Business enterprises rely on electronic communications to communicate within the enterprise and also to provide a reliable electronic business portal to customers and partner businesses. The expectation of fast and available communication is increasingly the norm among those inside the enterprise as well as enterprise customers. Currently, businesses with enterprise networks purchase dedicated bandwidth from an internet service provider (ISP) to carry data traffic between and among enterprise physical sites. These enterprise networks are referred to as private networks, and also as MPRS networks (after the network protocol used). In fact, ISPs usually offer different levels of service that are priced largely based on the performance guarantee factor. ISPs typically set up an enterprise network for an enterprise client. This enterprise network defines physical enterprise locations and network nodes sometimes referred to as an overlay network, meaning a network maintained by the service provider that connects the enterprise sites with possible physical router stops between enterprise sites. The performance guaranteed by the ISP and paid for by the enterprise is typically greater than can be relied upon when exclusively using the public internet.
In many conditions, even the internet service provider for an enterprise network (ATT as an example) may not be able to route data traffic optimally.
Embodiments disclosed include a method and apparatus for global traffic control and optimization for software-defined networks. In an embodiment, data traffic in an enterprise wide area network (WAN) is optimized by providing alternate routing in addition to internet protocol routing supplied by an internet service provider (ISP). Alternate routing includes defining a new overlay network that leverages any available routers between data origination and destination points. Data over the new overlay network (also referred to as the WALTZ overlay network herein) is optimally routed using multipath routing algorithms, rather than traditional single path routing. In an embodiment, if a particular path is experiencing delays, any alternative path can be used provided the alternative path has a round-trip time less than a predefined performance requirement time.
The alternate routing includes using embodiments of a data network processor or router (referred to herein for convenience as a Waltz router, but generally to be understood as a data network processor) collocated with an ISP router (or ISP processor). Other embodiments include an ISP router running embodiments of routing software (referred to herein for convenience as Waltz routing software) that implement an alternate routing method in addition to the ISP routing method. The Waltz routing software may be resident anywhere. That is, the Waltz routing software may be resident on a Waltz router, or an enterprise router, or an ISP router or accessed from the cloud.
According to embodiments of the invention, Waltz router 210 optimize traffic for the network by determining alternate routes that would not otherwise be detected or chosen by the ISP. As shown in the figure, heavier lines 208 represent the overlay network as provisioned by the ISP for the enterprise. The ISP routes data traffic according to MPRS protocols and available overlay network routers. However, there may be more efficient routes for data at any given time that are not detectable using MPRS. Routes 206 represent alternative routes that are more efficient at any given time as determined by the methods disclosed herein.
In effect, an overlay IP network is formed among Waltz routers. The overlay IP network is an all-to-all mesh network. When a packet arrives at a Waltz router the Waltz router forms a routing table which decides to which next hop router (another Waltz router) to which this packet should go based on link cost, which depends on link load. The next hop Waltz router may sit in the destination site in which case, it will route the packet to that site. In the case when the next hop Waltz router does not sit in the destination site for that packet, it will again look up its routing table and forward that packet to another Waltz router. In each transmission between two Waltz routers, the packet typically transitions through the core network, whose routing is determined by the service provider (ISP). However, the WALTZ routers use all routers in both the core network and the overlay network to find an optimum route for a packet.
Aspects of the systems and methods described herein may be implemented as functionality programmed into any of a variety of circuitry, including programmable logic devices (PLDs), such as field programmable gate arrays (FPGAs), programmable array logic (PAL) devices, electrically programmable logic and memory devices and standard cell-based devices, as well as application specific integrated circuits (ASICs). Some other possibilities for implementing aspects of the system include: microcontrollers with memory (such as electronically erasable programmable read only memory (EEPROM)), embedded microprocessors, firmware, software, etc. Furthermore, aspects of the system may be embodied in microprocessors having software-based circuit emulation, discrete logic (sequential and combinatorial), custom devices, fuzzy (neural) logic, quantum devices, and hybrids of any of the above device types. Of course the underlying device technologies may be provided in a variety of component types, e.g., metal-oxide semiconductor field-effect transistor (MOSFET) technologies like complementary metal-oxide semiconductor (CMOS), bipolar technologies like emitter-coupled logic (ECL), polymer technologies (e.g., silicon-conjugated polymer and metal-conjugated polymer-metal structures), mixed analog and digital, etc.
It should be noted that the various functions or processes disclosed herein may be described as data and/or instructions embodied in various computer-readable media, in terms of their behavioral, register transfer, logic component, transistor, layout geometries, and/or other characteristics. Computer-readable media in which such formatted data and/or instructions may be embodied include, but are not limited to, non-volatile storage media in various forms (e.g., optical, magnetic or semiconductor storage media) and carrier waves that may be used to transfer such formatted data and/or instructions through wireless, optical, or wired signaling media or any combination thereof. Examples of transfers of such formatted data and/or instructions by carrier waves include, but are not limited to, transfers (uploads, downloads, e-mail, etc.) over the internet and/or other computer networks via one or more data transfer protocols (e.g., HTTP, FTP, SMTP, etc.). When received within a computer system via one or more computer-readable media, such data and/or instruction-based expressions of components and/or processes under the system described may be processed by a processing entity (e.g., one or more processors) within the computer system in conjunction with execution of one or more other computer programs.
Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in a sense of “including, but not limited to.” Words using the singular or plural number also include the plural or singular number respectively. Additionally, the words “herein,” “hereunder,” “above,” “below,” and words of similar import refer to this application as a whole and not to any particular portions of this application. When the word “or” is used in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list and any combination of the items in the list.
The above description of illustrated embodiments of the systems and methods is not intended to be exhaustive or to limit the systems and methods to the precise forms disclosed. While specific embodiments of, and examples for, the systems components and methods are described herein for illustrative purposes, various equivalent modifications are possible within the scope of the systems, components and methods, as those skilled in the relevant art will recognize. The teachings of the systems and methods provided herein can be applied to other processing systems and methods, not only for the systems and methods described above.
The elements and acts of the various embodiments described above can be combined to provide further embodiments. These and other changes can be made to the systems and methods in light of the above detailed description.
In general, in the following claims, the terms used should not be construed to limit the systems and methods to the specific embodiments disclosed in the specification and the claims, but should be construed to include all processing systems that operate under the claims. Accordingly, the systems and methods are not limited by the disclosure, but instead the scope of the systems and methods is to be determined entirely by the claims.
While certain aspects of the systems and methods are presented below in certain claim forms, the inventors contemplate the various aspects of the systems and methods in any number of claim forms. For example, while only one aspect of the systems and methods may be recited as embodied in machine-readable medium, other aspects may likewise be embodied in machine-readable medium. Accordingly, the inventors reserve the right to add additional claims after filing the application to pursue such additional claim forms for other aspects of the systems and methods.
Number | Date | Country | |
---|---|---|---|
Parent | 15421409 | Jan 2017 | US |
Child | 16017873 | US |