The invention relates generally to mobile communication networks. More particularly, the invention relates to a device-to-device (D2D) transmission.
In radio communication networks, such as the Long Term Evolution (LTE) or the LTE-Advanced (LTE-A) of the 3rd Generation Partnership Project (3GPP), network planning comprises the use of common base stations (Node B, NB). User equipment (UE), or a user terminal (UT), may communicate with another UT via the base station(s), for example. Alternatively, it is proposed that the UTs may communicate directly with each other by applying resources dedicated by the network for a device-to-device (D2D) direct communication. The D2D communication has proven to be network efficient by offloading the traffic processed in the base station(s), for example.
However, there are challenges related to optimization of the D2D transmission/reception efficiency. One of the problems is related to a relatively long distance between the D2D devices performing the D2D direct communication.
Embodiments of the invention seek to improve the communication efficiency in D2D communication.
According to an aspect of the invention, there is provided a method as specified in claim 1.
According to an aspect of the invention, there are provided apparatuses as specified in claims 15 and 29.
According to an aspect of the invention, there is a provided computer program product as specified in claim 30.
According to an aspect of the invention, there is provided an apparatus comprising means configured to perform any of the embodiments as described in the appended claims.
Embodiments of the invention are defined in the dependent claims.
In the following, the invention will be described in greater detail with reference to the embodiments and the accompanying drawings, in which
The following embodiments are exemplary. Although the specification may refer to “an”, “one”, or “some” embodiment(s) in several locations of the text, this does not necessarily mean that each reference is made to the same embodiment(s), or that a particular feature only applies to a single embodiment. Single features of different embodiments may also be combined to provide other embodiments.
Radio communication networks, such as the Long Term Evolution (LTE) or the LTE-Advanced (LTE-A) of the 3rd Generation Partnership Project (3GPP), are typically composed of at least one base station (also called a base transceiver station, a radio network controller, a Node B, or an evolved Node B, for example), at least one user equipment (UE) (also called a user terminal, terminal device or a mobile station, for example) and optional network elements that provide the interconnection towards the core network. The base station may be node B (NB) as in the LTE, evolved node B (eNB) as in the LTE-A, a radio network controller (RNC) as in the UMTS, a base station controller (BSC) as in the GSM/GERAN, or any other apparatus capable of controlling radio communication and managing radio resources within a cell. The base station may connect the UEs via the so-called radio interface to the network. In general, a base station may be configured to provide communication services according to at least one of the following radio access technologies (RATs): Worldwide Interoperability for Microwave Access (WiMAX), Global System for Mobile communications (GSM, 2G), GSM EDGE radio access Network (GERAN), General Packet Radio Service (GRPS), Universal Mobile Telecommunication System (UMTS, 3G) based on basic wideband-code division multiple access (W-CDMA), high-speed packet access (HSPA), LTE, and/or LTE-A. The present embodiments are not, however, limited to these protocols.
In addition to or instead of the conventional communication links, direct device-to-device (D2D) connections may be established among terminal devices. Direct communication links between two devices may be established, e.g., between terminal devices 106 and 108 in
The D2D communication may improve the resource usage efficiency, reduce the power consumption both at the eNB 102 and at the UT 106, 108 side, off-load the traffic from the cellular network, reduce interference to other terminals and cells due to low transmit power, provide shorter end-to-end delay, etc. As said, the eNB 102 may control the D2D operation such that the resources are allocated by the eNB 102 and the D2D communication may take place by applying an uplink (UL) resource of the serving cellular system. This may allow the interference to be monitored by the eNB 102. However, specifications of the D2D communication for a large coverage in the D2D communication between two UTs 106 and 108 may differ from the specification of the D2D communication applying short distances. For a short range D2D operation, the propagation delay may be negligible and the synchronization between devices may be unnecessary once both UTs in the D2D communication pair may be synchronized to the serving cellular network. However, with an increased coverage, the propagation delay, for instance, may need to be considered. Furthermore, when one UT performs D2D communication with many other UTs, the distance between the paired devices may be different, which affects the propagation delay and other timing parameters, for example. Consequently, the synchronization to the network may not be as such enough for efficient and accurate D2D communication.
