such as those used to enable the Internet and other computer networking standards.
The invention further relates to machine-readable media on which are stored embodiments of the present invention. It is contemplated that any media suitable for storing instructions related to the present invention is within the scope of the present invention. By way of example, such media may take the form of magnetic, optical, or semiconductor media.
The present invention may be described through the use of flowcharts. Often, a single instance of an embodiment of the present invention will be shown. As is appreciated by those of ordinary skill in the art, however, the protocols, processes, and procedures described herein may be repeated continuously or as often as necessary to satisfy the needs described herein. Accordingly, the representation of the present invention through the use of flowcharts should not be used to limit the scope of the present invention.
The present invention may also be described through the use of web pages in which embodiments of the present invention may be viewed and manipulated. It is contemplated that such web pages may be programmed with web page creation programs using languages standard in the art such as HTML or XML. It is also contemplated that the web pages described herein may be viewed and manipulated with web browsers running on operating systems standard in the art, such as the Microsoft Windows® and Macintosh® versions of Internet Explorer® and Netscape®. Furthermore, it is contemplated that the functions performed by the various web pages described herein may be implemented through the use of standard programming languages such a Java® or similar languages.
The present invention will first be described in general overview. Then, each element will be described in further detail below.
Referring now to
Receiving a Sampled Work
Beginning with act 100, a sampled work is provided to the present invention. It is contemplated that the work will be provided to the present invention as a digital audio stream.
It should be understood that if the audio is in analog form, it may be digitized in a manner standard in the art.
Segmenting the Work
After the sampled worked is received, the work is then segmented in act 102. It is contemplated that the sampled work may be segmented into predetermined lengths. Though segments may be of any length, the segments of the present invention are preferably of the same length.
In an exemplary non-limiting embodiment of the present invention, the segment lengths are in the range of 0.5 to 3 seconds. It is contemplated that if one were searching for very short sounds (e.g., sound effects such as gunshots), segments as small as 0.01 seconds may be used in the present invention. Since humans don't resolve audio changes below about 0.018 seconds, segment lengths less than 0.018 seconds may not be useful. On the other hand, segment lengths as high as 30-60 seconds may be used in the present invention. The inventors have found that beyond 30-60 seconds may not be useful, since most details in the signal tend to average out.
Generating Signatures
Next, in act 104, each segment is analyzed to produce a signature, known herein as a segment feature vector. It is contemplated that a wide variety of methods known in the art may be used to analyze the segments and generate segment feature vectors. In an exemplary non-limiting embodiment of the present invention, the segment feature vectors may be created using the method described in U.S. Pat. No. 5,918,223 to Blum, et al, which is incorporated by reference as though set forth fully herein.
Storing the Signatures
In act 106, the segment feature vectors are stored to create a representative signature of the sampled work.
Each above-listed step will now be shown and described in detail.
Referring now to
Client system 200 may further include an audio/video (A/V) input device 208. A/V device 208 is operatively coupled to PC 202 and is configured to provide works to the present invention which may be stored in traditional audio or video formats. It is contemplated that A/V device 208 may comprise hardware and software standard in the art configured to receive and sample audio works (including video containing audio information), and provide the sampled works to the present invention as digital audio files. Typically, the A/V input device 208 would supply raw audio samples in a format such as 16-bit stereo PCM format. A/V input device 208 provides an example of means for receiving a sampled work.
It is contemplated that sampled works may be obtained over the Internet, also. Typically, streaming media over the Internet is provided by a provider, such as provider 218 of
To reach the provider 218, the present invention may utilize a cable or DSL head end 212 standard in the art operatively, which is coupled to a cable modem or DSL modem 210 which is in turn coupled to the system's network 206. The network 206 may be any network standard in the art, such as a LAN provided by a PC 202 configured to run software standard in the art.
It is contemplated that the sampled work received by system 200 may contain audio information from a variety of sources known in the art, including, without limitation, radio, the audio portion of a television broadcast, Internet radio, the audio portion of an Internet video program or channel, streaming audio from a network audio server, audio delivered to personal digital assistants over cellular or wireless communication systems, or cable and satellite broadcasts.
Additionally, it is contemplated that the present invention may be configured to receive and compare segments coming from a variety of sources either stored or in real-time. For example, it is contemplated that the present invention may compare a real-time streaming work coming from streaming server 218 or A/V device 208 with a reference segment stored in database 204.
