1. Field of the Invention
The present patent document relates generally to coherent bundles of scintillating fibers used as detectors for x-rays used for medical, scientific and engineering imaging applications, and methods and apparatuses for the creation thereof.
2. Background of the Related Art
Coherent bundles of scintillating fibers are useful for detecting x-rays and are placed opposed to a CCD or CMOS camera. Incident x-rays activate the scintillators in individual fibers, which then emit visible light to the camera, which then generates an image. Coherent bundles are used extensively in medical, scientific and engineering applications. Particularly in the medical imaging field, coherent bundles are instrumental in creating images later used to diagnose cancer, heart disease and other ailments. In engineering fields, parts may be imaged to determine if they have micro-fractures, which may lead to premature failure of the part, such as turbine blades in a jet engine. In domestic security, x-ray imaging is used for scanning of packages, luggage and persons for weapons and contraband.
Consequently, it is desirable to have high resolution images. The size of the scintillators is correlated the maximum resolution that can be imaged. Consequently, it is desirable to have coherent bundles of fibers with small diameter scintillating fibers in order to increase resolution in images.
Therefore, there is a need in the art for coherent bundles of scintillating fibers that produce higher resolution images.
The method of making and coherent bundle described herein advance the prior art by providing a coherent bundle of scintillating fibers and method of making that increases the resolution of x-ray images in to the single-digit micron range by controlling the pressure during manufacturing of the coherent bundle. Specifically, the method of manufacturing a coherent bundle of scintillating fibers, includes providing a collimated bundle having a glass preform with a plurality of capillaries. A polymer matrix of a transparent polymer infused with scintillating nanoparticles is placed on top of the collimated bundle. Pressure is applied to the polymer matrix, driving it into the capillaries while a back pressure is applied to the collimated bundle thereby reducing the risk of failure of the collimated bundle.
In one embodiment, a pressure vessel is provided that uniquely provides pressure to force the polymer matrix into the collimated bundle and back pressure to moderate the tension to the collimated bundle cause by the pressure. The pressure vessel includes an inner wall forming a chamber inside the pressure vessel and top surface defining a first opening into the chamber. An inner shoulder extends inwardly from the inner wall of the pressure chamber and forms support for a collimated bundle. A surface defining a bore and second opening into the chamber below the inner shoulder is also included. An anvil is configured and arranged to apply pressure to the pressure chamber of the pressure vessel through the first opening. A valve connected to the bottom opening is configured and arranged to supply and control back pressure to the chamber.
These and other features, aspects, and advantages of the present invention will become better understood with reference to the following description, appended claims, and accompanying drawings where:
Referring to
Referring back now to
Nanoparticle scintillators are embedded into a transparent polymer to create a scintillating material, which will subsequently be force through the capillaries 12 of the collimated bundle 10. The scintillator infused polymer forms a polymer matrix 14, which will form the ‘cores’ of our scintillating fibers, and the glass of the collimated bundle 10 the ‘cladding’ on the fibers. As stated above, the latter has a refractive index of 1.49-1.53; the polymer will have a refractive index of at least 1.60 (although since it is doped with the scintillating nanoparticles, the actual refractive index of the cores will be much higher). Suitable polymers are preferably thermoplastics and more preferably polystyrene, nylon and polypropylene, other transparent polymers that have a refractive index higher than 1.59 may be suitalbleSuitable nanoparticle scintillator materials are LaBr(3):Ce, LSO:Ce and GdAlO(3):Ce. Other nanoparticle scintillator materials may be used. U.S. Publication 2008/0093557 and U.S. Publication 2010/2072234, incorporated herein by reference, describe scintillator materials and methods of embedding them in plastics.
It is important to note that the resolution limit of the coherent bundle is almost that of the material itself. Accordingly, by using scintillating fibers of 3-15 microns, x-rays with a resolution in the micron range will be detected, a significant improvement over both computed axial tomography (CAT), which had a resolution of 150 microns, and current digital x-ray detectors, which have a resolution of 30 microns.