At least partly for this reason, it is proposed as shown in
In an embodiment, the determination whether to apply the TA in the D2D transmission, i.e. whether to advance own transmission, may be based on the number of simultaneous target D2D receivers. Because the TA values may also on the distance between the transmitter and the receiver, the TA value may be different for different receivers. Therefore, in case the transmitter needs to send data to multiple receivers at the same time, it may be difficult to select a proper TA which is suitable for all target receivers. In such case, the UT 106 may decide not to use the TA (i.e. TA=0). However, in case of only one target receiver, the TA may be of use. Alternatively or in addition to, the TA value may depend on the propagation delay, i.e. the distance between the D2D devices. For example, when the distance is less than a certain threshold, e.g. 70 meters, away, the propagation delay may be assumed to be less than one TA step specified in the current cellular network. In such a case, the TA may be set to zero (no TA).
In step 202 the UT 106 may obtaining information indicating whether the second user terminal is advancing its transmission in the D2D communication or not. Thus, the UT 106 obtains information of the application of TA at the second UT 108. If the transmission is advanced, then the TA is being applied. In this case, the UT 108 may also obtain knowledge of the value of TA, i.e., how much the transmission from the UT 108 is being advanced. If the transmission is not advanced, then the TA is not applied. The UT 106 may obtain such information directly from the second UT 108. Alternatively, the eNB 102 of
Therefore, each of the D2D devices (UT 106 and UT 108) in the D2D pair may independently determine whether to use the time advance, or timing advance, in its transmission and exchange information with the paired D2D device on the application of the TA. Thereafter, in step 204, the UT 106 may determine a structure for at least one communication interval in a D2D communication pattern at least partly based on the application of transmission timing advances at the user terminals, wherein the D2D communication pattern comprises communication intervals allocated for communication for the first user terminal with respect to the second user terminal. The communication intervals allocated for communication may include intervals allocated for at least one of the following: transmission and reception. The structure for the at least one communication interval in the D2D communication pattern is thereafter applied by the UT 106 in communication of information to/from the UT 108. The communication interval structure and the D2D communication pattern may be a D2D pair-specific.
Let us take a closer look at the D2D communication pattern for one UT, such as for UT 106, as shown in
As said, the UT 106 may determine a structure for the at least one communication interval 311 to 320 in a D2D communication pattern 300 and 302. The structure of any communication interval 311 to 320 may be such that the whole interval is reserved for the Tx or the Rx, as shown in
It should be noted with respect to
In an embodiment, the UT 106, as a D2D device, may determine the presence and possibly the length of at least one of the following: a guard period and a silent period in the at least one communication interval when determining the structure. The silent period is applicable once after transmission and before reception of information in the D2D communication, and the guard period is applicable once after reception and before transmission of information in the D2D communication. More particularly, the guard period (GP) is defined as a blank period which is used after the Rx occasion and before the Tx occasion. The GP is used to ensure there is no overlap of Tx and Rx at the UT 106 itself. A silent period (SP) is defined as a blank period which is used after the Tx occasion and before the Rx occasion. The SP is used to ensure there is no overlap of Tx and RX at the peer side, i.e. at the UT 108, so the UT 106 itself may have some other action during this period. For a D2D pair, one device's GP is another's SP, and vice versa. Let us now look at how it is determined whether or not to apply the GP and/or the SP.
In an embodiment, a first UT of the D2D communication pair, such as the UT 106, may determine to apply a SP in the at least one communication interval when the first UT 106 does not apply the transmission timing advance, i.e. does not advance its transmission. As noted, not applying TA may denote TA=0 or no TA defined. In an embodiment, the SP is comprised in the last communication interval allocated for transmission in the D2D communication pattern with respect to the current D2D communication pair. In other words, the SP may be comprised in the last transmission subframe. That is, a D2D device which transmits without TA (e.g. TA=0), the D2D device may assume a SP in its last Tx subframe in one D2D communication pattern.
In an embodiment, the first UT 106 may determine not to apply the SP in the at least one communication interval when the first UT 106 applies the transmission timing advance. That is, the D2D device may not assume any SP in its Tx subframes when the D2D device transmits with a TA.
In an embodiment, the first UT 106 may determine to apply a GP in the at least one communication interval when the second UT 108 does not apply the transmission timing advance. Again, not applying TA may denote TA=0 or no TA defined. The guard period may be comprised in the last communication interval allocated for reception in the D2D communication pattern with respect to the current D2D communication pair. In other words, the GP may be comprised in the last reception subframe. That is, a D2D device may assume a GP in its last Rx subframe in the D2D communication pattern with respect to the paired D2D device when its D2D communication pair transmits without TA.