In an exemplary non-limiting embodiment of the present invention, instantaneous values of a variety of acoustic features are computed at a low level, preferably about 100 times a second. Additionally, 10 MFCCs (cepstral coefficients) are computed for each segment. It is contemplated that any number of MFCCs may be computed. Preferably, 5-20 MFCCs are computed, however, as many as 30 MFCCs may be computed, depending on the need for accuracy versus speed.
In an exemplary non-limiting embodiment of the present invention, the segment-level acoustical features comprise statistical measures as disclosed in the '223 patent of these low-level features calculated over the length of each segment. The data structure may store other bookkeeping information as well (segment size, hop size, item ID, UPC, etc).
As can be seen by inspection of
The hop size may be set during the development of the software. Additionally, the hop sizes of the reference database and the real-time segments may be predetermined to facilitate compatibility. For example, the reference signatures in the reference database may be precomputed with a fixed hop and segment size, and thus the client applications should conform to this segment size and have a hop size which integrally divides the reference signature hop size. It is contemplated that one may experiment with a variety of segment sizes in order to balance the tradeoff of accuracy with speed of computation for a given application.
The inventors have found that by carefully choosing the hop size of the segments, the accuracy of the identification process may be significantly increased. Additionally, the inventors have found that the accuracy of the identification process may be increased if the hop size of reference segments and the hop size of segments obtained in real-time are each chosen independently. The importance of the hop size of segments may be illustrated by examining the process for segmenting pre-recorded works and real-time works separately.
Reference Signatures
Prior to attempting to identify a given work, a reference database of signatures must be created. When building a reference database, a segment length having a period of less than three seconds is preferred. In an exemplary non-limiting embodiment of the present invention, the segment lengths have a period ranging from 0.5 seconds to 3 seconds. For a reference database, the inventors have found that a hop size of approximately 50% to 100% of the segment size is preferred.
It is contemplated that the reference signatures may be stored on a database such as database 204 as described above. Database 204 and the discussion herein provide an example of means for providing a plurality of reference signatures each having a segment size and a hop size.
Real-Time Signatures
The choice of the hop size is important for real-time segments.
As can be seen by inspection of
The inventors have found such a small hop size advantageous for the following reasons. The ultimate purpose of generating real-time segments is to analyze and compare them with the reference segments in the database to look for matches. The inventors have found at least two major reasons why a segment of the same audio recording captured real-time would not match its counterpart in the database. One is that the broadcast channel does not produce a perfect copy of the original. For example, the work may be edited or processed or the announcer may talk over part of the work. The other reason is that larger segment boundaries may not line up in time with the original segment boundaries of the target recordings.
The inventors have found that by choosing a smaller hop size, some of the segments will ultimately have time boundaries that line up with the original segments, notwithstanding the problems listed above. The segments that line up with a “clean” segment of the work may then be used to make an accurate comparison while those that do not so line up may be ignored. The inventors have found that a hop size of 0.1 seconds seems to be the maximum that would solve this time shifting problem.
As mentioned above, once a work has been segmented, the individual segments are then analyzed to produce a segment feature vector.
In act 500, the audio segment is sampled to produce a segment. In act 502, the sampled segment is then analyzed using Fourier Transform techniques to transform the signal into the frequency domain. In act 504, mel frequency filters are applied to the transformed signal to extract the significant audible characteristics of the spectrum. In act 506, a Discrete Cosine Transform is applied which converts the signal into mel frequency cepstral coefficients (MFCCs). Finally, in act 508, the MFCCs are then averaged over a predetermined period. In an exemplary non-limiting embodiment of the present invention, this period is approximately one second. Additionally, other characteristics may be computed at this time, such as brightness or loudness. A segment feature vector is then produced which contains a list containing at least the 10 MFCCs corresponding average.
The disclosure of
Signature 600 may then be stored in a database and used for comparisons.
The following computer code in the C programming language provides an example of a database structure in memory according to the present invention:
The following provides an example of the structure of a segment according to the present invention:
The discussion of
It is contemplated that the present invention has many beneficial uses, including many outside of the music piracy area. For example, the present invention may be used to verify royalty payments. The verification may take place at the source or the listener. Also, the present invention may be utilized for the auditing of advertisements, or collecting Arbitron®-like data (who is listening to what). The present invention may also be used to label the audio recordings on a user's hard disk or on the web.
While embodiments and applications of this invention have been shown and described, it would be apparent to those skilled in the art that many more modifications than mentioned above are possible without departing from the inventive concepts herein. The invention, therefore, is not to be restricted except in the spirit of the appended claims.
