The present invention relates generally to decoding data and in particular, to a method and apparatus for decoding data using low-density parity-check (LDPC) codes.
Digital data transmissions over wired and wireless channels may be corrupted, for instance, by noise in the channel, by interference from other transmissions, or by other environmental factors. Even with clear communication channels, which lend themselves to high data rates, it may not be possible to appropriately decode the data stream with the requisite error rates. In order to solve this problem, many communication systems employ error-correction techniques to aid in communication.
One technique utilized for error correction is the Low-density parity-check (LDPC) codes, which is used to provide powerful protection of the information vector to be transmitted.
An LDPC code is a linear block code specified by a parity-check matrix H. In general, an LDPC code is defined over GF(q), q≧2. If q=2, the code is binary. As with all linear block codes, a k-bit information vector s1×k is generally encoded by the code generator matrix Gk×n to become an n-bit codeword x1×n, and the code rate is r=k/n. The codeword x is sent by the transmitter through a noisy channel, and at the receiver the received signal vector y is passed to the decoder to estimate the information vector s1×k.
Given an n-dimensional space, the rows of G span the k-dimensional codeword subspace C, and the rows of the parity-check matrix Hm×n span the m-dimensional dual space C⊥, where m=n−k. Since x=sG and GHT=0, it follows that xHT=0 for all codewords in subspace C, where “T” denotes matrix transpose. In the discussion of LDPC codes, this is generally written as
HxT=0T, (1)
where 0 is a row vector of all zeros, and the codeword x=[s p]=[s0, s1, . . . ,sk−1, p0, p1, . . . , pm−1], where p0, . . . pm−1 are the parity-check bits; and s0, . . . sk−1 are the systematic bits, equal to the information bits, or data within the information vector.
For an LDPC code, the density of H is low, i.e., there are only a small percentage of 1's in H, allowing good error-correcting performance and simple decoding when compared to a high-density H. An H matrix can be also described by a bipartite graph. Each 1 in H defines an edge (i.e., a connection between a variable node and a check node) in the bipartite graph, each column in H corresponds to a variable node in the bipartite graph, and each row in H corresponds to a check node in the bipartite graph.
An example of H matrix is shown below to illustrate the relationship between the parity-check matrix, the parity-check equations, and the bipartite graph. Let an n=12, rate-½ code be defined by
with the left side portion corresponding to k (=6) information bits s, the right side portion corresponding to m (=6) parity-check bits p. Applying (1), the H in (2) defines six parity-check equations as follows:
H can also be described by the bipartite graph shown in
An LDPC decoder can contain a very high level of parallelism. To help keep routing and memory management issues in check, many LDPC codes are “architecture-aware” or “structured” to facilitate efficient LDPC decoding via iterative message passing algorithms such as the standard belief propagation (SBP) or layered belief propagation (LBP). Structured LDPC codes possessing a partial dual-diagonal structure have been adopted in standards such as IEEE 802.16e and IEEE draft 802.11n.
Turbo decoding of an LDPC code may be desired. However, it is not clear how to turbo decode LDPC codes that contain a partial dual diagonal parity-check portion. In addition, it is not clear how to build a turbo decoder for a structured LDPC code decoder that avoids contentions in memory access. In a high throughput decoder several processors operate in parallel, leading to multiple read/write requests from several memory banks. In such decoders, memory access contentions (or memory access conflicts or collisions) occur when more than one message is to be written to or read from the same memory bank at the same time. Extra hardware or excessive storage is required to resolve these conflicts. Therefore, a method and apparatus for turbo like encoding and decoding algorithm is needed to handle LDPC codes with a partial dual diagonal structure, and a turbo like decoding (TLD) algorithm is needed where a contention-free interleaver is used to enable parallel memory accesses.
In order to address the above-mentioned need, a method and apparatus for decoding data is provided herein. During operation, a decoder will receive a signal vector corresponding to information bits and parity bits and separate the received signal vector into two groups, a first group comprising signals corresponding to the information bits and one or more parity bits, a second group corresponding to a remainder of the parity bits. The first group of received signals is passed to a first decoder and the second group of received signals is passed to a second decoder. The decoders are separated by an interleaver and a de-interleaver. Iterative decoding takes place by passing messages between the decoders, through the interleaver and the de-interleaver, and producing an estimate of the information bits from the output of the first decoder.
The present invention encompasses a method for estimating an information vector containing information bits at a receiver. The method comprises the steps of receiving a signal vector corresponding to information bits and parity bits, and separating the received signal vector into two groups, a first group comprising signals corresponding to the information bits and one or more parity bits, a second group corresponding to a remainder of the parity bits. The first group is passed to a first decoder and the second group is passed to a second decoder. Iterative decoding takes place by passing messages between the decoders, where the decoders are separated by an interleaver and a de-interleaver. Finally, an estimate of the information vector is produced from the output of the first decoder.
