The invention relates to radio frequency telecommunications systems, more particularly cellular network telecommunications systems, and more specifically to methods and apparatuses providing previously unobtainable information that is essential in accurately identifying causes of network related transmission interruptions, faults and failures.
As a practical matter, the majority of calls handled by network provider customer services centers are caused by malfunctioning wireless or network equipment. Presently, existing diagnostic tools and methods are very limited. In fact, the system capabilities are so limited that systems can only determine whether a connection is established or not. The limits on the present capability mean that currently available diagnostic techniques are incapable of providing any indication whatsoever as to the cause of the network malfunctions. Therefore, a need exists for an improved diagnostics platform that can accurately identify sources of network malfunctions. The disclosed diagnostic methods and apparatus are capable of reducing the volume of customer calls and customer dissatisfaction, improving network performance, reducing customer support costs. These capabilities result in increased profits for the network providers.
Like reference numbers and designations in the various drawings indicate like elements.
The presently disclosed improved diagnostic platform advantageously utilizes evolving trends affecting the transformation of next generation heterogeneous networks. More specifically, the disclosed diagnostic techniques use a cross layer context aware approach to accurately identify network faults. In one disclosed embodiment, the diagnostic platform must be capable of isolating and identifying faults across a wide range of protocols and environments necessitated by the tight integration of wired and wireless networks and their corresponding behavior differences.
In one embodiment, utilizing a cross-layer approach, the disclosed diagnostic platform dynamically monitors network health and proactively detects root causes of network faults. In one embodiment, the invention uses network diagnostics technology for broadband services including Quality of Service (QoS) centric (QoS is a well know term of art described below in more detail) applications such as real-time video (for example, Video Conference Calls, Tele Presence, etc.). The diagnostic technique of the present disclosure is able to achieve this remarkable advancement in network fault detection by capturing the state of network parameters during occurrence of the fault. Heretofore such an inventive technique has not been available.
QoS refers to the capability of a network to provide better service to selected network traffic over various technologies, including Frame Relay, Asynchronous Transfer Mode (ATM), Ethernet and 802.1 networks, SONET, and IP-routed networks that may use any or all of these underlying technologies. The primary goal of QoS is to provide priority including dedicated bandwidth, controlled jitter and latency (required by some real-time and interactive traffic), and improved loss characteristics. Also important is making sure that providing priority for one or more flows does not make other flows fail. QoS technologies provide the elemental building blocks that will be used for future business applications in campus, wide area network (WAN), and service provider networks. This article outlines the features and benefits of the QoS provided by the Cisco Internetwork Operating System (IOS) QoS.
Various wired and wireless network related problems can cause excessive medium access control (MAC) retransmissions, which in turn can severely affect the performance in two ways. First, these layer 2 retransmissions increase overhead and therefore decrease the MAC and application throughput. Second, if application data has to be retransmitted at layer 2, the delivery of application traffic becomes delayed or inconsistent. Advantageously, the presently disclosed diagnostic methods and apparatus monitors the above-described network attributes to precisely identify network faults.
In addition, the disclosed method and apparatus significantly helps with the identification of other problems like software bugs and hardware failures, by ruling out the network problems.
The offline process starts by configuring the wired and wireless segments of the network in order to establish performance templates for a fault free or “normal” network. These will include various samples of fault signature tracking parameters. These typically form a vector in a time series. Accordingly, each parameter has values associated with various points in time to establish the “vector in a time series”.
A second process is a real-time or online process. In some embodiments, the online process is continuously run on a centralized diagnostics server (or sever farm). The process starts after signs of an anomaly are detected (e.g., evidence is detected that a potential fault condition exists or is eminent). Such real-time online detection is performed by continuous monitoring higher layer parameters at the application level (such and bandwidth, delay, jitter, etc.). Once a potential anomaly or fault is detected, a next level of granularity in monitoring is started. In this next level of monitoring, a set of parameters used to establish each fault signature is correlated across layers. This is repeated for each fault and the signatures are constantly compared to a baseline, until an exact match (or the best match) is found.
Accordingly, fault diagnostics are provided for PtMP networks, based on fault signature capture. The disclosed method and apparatus can be used as part of network management entity for a PtMP network. A novel cross-layer approach is used to provide fault detection and analysis.
In addition to the above-described advantages provided by the presently disclosed invention, the novel diagnostic techniques provide the following advantages (the listed advantages are exemplary only and are not to be interpreted as limiting the scope of the invention):
A number of embodiments of the disclosed method and apparatus have been described. It is to be understood that various modifications may be made without departing from the spirit and scope of the disclosed method and apparatus. For example, some of the steps described above may be order independent, and thus can be performed in an order different from that described. Further, some of the steps described above may be optional. Various activities described with respect to the methods identified above can be executed in repetitive, serial, or parallel fashion. It is to be understood that the foregoing description is intended to illustrate and not to limit the scope of the any claims that are presented in later filed applications that might claim priority to this disclosure.
The present application is a divisional of, and claims the benefit of priority under 35 USC § 120 of, commonly assigned and co-pending prior U.S. application Ser. No. 16/355,096, filed Mar. 15, 2019, entitled “Method and Apparatus for Cross Layer Network Diagnostics and Self-Healing Platform for Point-to-Multipoint Networks”, the disclosure of which is incorporated herein by reference in its entirety. Application Ser. No. 16/355,096 claims priority to U.S. Provisional Application No. 62/643,892, filed on Mar. 16, 2018, entitled “Method and Apparatus for Cross Layer Network Diagnostics and Self-Healing Platform for Point-to-Multipoint Networks”, which is herein incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62643892 | Mar 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16355096 | Mar 2019 | US |
Child | 17107673 | US |