This application is a continuation of U.S. patent application Ser. No. 09/706,227, filed Nov. 3, 2000, now U.S. Pat. No. 7,562,012, which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3919479 | Moon et al. | Nov 1975 | A |
4230990 | Lert, Jr. et al. | Oct 1980 | A |
4449249 | Price | May 1984 | A |
4450531 | Kenyon et al. | May 1984 | A |
4454594 | Heffron et al. | Jun 1984 | A |
4677455 | Okajima | Jun 1987 | A |
4677466 | Lert, Jr. et al. | Jun 1987 | A |
4739398 | Thomas et al. | Apr 1988 | A |
4843562 | Kenyon et al. | Jun 1989 | A |
4918730 | Schulze | Apr 1990 | A |
5210820 | Kenyon | May 1993 | A |
5247688 | Ishigami | Sep 1993 | A |
5283819 | Glick | Feb 1994 | A |
5327521 | Savic et al. | Jul 1994 | A |
5437050 | Lamb et al. | Jul 1995 | A |
5442645 | Ugon | Aug 1995 | A |
5504518 | Ellis | Apr 1996 | A |
5581658 | O'Hagan et al. | Dec 1996 | A |
5588119 | Vincent | Dec 1996 | A |
5612729 | Ellis et al. | Mar 1997 | A |
5612974 | Astrachan | Mar 1997 | A |
5613004 | Cooperman et al. | Mar 1997 | A |
5638443 | Stefik | Jun 1997 | A |
5692213 | Goldberg et al. | Nov 1997 | A |
5701452 | Siefert | Dec 1997 | A |
5710916 | Barbara et al. | Jan 1998 | A |
5724605 | Wissner | Mar 1998 | A |
5732193 | Aberson | Mar 1998 | A |
5850388 | Anderson et al. | Dec 1998 | A |
5881182 | Fiete et al. | Mar 1999 | A |
5918223 | Blum et al. | Jun 1999 | A |
5924071 | Morgan et al. | Jul 1999 | A |
5930369 | Cox et al. | Jul 1999 | A |
5943422 | Van Wie et al. | Aug 1999 | A |
5949885 | Leighton | Sep 1999 | A |
5959659 | Dokic | Sep 1999 | A |
5983176 | Hoffert et al. | Nov 1999 | A |
6006183 | Lai et al. | Dec 1999 | A |
6006256 | Zdepski et al. | Dec 1999 | A |
6011758 | Dockes | Jan 2000 | A |
6026439 | Chowdhury | Feb 2000 | A |
6044402 | Jacobson | Mar 2000 | A |
6067369 | Kamei | May 2000 | A |
6088455 | Logan et al. | Jul 2000 | A |
6092040 | Voran | Jul 2000 | A |
6096961 | Bruti | Aug 2000 | A |
6118450 | Proehl et al. | Sep 2000 | A |
6192340 | Abecassis | Feb 2001 | B1 |
6195693 | Berry | Feb 2001 | B1 |
6229922 | Sasakawa et al. | May 2001 | B1 |
6243615 | Neway | Jun 2001 | B1 |
6243725 | Hempleman et al. | Jun 2001 | B1 |
6253193 | Ginter | Jun 2001 | B1 |
6253337 | Maloney et al. | Jun 2001 | B1 |
6279010 | Anderson | Aug 2001 | B1 |
6279124 | Brouwer et al. | Aug 2001 | B1 |
6285596 | Miura et al. | Sep 2001 | B1 |
6330593 | Roberts et al. | Dec 2001 | B1 |
6345256 | Milsted et al. | Feb 2002 | B1 |
6374260 | Hoffert et al. | Apr 2002 | B1 |
6385596 | Wiser | May 2002 | B1 |
6418421 | Hurtado et al. | Jul 2002 | B1 |
6422061 | Sunshine | Jul 2002 | B1 |
6438556 | Malik et al. | Aug 2002 | B1 |
6449226 | Kumagai | Sep 2002 | B1 |
6452874 | Otsuka et al. | Sep 2002 | B1 |
6453252 | Laroche | Sep 2002 | B1 |
6460050 | Pace et al. | Oct 2002 | B1 |
6463508 | Wolf et al. | Oct 2002 | B1 |
6477704 | Cremia | Nov 2002 | B1 |