The present invention additionally encompasses an apparatus for estimating an information vector containing information bits at a receiver. The apparatus comprises a receiver receiving a signal vector corresponding to information bits and parity bits, a channel LLR (log-likelihood ratio) distributor separating the received signal vector into two groups, a first group comprising signals corresponding to the information bits and one or more parity bits, and a second group corresponding to a remainder of the parity bits, a first decoder receiving the first group of signals, and a second decoder receiving the second group of signals. The first and the second decoders iteratively decode the received signal vector by passing messages between the decoders. Additionally, the decoders are separated by an interleaver and a de-interleaver, and the first decoder outputs an estimate of the information vector.
A Turbo-Like Decoder for LDPC Codes
An LDPC code may be constructed where the entire parity-check portion of the H matrix is dual-diagonal such as shown in (4), possibly after row and column permutation of the original parity-check matrix H. With such a parity-check portion, the code is equivalent to a serially concatenated turbo code with the outer code being a 2-state convolutional code. Such an LDPC code is a Generalized Repeat Accumulate code
The encoding procedure for LDPC codes with partial dual-diagonal structure is illustrated below using (2) where the first column of Hp is non-dual-diagonal. Rewrite the parity-check equations of (3) into (5). Note that the first k (=6) bits in the codeword are equal to the k information bits due to systematic encoding (i.e., x0, x1, x2, x3, x4, x5 are known). The set of equations in (5) may be solved to obtain the remaining bits of the codeword.
The encoding can be performed in three steps:
In general, an LDPC code with a substantial dual-diagonal parity portion can be encoded via the following three steps:
In the encoding procedure described above Step 2 depends on the actual non-dual-diagonal parity portion. In general, there can be more than one parity bit corresponding to non dual-diagonal parity portion. However, without loss of generality, in the rest of this report, only one bit is assumed. The rest of the section focuses on Step 3.
The encoding procedure shown in
The input vector [x0, x1, x2, x3, x4, x5, x6] passes through repeater 401 with a repetition vector Q=[Q0 Q1 Q2 Q3 Q4 Q5 Q6], where input bit x1 is repeated Qi times. The parallel to serial (P/S) indicates the
bits generated in parallel are converted to serial. Interleaver 403 permutes the output of repetition code before the SPC encoder 405 according to a permutation ρ. The SPC code outputs one bit for every Ji serialized input bits (Jiε {J0 J1 J2 J3 J4 J5}). The S/P indicates that Ji bits are input to the SPC to obtain one bit ui where ui is a temporary variable. The output of the SPC [u0, u1, u2, u3, u4, u5] is accumulated by accumulator 407 successively to obtain the unknown parity bits of the codeword.
The exact parameters of the GRA-like encoder may be obtained by partitioning the H matrix into two parts, H=[HGRA Hp2], as shown in (6). Hp2 is the partial dual-diagonal parity portion, and HGRA is the remaining portion of H. Note that the columns of HGRA correspond to the systematic bits and one parity bit (separated by the dotted line).
The parameters, (Q, J, ρ), of the GRA-like encoder are found from HGRA as shown below:
For the (12,6) code of (2), the parameters are Q=[2 2 2 2 2 2 3], J=[3 2 3 2 2 3], and the interleaver is given by the permutation ρ=[0 8 3 10 1 5 9 12 4 11 6 13 2 7 14]. Note that
A Turbo-Like Decoder for LDPC Codes
Once the GRA encoder of LDPC codes with partial dual-diagonal portion is derived, the corresponding turbo-like decoder may be constructed. Based on
A turbo-like decoder for LDPC codes consists of two component decoders—repetition decoder 501, and a combined SPC-ACC decoder 504. The component decoders are not convolutional decoders used in a conventional turbo decoder, e.g., with constituent codes of R=⅓ 8-state convolutional codes. Corresponding to
After a certain number of iterations, a hard (or soft) decision estimate of the information vector ŝ based on the a posteriori LLRs is calculated by the repetition decoder. If a stopping rule is required, then the TLD can be trivially modified to yield hard decisions of all the code bits to test if all parity-check equations are satisfied.
