The present invention relates to technical fields of Computed Tomography (CT) imaging, and more particularly to a method and apparatus for CT image reconstruction.
Since Hounsfield invented the first CT machine in 1972, CT technology has brought revolutionary influence to medical diagnosis and industrial non-destructive detecting. CT has become an important detecting means for industries of medical treatment, biology, aeronautics, astronautics, national defense, etc. With the improvement of the technology, CT scanning modes and imaging methodologies have been continually improved, and three-dimensional cone-beam CT has become the mainstream of research and application. X-ray cone-beam CT has been broadly applied in fields of clinical medicine, security inspection, non-destructive detecting, etc. In particular, because the cone-beam CT system based on circular orbit scanning is comparatively simple with respect to mechanics, electronic control, and so forth, and is easy for engineering realization, it is very broadly applied in clinical medicine, security inspection, and industrial non-destructive detecting. In circular-orbit cone-beam reconstruction methods, the most broadly applied method is FDK method proposed by Feldkamp et al. (Feldkamp L. A., L. C. Davis, and J. W. Kress, Practical cone-beam algorithm, Journal of the Optical Society of America, 1984, (1): 612-619).
The FDK method can be deemed as an approximate expansion to the fan-beam FBP (Filtered Backprojection) method under three-dimensional condition. The FDK method includes the following steps: initially implementing weighting processing on projection data; then implementing one-dimensional filtering on the projection data of different projection angles in the horizontal direction; and finally implementing three-dimensional back projection along the direction reverse to the X-ray to obtain a last three-dimensional reconstructed image of the object.
Thus, it can be seen that the reconstructed voxel values of the FDK method are based on the sum of the contribution of radiation passing through the voxel in the projection angle range of 360 degrees. Accordingly, the circular-orbit cone-beam FDK method, as an approximate method, has the characteristics where the mathematical formula is simple and the method computation is fast, and it is easy for engineering realization. Moreover, when the cone angle is comparatively small (generally within ±5°), it can achieve a very good reconstruction effect, and it is therefore broadly appreciated in practical engineering application.
However, the FDK method also has certain problems. Because the circular orbit scanning per se does not satisfy the condition of data completeness for cone-beam precise reconstruction, there exists the problem of Radon data loss. Thus, when the cone angle of the cone beam increases, the resulting image reconstructed by the FDK method will include serious cone beam artifact, and the FDK reconstruction value will decrease fast in a plane far away from the scanning orbit, such that the method is greatly limited in application in a CT imaging system having a flat panel detector.
In order to improve the quality of image reconstruction of a circular-orbit FDK method under a large cone angle, based on the FDK method, a plurality of improved FDK methods are proposed, including, for example, P-FDK (parallel FDK), T-FDK (tent-FDK), HT-FDK (hybrid tent-FDK), EFDK (extended FDK), etc. In these improved FDK methods, because P-FDK and T-FDK are simple and can be easily implemented in engineering, they are comparatively broadly applied, and are therefore described briefly below in greater detail.
The P-FDK method is to obtain parallel fan-beam projection data by rebinning cone-beam projection data, and then reconstructing a three-dimensional image of an object through a Filtered Backprojection Method. As shown in
wherein θ indicates the sampling location of the rebinned projection data in angular direction after rebinning by P-FDK, (t,b) is the rectangular coordinate system on the central virtual detector after the rebinning, indicating the location coordinates of each X-ray on the virtual detector after the rebinning. The subsequent derivation processes of the present invention also takes the flat panel detector as an example, other types of detectors, such as, for example, a cylindrical surface detector, can be obtained by making corresponding changes based on the flat panel detector, details of the changes not being further described herein.
The P-FDK method differs from the FDK method only in that the P-FDK method includes rebinning into parallel fan-beams such that the process of calculating weighting coefficients is omitted during back projection, while the method is not different from the FDK method in image quality.
The T-FDK method proposed by Grass et al. in 2000 provides an improvement. T-FDK provides for rebinning for a second time in a vertical fan-beam plane, in addition to rebinning the cone-beam projection into parallel fan beams. That is, T-FDK provides for rebinning projection data in both the horizontal and vertical directions, ultimately causing the difference of T-FDK from P-FDK to be in that the direction of filtering the projection data according to T-FDK is along the horizontal direction of the central virtual detector, which is as shown in
where θ indicates the sampling location of the rebinned projection data in angular direction after rebinning according to T-FDK, and (t,s) is the rectangular coordinate system on the central virtual detector after the rebinning according to T-FDK, indicating the location coordinates of each X-ray on the virtual detector after the rebinning.