6487641 | Cusson et al. | Nov 2002 | B1 |
6490279 | Chen et al. | Dec 2002 | B1 |
6496802 | van Zoest et al. | Dec 2002 | B1 |
6526411 | Ward | Feb 2003 | B1 |
6542869 | Foote | Apr 2003 | B1 |
6550001 | Corwin et al. | Apr 2003 | B1 |
6550011 | Sims, III | Apr 2003 | B1 |
6552254 | Hasegawa et al. | Apr 2003 | B2 |
6591245 | Klug | Jul 2003 | B1 |
6609093 | Gopinath et al. | Aug 2003 | B1 |
6609105 | van Zoest et al. | Aug 2003 | B2 |
6628737 | Timus | Sep 2003 | B1 |
6636965 | Beyda | Oct 2003 | B1 |
6654757 | Stern | Nov 2003 | B1 |
6732180 | Hale | May 2004 | B1 |
6771316 | Iggulden | Aug 2004 | B1 |
6771885 | Agnihotri et al. | Aug 2004 | B1 |
6834308 | Ikezoye | Dec 2004 | B1 |
6947909 | Hoke, Jr. | Sep 2005 | B1 |
6968337 | Wold | Nov 2005 | B2 |
7043536 | Philyaw | May 2006 | B1 |
7047241 | Erickson et al. | May 2006 | B1 |
7058223 | Cox et al. | Jun 2006 | B2 |
7181398 | Thong et al. | Feb 2007 | B2 |
7266645 | Garg et al. | Sep 2007 | B2 |
7269556 | Kiss et al. | Sep 2007 | B2 |
7281272 | Rubin et al. | Oct 2007 | B1 |
7289643 | Brunk et al. | Oct 2007 | B2 |
7349552 | Levy et al. | Mar 2008 | B2 |
7363278 | Schmelzer et al. | Apr 2008 | B2 |
7426750 | Cooper et al. | Sep 2008 | B2 |
7443797 | Cheung et al. | Oct 2008 | B2 |
7500007 | Ikezoye et al. | Mar 2009 | B2 |
7529659 | Wold | May 2009 | B2 |
7546120 | Ulvenes et al. | Jun 2009 | B1 |
7562012 | Wold | Jul 2009 | B1 |
7565327 | Schmelzer | Jul 2009 | B2 |
7593576 | Meyer et al. | Sep 2009 | B2 |
20010013061 | DeMartin | Aug 2001 | A1 |
20010027493 | Wallace | Oct 2001 | A1 |
20010027522 | Saito | Oct 2001 | A1 |
20010034219 | Hewitt et al. | Oct 2001 | A1 |
20010037304 | Paiz | Nov 2001 | A1 |
20010041989 | Vilcauskas et al. | Nov 2001 | A1 |
20010051996 | Cooper et al. | Dec 2001 | A1 |
20010056430 | Yankowski | Dec 2001 | A1 |
20020049760 | Scott | Apr 2002 | A1 |
20020064149 | Elliott et al. | May 2002 | A1 |
20020069098 | Schmidt | Jun 2002 | A1 |
20020082999 | Lee | Jun 2002 | A1 |
20020087885 | Peled et al. | Jul 2002 | A1 |
20020120577 | Hans et al. | Aug 2002 | A1 |
20020123990 | Abe et al. | Sep 2002 | A1 |
20020129140 | Peled et al. | Sep 2002 | A1 |
20020133494 | Goedken | Sep 2002 | A1 |
20020141384 | Liu et al. | Oct 2002 | A1 |
20020152261 | Arkin et al. | Oct 2002 | A1 |
20020152262 | Arkin et al. | Oct 2002 | A1 |
20020156737 | Kahn | Oct 2002 | A1 |
20020158737 | Yokoyama | Oct 2002 | A1 |
20020186887 | Rhoads | Dec 2002 | A1 |
20020198789 | Waldman | Dec 2002 | A1 |
20030014530 | Bodin | Jan 2003 | A1 |
20030018709 | Schrempp et al. | Jan 2003 | A1 |
20030023852 | Wold | Jan 2003 | A1 |
20030033321 | Schrempp et al. | Feb 2003 | A1 |
20030037010 | Schmelzer et al. | Feb 2003 | A1 |
20030051100 | Patel | Mar 2003 | A1 |
20030061352 | Bohrer | Mar 2003 | A1 |
20030061490 | Abajian | Mar 2003 | A1 |
20030095660 | Lee et al. | May 2003 | A1 |
20030135623 | Schrempp et al. | Jul 2003 | A1 |