In the TLD, several parity-check equations are linked to each other directly through the ACC. This is illustrated in
Structured LDPC Codes
Many LDPC codes are structured codes, designed to enable efficient encoding/decoding from the perspective of traditional LDPC decoding algorithms such as SBP and LBP. A structured or vectorized LDPC code design starts with a small mb×nb base matrix Hb, makes z copies of Hb, and interconnects the z copies to form a large M×N H matrix, where M=mb×z, N=nb×z. Using the matrix representation, to build an H from Hb each 1 in Hb is replaced by a z×z permutation matrix, and each 0 in Hb is replaced by a z×z all-zero matrix. It has been shown that simple circular right shift of the columns of a z×z identity matrix (P) can be used as a permutation matrix. Each H matrix can be uniquely represented by a mb×nb model matrix Hbm, which is obtained by replacing each 0 in Hb by −1 to denote a z×z all-zero matrix, and replacing each hi,j=1 in Hb by a circular shift size p(i,j). For example, the matrix in (2) may be used as a base matrix Hb to build a model matrix Hbm.
When z=3, Hbm is converted to a (mb×z)×(nb×z) binary matrix H by replacing each −1 with a 3×3 all-zero matrix and each i with Pi, i=0, 1, 2, where
The resulting H-matrix has a codeword size N=36, and information vector size K=18.
It was shown earlier that base matrix Hb of (2) can be encoded and decoded using GRA-like structure. If such a base matrix is used to create an H matrix by expansion (e.g., as in (8)), then the resulting H matrix can also be encoded using a bank of GRA-like encoders. The encoder of the expanded H matrix consists of z interconnected copies of the GRA-like encoder of the base matrix Hb, where z is the expansion factor.
Let a vectorized LDPC code be constructed with a model matrix Hbm and an expansion factor z. The corresponding encoder takes K=k z information bits as input, and outputs N=n z codeword bits according to the (N−K)×N expanded binary H matrix. Encoding and decoding of such codes may be performed in groups of z bits each, and hence such LDPC codes were referred to as vectorized or structured LDPC codes. Most of the properties of the vectorized LDPC codes, for example, encoding/decoding operations, may be easily expanded from those of the base matrix Hb. For efficient encoding, the model matrix Hbm must have an odd weight in the non-dual diagonal parity column, and within that column, all shift sizes except one occur even number of times. For example, in (8), the k+1=7th column has shift sizes {0, 2, 0}. The following text describes how a GRA-like encoder of structured LDPC codes may be derived from that of the base matrix Hb.
Let S=[S0, S1, S2 . . . Sk−1] and X=[X0 X1 . . . Xn−1] represent the information vector and the codeword block, respectively, where each element is a z-bit vector (i.e., size z×1). The group-wise encoding may be done in a three-step process as described next.
As illustrated in
The vector interleaver of a structured LDPC code has two stages of permutations—
The GRA parameters of the vectorized H matrix may be described in terms of the base matrix parameters as follows:
For the (36, 18) code of (8), the GRA parameters are identical to those of the base matrix Hb of (2): Qb=[2 2 2 2 2 2 3], Jb=[3 2 3 2 2 3], the permutation is ρ=[0 8 3 10 1 5 9 12 4 11 6 13 2 7 14].
An additional parameter describing vectorized GRA-like encoder are the shift values Rbm, which can be obtained from the model matrix of (8) by reading the shift sizes in a column-wise order starting from the left hand side of the Hbm,GRA shown in (9). This leads to a set of shift sizes given by Rbm=[1 2 2 1 0 1 1 0 0 0 2 1 0 2 0].
The decoding of the structured H matrix can also be performed in a vectorized (or parallelized) manner, analogous to the vectorized encoding. A block diagram of a parallelized turbo-like decoder is shown in
An interleaver π(i), 0≦i≦K, is said to be contention-free for a window size W if and only if satisfies the following constraint for both ψ=π (interleaver) and ψ=π−1 (de-interleaver).
where 0≦j≦W, 0≦t; v<M(=K/W), and t≠v. The terms in (10) are essentially the memory bank indices that are concurrently accessed by the M processors and if these memory bank addresses are all unique during each read and write operations, there are no contentions in memory access.
Interleaver 1000 of a structured LDPC code may be interpreted as a CF interleaver by making the following observation about the two stages of permutations—
The interleaver in IWS fashion is depicted in
where the window size W is equal to the length of ρ (and the length of Rbm), and the interleaver generates an output address π(i)=ρ(i mod W)+Wφ└i/W┘(i mod W) for an input i.