The collimated bundle 10 is able to withstand a force required to push the polymer matrix 14 through the capillaries 12 in the collimated bundle disk, which may be made from borosilicate glass, which is able to withstand 63-81 GPa in compression (the lower bound is equivalent to 6.2E4 atmospheres). It is much less strong in tension, and the glass of the collimated bundle will crack under the bending load.
Referring to
Referring to
The technique for accomplishing the creation of the coherent bundle of scintillating fibers is demonstrated in the following:
From Poiseuille's law, the volumetric flow rate Q through a single capillary of radius r and length L1, subject to a pressure difference ΔP, for a fluid with absolute viscosity η is given as
The pressure distribution is linear along the capillary length. If we depict the capillaries as comprising a collimated bundle, the pressure distribution is linear throughout and the same across each capillary. In the scheme shown there will be no pressure drop between the collimated bundle and the exit disk because the pressure drop created by the capillaries is much greater than that created by the much larger diameter pressure cell.
The total flow rate of the polymer through the disk is given by the flow through a single capillary times the number of capillaries, which we calculated here as the ratio of the collimated bundle area to a single capillary area. The total flow rate is also equal to the volume of the collimated bundle divided by the time it takes to fill the capillaries in the collimated bundle.
If the exit valve is set at the pressure that the disk experiences, there will be a constant pressure along the whole of the coherent bundle. If the valve were sealed, the pressure vessel would be at the equal to the pressure across the piston. If the valve were open, the stress of the tension would rupture the glass.
We will provide for the pressure drop to be the equivalent of the flow through a capillary bundle. It is provided for an adjustment of the valve settings, and it corresponds to the
Ltotal=L1+Lvalve
The total resistance shall be given by the sum of the thickness of the coherent bundle, plus the resistance of the valve in the outflow.
In a 25 mm collimated bundle the pressure and times may therefore be calculated. Specifically, R=25 mm, η=200 Pa-s, L1=2 mm, r=2.5×10−6
Consequently, the volume of the collimated bundle is: πR2×L1/2=490.8
Consequently, flow through the collimated bundle to infiltrate the capillaries is:
tΔP1=1.024×10+9
The pressure relief valve is equal to the collimated bundle in the first case sited below: it is equal to the 2 mm thickness. In the second case, however, it is equal to 18 mm.
The Q refers to the mass flow in each of the respective cases, i.e. 490.8/t. The values for a 25 mm disk with 2 mm thickness may be tabulated as:
Referring to
Therefore, it can be seen that the present invention provides a unique solution to providing a coherent bundle of scintillating fibers that has markedly increased resolution than prior art x-ray detectors, thereby resulting in higher resolution and more accurate images in medical, engineering and scientific imaging using CT or CAT scanning technologies. The coherent bundle of scintillating fibers may also be used in other fields, such as domestic security and non-destructive testing.
It would be appreciated by those skilled in the art that various changes and modifications can be made to the illustrated embodiments without departing from the spirit of the present invention. All such modifications and changes are intended to be within the scope of the present invention except as limited by the scope of the appended claims.
This application claims priority to earlier filed U.S. Provisional Application Ser. No. 61/949,192, filed Mar. 6, 2014, the contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4022647 | Yevick | May 1977 | A |
8477906 | Morse et al. | Jul 2013 | B2 |
20020072111 | Clarkin | Jun 2002 | A1 |
20140323946 | Bourke, Jr. | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
200800231 | Sep 2009 | SE |
WO 2009008911 | Jan 2009 | WO |
Entry |
---|
SCHOTT North America, Inc., “An introduction to Fiber Optic Imaging”, Feb. 2007. |
International Search Report, International Application No. PCT/US2015/019114; Jun. 10, 2015, 1page. |
Number | Date | Country | |
---|---|---|---|
20150253433 A1 | Sep 2015 | US |
Number | Date | Country | |
---|---|---|---|
61949192 | Mar 2014 | US |