T-FDK, compared to FDK, in one respect, is similar to P-FDK in that it provides for rebinning into parallel fan beams such that the weighting coefficient during back projection is omitted, and thus is more efficient with respect to calculation. Meanwhile, because the filtering of projection data according to the T-FDK method is implemented along the horizontal direction of the central virtual detector, it reduces cone beam artifact induced by increase of cone angle and improves image reconstruction quality, such that it is possible to realize accurate three-dimensional imaging of a large object using a large-area flat panel detector through circular-orbit scanning. Besides, there is another thought of improving the FDK method which uses conjugate rays in a circular-orbit scanning projection, different back projection weighting coefficients being selected for conjugate projection so as to improve the quality of the reconstructed image, and a comparatively good effect being also achieved.
With the gradual popularization of the flat panel detector, there are more and more new types of cone-beam CT systems that use a large-area flat panel detector, and the requirement for a large-cone-angle circular-orbit cone-beam CT image reconstruction method is even greater. Taking the dental cone-beam CT apparatus which is comparatively broadly applied in dental disease diagnosis at present as an example, three-dimensional dental CT imaging of a plurality of manufacturers at present use a flat panel detector of 20 cm×25 cm, the distance from the X-ray source to the detector is 70 cm, and the size of the cone angle corresponding to the circular orbit scanning is ±8.13°. Because doctors make disease diagnosis mainly dependent on CT value of image, i.e., pixel value of the reconstructed image, the requirement for reconstruction value of image from the medical-use CT is very high. Such large-cone-angle circular-orbit scanning goes far beyond the scope in which reconstruction can be done according to the FDK method, and the reconstruction result according to the T-FDK method is also unsatisfactory. Moreover, with the rapid development of the detector technology, detectors having an even larger-area flat panel have been applied in clinical use. For example, flat panel detectors of different sizes of 30 cm×40 cm, 43 cm×43 cm, etc. have been applied in clinical DR (Digital Radiography System). These detectors of even larger area can greatly improve the effective detection area of cone-beam X-ray, enlarge field of view of imaging, and most importantly, can reduce or even eliminate the problem where the CT value is unable to provide an accurate reconstruction due to truncation of cone-beam projection data. Therefore, a large-area flat-panel detector can be very broadly applied in current and future three-dimensional CT image apparatuses. However, with increase of the area of the flat panel detector, the cone angle of the three-dimensional CT system correspondingly increases, resulting in the difficult problem of how to eliminate serious cone beam artifact under a large cone angle.
A main technical problem to be solved by the invention is to provide a method and apparatus for CT image reconstruction that can eliminate serious cone beam artifact under a large cone angle.
In order to solve the above-mentioned problem, the technical solution of the method for CT image reconstruction of the present invention includes the steps of: selecting projection data of the same height on a curve having a curvature approximate to that of a scanning circular orbit; implementing weighting processing on the selected projection data; filtering the weighting processed projection data along a horizontal direction; and implementing three-dimensional back projection on the filtered projection data along the direction of a ray.
In an example embodiment, the step of selecting projection data of the same height on a curve having a curvature approximate to that of the scanning circular orbit includes selecting projection data according to the following formula:
where PC-FDK (θ,t,c) indicates the selected projection data; θ indicates the projection direction; t indicates the distance between parallel fan beams; c indicates the angular sampling interval in the direction of Z axis; and R indicates the radius of the circular orbit.
In an example embodiment, the step of implementing weighting processing on the selected projection data includes processing the selected projection data according to the following formula:
where, {tilde over (P)}C-FDK (θ,t,c) indicates the weighting processed projection data.
In an example embodiment, the step of filtering the weighting processed projection data along the horizontal direction includes filtering according to the following formula:
where gC-FDK (θ,t,c) indicates the filtered projection data; indicates the convolution; and h(t) indicates the filtering function.
In an example embodiment, the step of implementing three-dimensional back projection on the filtered projection data along the direction of the ray includes implementing three-dimensional back projection according to the following formula:
where fC-FDK (x,y,z) indicates the reconstructed image in the direction of the X axis, Y axis and Z axis.