Note that before interleaving, the i-th window, i=0, 1, . . . , z−1, is composed of └R0,0(i), R1,0(i), . . . , RQ
where Ra,b(i) is the i-th element of vector edge LLR Ra,b, which corresponds to the a-th non-negative element in b-th column of Hbm. Compare the IWS interleaver of
In addition, for turbo codes, both before and after interleaving, all the windows are inherently linked together. Each window (length W) is a section of a length zW trellis, and the LLRs on either end of the window can utilize the LLRs of the adjacent windows. The length zW can be equivalently divided into windows of other sizes (although the CF property may not be maintained). For TLD of LDPC, both before and after interleaving, the z windows are independent of each other and can be decoded simultaneously. Inherently, each window after interleaving is a complete 2-state trellis.
An example of structured H-matrix:
The parameters of the GRA-like encoder for this matrix may be obtained by following the procedure described earlier in the section and the parameters are as follows.
The inter-window shuffle (IWS) interleaver is given by the following permutation where 0≦i<5184(=54×96)
π(i)=ρ(i mod 54)+54φ└i/54┘(i mod 54), (13)
and the inter-window shuffle pattern φ is given as follows.
Note that shift values Rbm for expansion factors z<96 may be obtained using scaling and modulo techniques, as described in IEEE 802.16e specification. The corresponding IWS interleavers may also be obtained by simply changing the shift sizes Rbm in (14) and expansion factor z.
The GRA-like encoder (and the corresponding turbo-like decoder with a CF interleaver) may be derived for any structured LDPC codes with a partial dual-diagonal parity portion in the base matrix, including IEEE 802.16e LDPC codes, and LDPC codes considered for IEEE 802.11n, etc.
As another example, the following is a base model matrix for Rate-½ LDPC code for the expansion factor z=54 used in the draft 802.11n standard.
The parameters of the GRA-like encoder for this matrix may be obtained by following the procedure described earlier in the section and the parameters are as follows.
At step 1102 this signal is passed to channel LLR distributor, where it is divided into two groups, a first group comprising signals corresponding to the information bits and one or more parity bits, and a second group corresponding to a remainder of the parity bits. A first decoder receives the first group of signals (step 1103) and a second decoder receives the second group of signals (step 1104). As discussed above, the first decoder comprises a repetition decoder 901 and the second decoder comprises a parity check accumulator decoder 902. Also, when a plurality of repetition decoders and a plurality of SPC accumulator decoders are being utilized, the plurality of decoders receives copies of the first group and the second group of signals. Additionally, each of the repetition decoders has a same repetition factor Qb obtained from the base matrix Hb, and the output messages of the repetition decoders are sent to the interleaver. Each of the SPC-Accumulator decoders has a same SPC parameter Jb obtained from the base matrix Hb, and the output messages of the SPC-Accumulator decoders are sent to the de-interleaver.
Continuing, at step 1105 the first and the second decoders iteratively decode the received signal vector by passing messages between the decoders, where the decoders are separated by an interleaver and a de-interleaver (permutation network 903), and wherein the first decoder outputs an estimate of the information vector (step 1106).
While the invention has been particularly shown and described with reference to a particular embodiment, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention. For example, although the interleaver and the de-interleaver are described as individual components, they can be realized an address generator that allows reading messages from and writing messages to proper addresses. In another example, the decoder has been described with flooding schedule where z SPC-ACC decoders are instantiated and operated on simultaneously. However, one may instantiate one SPC-ACC decoder and updates the z SPC-ACC codes serially (i.e., layered decoding).
In another example, the description above has assumed that soft information in the form of LLR is given to the decoder. However, the information given to the encoder can be in other format, such as binary estimates of the codeword, and the message passed between the repetition and SPC-ACC decoders can be binary values as well (i.e., hard-decision decoding).
In another example, the description above has assumed that only one parity bit is distributed to the repetition decoder (one parity vector in the case of structured LDPC codes). However, more parity bits (parity bit vectors in the case of structured LDPC codes) may be distributed to the repetition decoder. This may have to be done if the matrix H (Hb if structured LDPC) contains a partial dual-diagonal parity section that is smaller than (m−1) (mb−1 if structured LDPC) columns. It is intended that such changes come within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
6526538 | Hewitt | Feb 2003 | B1 |
6718503 | Lerner et al. | Apr 2004 | B1 |
7458009 | Yu et al. | Nov 2008 | B2 |
20020023246 | Jin | Feb 2002 | A1 |
20020040460 | Choi et al. | Apr 2002 | A1 |
20050111564 | Kramer et al. | May 2005 | A1 |
20050216819 | Chugg et al. | Sep 2005 | A1 |
20060031737 | Chugg et al. | Feb 2006 | A1 |
20090259915 | Livshitz et al. | Oct 2009 | A1 |
Number | Date | Country |
---|---|---|
WO 2005096510 | Oct 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20080072122 A1 | Mar 2008 | US |