In an embodiment, the first UT 106 may determine not to apply the GP in the at least one communication interval when the second UT 108 applies the transmission timing advance. That is, a D2D device may not assume any GP in its Rx subframes in the D2D communication pattern with respect to the paired D2D device when its D2D communication pair transmits with a TA. In this manner each of the devices in the D2D pair, e.g. the UTs 106 and 108, determines the GP/SP configuration, e.g. the presence of GP/SP in at least one Tx or Rx subframe.
In addition, the length of the GP and/or SP may be defined. In an embodiment, when the D2D communication pattern comprises only the SP or the GP, the length of the SP or the GP corresponds to at least two times the sum of a propagation delay between the first and the second user terminals 106 and 108 and a duration of switching from transmission to reception or vice versa. Put in an equation, in case there is only one GP or SP in the Rx or Tx subframe, respectively, the length L of the GP or SP may be defined as L>=2*(ΔTprop+ΔTswitch), wherein ΔTprop is the propagation delay between the D2D devices in the communication pair, and ΔTswitch is the time duration for switching from Tx to Rx or vice versa. The ΔTprop may be known from the discovery process signal detection, which may have preceded the actual D2D data communication. The value of ΔTswitch may be a broadcasted value by the eNB 102, which is known to all D2D devices. This ΔTswitch value may be a common value for all UTs and configured by the eNB 102. For example, it may be a value deduced from history information.
In another embodiment, when the D2D communication pattern comprises both the SP and the GP, the length of each of the SP and the GP corresponds to at least the sum of a propagation delay between the first and the second user terminals 106 and 108 and a duration of switching from transmission to reception or vice versa. Again, put in the equation format, in case there are both a SP in the Tx subframe and a GP in the Rx subframe, the GP and SP may have the same length and the length L may be defined as L>=ΔTprop+ΔTswitch.
Although the SP ad GP length may be larger than 2*(ΔTprop+ΔTswitch) or (ΔTprop+ΔTswitch), they do not need to be. In an embodiment, the lengths L equal to either 2*(ΔTprop+ΔTswitch) or to (ΔTprop+ΔTswitch), depending on the application of non-zero TA in the D2D communication pair. This embodiment may provide efficient time resource usage in the D2D communication.
Let us now look at examples to more clearly show the SP/GP configuration and communication structure determination in a D2D communication pair.
As shown in
In the example of
As can be seen, the
In
During subframe 612 the D2D communication patters, which may be indicated to the devices A to C by the eNB, for example, the device C has a transmission allocation. Transmitted data 632 may be delayed by the propagation delay 622. However, a silent period 634 and a guard period 636 may ensure that all the data is received at the device B before the start of the next communication interval 614.
During the communication interval, or subframe, 614, the device A has a transmission time slot. Data 638 transmitted from the device A may be received by the device B after the delay 618 which corresponds to the propagation delay between the devices A and B. However, a SP 640 and a GP 642 in the subframe 614 may ensure that the reception is completed and the devices A and B have enough time to switch from Tx to Rx or vice versa before the point 604 of time. Therefore, the device B applies different GPs 636 and 642 to D2D communications between the devices B and C, and A and B, respectively. Also different SPs are applied. For example, the length of the SPs and GPs may vary depending on the communication pair, as shown in
Thus, in an embodiment, a first user terminal, such as the device B in
It should be also noted that during the GP period, the device may receive data from the transmitter, as shown in the Figures. When TA is applied, the device may also transmit data during the GP period as
An embodiment, as shown in
The apparatus 900 may comprise the terminal device of a cellular communication system, e.g. a computer (PC), a laptop, a tabloid computer, a cellular phone, a communicator, a smart phone, a palm computer, or any other communication apparatus. In another embodiment, the apparatus is comprised in such a terminal device, e.g. the apparatus may comprise a circuitry, e.g. a chip, a processor, a micro controller, or a combination of such circuitries in the terminal device and cause the terminal device to carry out the above-described functionalities. Further, the apparatus 900 may be or comprise a module (to be attached to the UE) providing connectivity, such as a plug-in unit, an “USB dongle”, or any other kind of unit. The unit may be installed either inside the UE or attached to the UE with a connector or even wirelessly.