Correspondingly, an apparatus for CT image reconstruction according to an example embodiment of the present invention includes: a rebinning unit configured for selecting projection data of the same height on a curve having a curvature approximate to that of the scanning circular orbit; a weighting unit configured for implementing weighting processing on the selected projection data; a filtering unit configured for filtering the weighting processed projection data along the horizontal direction; and a back projection unit configured for implementing three-dimensional back projection on the filtered projection data along the direction of the ray.
In an example embodiment, the rebinning unit is configured to select projection data according to the following formula:
where PC-FDK (θ,t,c) indicates the selected projection data; θ indicates the projection direction; t indicates the distance between parallel fan beams; c indicates the angular sampling interval in the direction of Z axis; and R indicates the radius of the circular orbit.
In an example embodiment, the weighting unit is configured to process the selected projection data according to the following formula:
where, {tilde over (P)}C-FDK (θ,t,c) indicates the weighting processed projection data.
In an example embodiment, the filtering unit is configured to implement one-dimensional ramp filtering according to the following formula:
where gC-FDK (θ,c,t) indicates the filtered projection data; indicates the convolution; and h(t) indicates the filtering function.
In an example embodiment, the back projection unit is configured to implement three-dimensional back projection according to the following formula:
where fC-FDK (x,y,z) indicates the reconstructed image in the direction of X axis, Y axis and Z axis.
Compared to the prior art, a beneficial effect of the method and apparatus for CT image reconstruction of the present invention includes the following. The rebinning of projection data of the present invention selects projection data of the same height on a curve having a curvature approximate to that of the scanning circular orbit, providing sampling on a curve concave to the central row along the virtual central detector in the fan-beam plane parallel to the Z-axis, such that the numerical value accuracy of the reconstruction method under a large cone angle is greatly improved, and cone angle artifact due to a large cone angle is effectively inhibited.
In addition, the present invention is efficient in implementation and has strong stability.
a) is a schematic diagram of conventional flat-panel-detector circular-orbit cone-beam CT scanning.
b) is a schematic diagram of a state after rebinning projection data obtained by
c) is a schematic diagram a state after rebinning projection data obtained by
d) is a schematic diagram of a state after rebinning projection data obtained by
a) illustrates projection data acquired by circular-orbit CT scanning, which is a sinusoidal chart composed of data of the central layer of a flat panel detector under individual angles, according to an example embodiment of the present invention.
b) is a sinusoidal chart composed of data of the central layer of a virtual detector under individual angles after project data is rebinned, according to an example embodiment of the C-FDK method of the present invention.
c) is a schematic diagram of projection data obtained after implementing weighting processing on the projection data shown in
a) is a schematic diagram of an accurate image of a three-dimensional Shepp-logan head model in a vertical section, according to an example embodiment of the present invention.
b) is a schematic diagram of a reconstruction result obtained using the FDK method.
c) is a schematic diagram of a reconstruction result obtained using the T-FDK method.
d) is a schematic diagram of a reconstruction result obtained using the C-FDK method, according to an example embodiment of the present invention.
In order to understand the disclosed content more thoroughly, example embodiments are described below with reference to the figures. While example embodiments of the invention are described in detail below, the invention is not limited to the following embodiments.
As shown in
For the curvature approximate to that of the scanning orbit, supposing that the curvature of the scanning circular orbit is 1/R, the approximate average curvature range may be, for example, 1/2R˜2R. For the filtering, any filtering method available to those skilled in the art may be employed. For example, the filter kernel may be a most fundamental ramp filter kernel, and also may be a filter kernel obtained from the standard ramp filtering that has been implemented with smoothing processing in the frequency domain, for example, the commonly used S-L filter kernel, etc. (The S-L filter kernel is that proposed by L. A. Shepp and B. F. Logan in 1974).
The technical solution of the present invention is described with a flat panel detector as an example in the present description. Of course, the present invention may be applied to other panel detectors such as, for example, a cylindrical detector.