20030191719 | Ginter et al. | Oct 2003 | A1 |
20030195852 | Campbell et al. | Oct 2003 | A1 |
20040008864 | Watson et al. | Jan 2004 | A1 |
20040010495 | Kramer et al. | Jan 2004 | A1 |
20040053654 | Kokumai et al. | Mar 2004 | A1 |
20040073513 | Stefik et al. | Apr 2004 | A1 |
20040089142 | Georges et al. | May 2004 | A1 |
20040133797 | Arnold | Jul 2004 | A1 |
20040148191 | Hoke, Jr. | Jul 2004 | A1 |
20040163106 | Schrempp et al. | Aug 2004 | A1 |
20040167858 | Erickson | Aug 2004 | A1 |
20040201784 | Dagtas et al. | Oct 2004 | A9 |
20050021783 | Ishii | Jan 2005 | A1 |
20050039000 | Erickson | Feb 2005 | A1 |
20050044189 | Ikezoye et al. | Feb 2005 | A1 |
20050097059 | Shuster | May 2005 | A1 |
20050154678 | Schmelzer | Jul 2005 | A1 |
20050154680 | Schmelzer | Jul 2005 | A1 |
20050154681 | Schmelzer | Jul 2005 | A1 |
20050216433 | Bland et al. | Sep 2005 | A1 |
20050267945 | Cohen et al. | Dec 2005 | A1 |
20050289065 | Weare | Dec 2005 | A1 |
20060034177 | Schrempp | Feb 2006 | A1 |
20060062426 | Levy et al. | Mar 2006 | A1 |
20070074147 | Wold | Mar 2007 | A1 |
20070078769 | Way | Apr 2007 | A1 |
20070186229 | Conklin et al. | Aug 2007 | A1 |
20070226365 | Hildreth et al. | Sep 2007 | A1 |
20080008173 | Kanevsky et al. | Jan 2008 | A1 |
20080019371 | Anschutz et al. | Jan 2008 | A1 |
20080133415 | Ginter et al. | Jun 2008 | A1 |
20080141379 | Schmelzer | Jun 2008 | A1 |
20080154730 | Schmelzer | Jun 2008 | A1 |
20080155116 | Schmelzer | Jun 2008 | A1 |
20090030651 | Wold | Jan 2009 | A1 |
20090031326 | Wold | Jan 2009 | A1 |
20090043870 | Ikezoye et al. | Feb 2009 | A1 |
20090077673 | Schmelzer | Mar 2009 | A1 |
20090089586 | Brunk | Apr 2009 | A1 |
20090192640 | Wold | Jul 2009 | A1 |
20090240361 | Wold et al. | Sep 2009 | A1 |
20090328236 | Schmelzer | Dec 2009 | A1 |
Number | Date | Country |
---|---|---|
0349106 | Jan 1990 | EP |
0402210 | Jun 1990 | EP |
0517405 | May 1992 | EP |
0689316 | Dec 1995 | EP |
0731446 | Sep 1996 | EP |
0859503 | Aug 1998 | EP |
0459046 | Apr 1999 | EP |
1354276 | Dec 2007 | EP |
1485815 | Oct 2009 | EP |
WO 9636163 | Nov 1996 | WO |
WO 9820672 | May 1998 | WO |
WO 0005650 | Feb 2000 | WO |
WO 0039954 | Jul 2000 | WO |
WO 0063800 | Oct 2000 | WO |
WO 0123981 | Apr 2001 | WO |
WO 0147179 | Jun 2001 | WO |
WO 0152540 | Jul 2001 | WO |
WO 0162004 | Aug 2001 | WO |
WO 0203203 | Jan 2002 | WO |
WO 0215035 | Feb 2002 | WO |
WO 0237316 | May 2002 | WO |
WO 02082271 | Oct 2002 | WO |
WO 03007235 | Jan 2003 | WO |
WO 03009149 | Jan 2003 | WO |
WO 03036496 | May 2003 | WO |
WO 03067459 | Aug 2003 | WO |
WO 03091990 | Nov 2003 | WO |
WO 2004044820 | May 2004 | WO |
WO 2004070558 | Aug 2004 | WO |
WO 2006015168 | Feb 2006 | WO |
WO 2009017710 | Feb 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20090240361 A1 | Sep 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09706227 | Nov 2000 | US |
Child | 12482313 | US |