As said, the apparatus 900 may comprise the at least one processor 902. The at least one processor 902 may be implemented with a separate digital signal processor provided with suitable software embedded on a computer readable medium, or with a separate logic circuit, such as an application specific integrated circuit (ASIC). The at least one processor 902 may further comprise an interface, such as computer port, for providing communication capabilities.
The at least one processor 902 may also comprise a D2D communication pattern structure circuitry 910 for determining the structure of at least one communication interval, such as a subframe, in at least one D2D communication pattern. The determination may take into account the application of timing advance in the paired device(s), the propagation delay(s) to/from the paired device(s), the broadcasted switching time from Tx to Rx or vice versa in the D2D communication, etc. The at least one processor 902 may further comprise a D2D communication circuitry 912 for performing communication directly with another user terminal.
The apparatus 900 may further comprise radio interface components 906 providing the apparatus with radio communication capabilities with the radio access network. The radio interface components 906 may comprise standard well-known components such as amplifier, filter, frequency-converter, (de)modulator, and encoder/decoder circuitries and one or more antennas. The interface 906 may be used for transmission and reception of D2D data, reception and transmission of D2D related control signalling from the eNB, TA information, etc.
As said, the apparatus 900 may comprise a memory 904 connected to the processor 904. However, memory may also be integrated to the processor 902 and, thus, no memory 904 may be required. The memory 904 may be for storing data related to the application of TAs in the paired device(s), the configuration of D2D communication pattern obtained from the network, for example, or derived by the device itself, etc.
As used in this application, the term ‘circuitry’ refers to all of the following: (a) hardware-only circuit implementations, such as implementations in only analog and/or digital circuitry, and (b) combinations of circuits and software (and/or firmware), such as (as applicable): (i) a combination of processor(s) or (ii) portions of processor(s)/software including digital signal processors), software, and memory(ies) that work together to cause an apparatus to perform various functions, and (c) circuits, such as a microprocessor(s) or a portion of a microprocessor(s), that require software or firmware for operation, even if the software or firmware is not physically present. This definition of ‘circuitry’ applies to all uses of this term in this application. As a further example, as used in this application, the term ‘circuitry’ would also cover an implementation of merely a processor (or multiple processors) or a portion of a processor and its (or their) accompanying software and/or firmware. The term ‘circuitry’ would also cover, for example and if applicable to the particular element, a baseband integrated circuit or applications processor integrated circuit for a mobile phone or a similar integrated circuit in a server, a cellular network device, or another network device.
The techniques and methods described herein may be implemented by various means. For example, these techniques may be implemented in hardware (one or more devices), firmware (one or more devices), software (one or more modules), or combinations thereof. For a hardware implementation, the apparatus(es) of embodiments may be implemented within one or more application-specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, micro-controllers, microprocessors, other electronic units designed to perform the functions described herein, or a combination thereof. For firmware or software, the implementation can be carried out through modules of at least one chip set (e.g. procedures, functions, and so on) that perform the functions described herein. The software codes may be stored in a memory unit and executed by processors. The memory unit may be implemented within the processor or externally to the processor. In the latter case, it can be communicatively coupled to the processor via various means, as is known in the art. Additionally, the components of the systems described herein may be rearranged and/or complemented by additional components in order to facilitate the achievements of the various aspects, etc., described with regard thereto, and they are not limited to the precise configurations set forth in the given figures, as will be appreciated by one skilled in the art.
Thus, according to an embodiment, the apparatus comprises processing means configure to carry out embodiments of any of the
Embodiments as described may also be carried out in the form of a computer process defined by a computer program. The computer program may be in source code form, object code form, or in some intermediate form, and it may be stored in some sort of carrier, which may be any entity or device capable of carrying the program. For example, the computer program may be stored on a computer program distribution medium readable by a computer or a processor. The computer program medium may be, for example but not limited to, a record medium, computer memory, read-only memory, electrical carrier signal, telecommunications signal, and software distribution package, for example.
Even though the invention has been described above with reference to an example according to the accompanying drawings, it is clear that the invention is not restricted thereto but can be modified in several ways within the scope of the appended claims. Therefore, all words and expressions should be interpreted broadly and they are intended to illustrate, not to restrict, the embodiment. It will be obvious to a person skilled in the art that, as technology advances, the inventive concept can be implemented in various ways. Further, it is clear to a person skilled in the art that the described embodiments may, but are not required to, be combined with other embodiments in various ways.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CN2011/081933 | 11/8/2011 | WO | 00 | 5/16/2014 |