As shown in
According to the characteristics of the P-FDK method, after rebinning cone-beam projection data, the method selects projection data on a convex curve on a central virtual detector 2, as shown in
The process of data rebinning of a method for CT image reconstruction according to an example embodiment of the present invention (referred to herein as C-FDK) may be regarded as combining projection data of the same height on the curve in
The rebinning of projection data by the C-FDK method, according to an example embodiment of the present invention is accomplished in the two directions of horizontal and vertical of the central virtual detector. For example, it may be the same as the P-FDK and T-FDK methods in the horizontal direction, and in the vertical direction it may be as shown in
where c indicates the coordinate of the central virtual detector in the vertical direction after the rebinning by the C-FDK method, S indicates the location of the intersection point at which the X-ray intersects the orbit, the X-ray has an angle θ, and the distance from the X-ray to the central ray is t. Thus, SC indicates the distance from the point of the X-ray source located at S to curve OC along said X-ray. SP indicates the distance from the point of the X-ray source located at S to curve OP along said X-ray.
SO′=√{square root over (R2−t2)} (4)
SP=R2/√{square root over (R2−t2)} (5)
SC=2√{square root over (R2−t2)}−R (6)
Thus, the formula of rebinning the circular-orbit cone-beam CT projection data in an example embodiment of the C-FDK method of the present invention is as follows:
where θ indicates the projection direction, t indicates the distance between parallel fan beams, and c indicates the angular sampling interval in the direction of Z axis.
After rebinning data by the C-FDK method using the above formula (7), the next step is implementing weighting processing on the projection data. The weighting coefficient may be cos γ, where γ is the angle between each X-ray and the projection line on the central plane projected by said X-ray along the direction of Z axis, as shown in
That is, the formula of implementing weighting processing on the projection is:
Then, one-dimensional ramp filtering may be implemented on the above-processed projection data along the horizontal direction:
In the formula above, indicates convolution, and h(t) is a filtering function, for which a Ramp filter, for example, may be employed.
Lastly, implementing three-dimensional back projection on the filtered projection data along the direction of ray, whereby a three-dimensional CT image of the scanned object can be reconstructed, the back projection formula, in an example embodiment, is as follows:
where the calculation formula of the projection location on the detector is as follows:
a) shows projection data acquired by circular-orbit CT scanning, which is a sinusoidal chart composed of data of the central layer of the flat panel detector under individual angles, while
Correspondingly, as shown in
Preferably, the rebinning unit 1 is configured to select projection data according to the following formula:
where PC-FDK (θ,t,c) indicates the selected projection data; θ indicates the projection direction, t indicates the distance between parallel fan beams, c indicates the angular sampling interval in the direction of Z axis, and R indicates the radius of the circular orbit.
Preferably, said weighting unit 2 is configured to process the selected projection data according to the following formula:
where {tilde over (P)}C-FDK (θ,t,c) indicates the weighting processed projection data.
Preferably, said filtering unit 3 is configured to implement filtering according to the following formula:
where gC-FDK (θ,t,c) indicates the filtered projection data, indicates the convolution, and h(t) indicates the filtering function.
Preferably, said back projection unit 4 is configured to implement three-dimensional back projection according to the following formula:
where fC-FDK (x,y,z) indicates the reconstructed image in the direction of X axis, Y axis, and Z axis.
Because the technical features of the apparatus for CT image reconstruction of the present invention correspond to the technical features described with respect to the method for CT reconstruction of the present invention, therefore, the technical solution of the apparatus for CT image reconstruction of the present invention will not be described in detail.
The inventor of the present application has performed a numerical simulative experiment using the three-dimensional Shepp-Logan head model, and has made an experimental comparison with the FDK and T-FDK methods to verify the technical solutions of the present invention. In the numerical simulative experiment, the three-dimensional head model was limited within a 1 mm globe, the center of the model was the rotation center of CT scanning, the distance from the X-ray source to the rotation center was 4 mm, the distance from the X-ray source to the detector was 8 mm, the size of the flat panel detector was 4 mm×4 mm, the number of the detecting units was 256×256, 360 cone-beam projections were acquired uniformly in angle within the range of 360 degrees, and then a three-dimensional CT image was reconstructed. According to the geometric definition above, it can be calculated that in the experiment, the largest cone angle of the cone-beam X-ray is 14 degrees. That is, the X-ray cone angle range of this experiment is ±14°. With the circular-orbit cone-beam projection data under said above-described scanning condition, three-dimensional CT images were reconstructed respectively employing the FDK method, T-FDK method, and C-FDK method of the present invention.
a) is an accurate image of the Shepp-logan head model in a vertical section, where said vertical section is selected parallel to the x-z plane and where the three-dimensional head model is at the location y=−0.25.
It can be seen from each of the reconstructed images that the C-FDK method of the present invention can nicely reconstruct an image of the three-dimensional head model under the condition of ±14°, and it overcomes the difficult problem of cone beam artifact which is ubiquitous in large-cone-angle circular-orbit CT reconstruction in the existing methods, and nicely solves the problem of large-cone-angle circular-orbit CT image reconstruction.
In order to more accurately analyze the accuracy of the numerical value of the reconstruction result,
A core concept of the C-FDK method, according to example embodiments of the present invention, lies in the implementation of filtering on projection data for a virtual detector that is concave along the midline, and, in the derivation processes above, example embodiments of the present invention provide for rebinning X-ray and the projection of the same height on the OC curve in
Those skilled in the art can appreciate from the foregoing description that the present invention may be implemented in a variety of forms, that the various embodiments may be implemented alone or in combination, and that the above described example embodiments are not used for limiting the present invention. Therefore, while the embodiments of the present invention have been described in connection with particular examples thereof, the true scope of the embodiments of the present invention should not be so limited since other modifications will become apparent to the skilled practitioner upon a study of the drawings, specification, and following claims. Many duplicate and alternative solutions, including modifications, additions, permutations, and variations, will be apparent to those skilled in the art in light of the disclosed content of the present application and should fall within the protection scope of the present invention. Those skilled in the art may implement various variations, modifications, and equivalent substitutions to the described features of the invention without departing from the true spirit and scope of the invention. Such variations, modifications, and equivalent substitutions are intended to fall within the spirit and scope defined by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2010 1 0529974 | Oct 2010 | CN | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CN2011/000830 | 5/11/2011 | WO | 00 | 11/11/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/055147 | 5/3/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6771733 | Katsevich | Aug 2004 | B2 |
7430270 | Bontus et al. | Sep 2008 | B2 |
7492854 | Nishide et al. | Feb 2009 | B2 |
20030161444 | Katsevich | Aug 2003 | A1 |
20070110209 | Nishide et al. | May 2007 | A1 |
20070147575 | Katsevich | Jun 2007 | A1 |
20070172019 | Tang et al. | Jul 2007 | A1 |
20070253528 | Ning et al. | Nov 2007 | A1 |
20080013676 | Bontus et al. | Jan 2008 | A1 |
20090110259 | Yin et al. | Apr 2009 | A1 |
20090238412 | Grass et al. | Sep 2009 | A1 |
20090310845 | Ogawa et al. | Dec 2009 | A1 |
20100092053 | Manabe et al. | Apr 2010 | A1 |
20100111393 | Okumura et al. | May 2010 | A1 |
20100158335 | Ning et al. | Jun 2010 | A1 |
20120051626 | Long et al. | Mar 2012 | A1 |
Number | Date | Country |
---|---|---|
101404088 | Apr 2009 | CN |
101478920 | Jul 2009 | CN |
Entry |
---|
M. Gross, Th Kohler, and R Proksa; “3D cone-beam CT reconstruction for circular trajectories”, Philips Research Laboratory; Phys. Med. Biol. 45(2000) 329-347 PII: S0031-9155(00)05487-7, Oct. 27, 1999. |
International Search Report (ISR) issued in corresponding PCT Application No. PCT/CN2011/000830, mailed Jul. 28, 2011 (English translation of ISR included). |
Zhang Jian et al., “Review of recent development in FDK reconstruction algorithms for 3D cone beam CT,” Chinese Journal of Stereology and Image analysis, vol. 10, No. 2, Jun. 2005, pp. 116-121. |
Chen Lian et al., “Segmentation Short Scan FDK Reconstruction Algorithm for Cone-Beam CT,” Journal of Tsinghua University (Science and Technology), 2009, vol. 49, No. 6, pp. 844-847 (with English abstract). |
Chinese First Office Action with Search Report issued May 9, 2013 in corresponding Chinese Application No. 201010529974.0 (with English translation of search report). |
L.A. Feldkamp, L.C. Davis, and J.W. Kress, “Practical cone-beam algorithm,” Journal of the Optical Society of America, vol. 1, No. 6, Jun. 1984, pp. 612-619. |
Number | Date | Country | |
---|---|---|---|
20120106832 A1 | May 2012 | US |