Current microwave cooking appliances use powerful tubes to generate microwaves with nominal operating frequencies to heat food. A disadvantage of using such powerful sources is a limited ability to control emission of the microwaves. Solid state sources enable specifying emissions that allow for a more controlled cooking appliance. Some solid state sourced microwave cooking appliance designs include determining a model of the cavity of the microwave, but do not allow for specified cooking strategies regarding the food within the cavity. There is a need to improve control of the emissions using solid state sources to achieve better heating for specific food items and more efficient appliances.
In one aspect, a method of delivering radio frequency electromagnetic energy to an enclosed cavity of a heating device includes generating, with a small signal generating component, a radio frequency signal at a first power level that is pulse width modulated at a predetermined duty cycle, amplifying the radio frequency signal to a second power level greater than the first power level with a radio frequency amplification component, and feeding the amplified radio frequency signal to the enclosed cavity. The first power level is based on the gain of the radio frequency amplification component and the predetermined duty cycle is based on a ratio of an output power level for a desired heating cycle of operation to the second power level.
In another aspect, an apparatus for delivering radio frequency electromagnetic energy to an enclosed cavity of a heating device includes a cavity configured to hold an article to be heated, a small signal generator to generate a radio frequency signal at a first power level that is pulse width modulated at a predetermined duty cycle, a power amplifier connected to the small single generator to amplify the radio frequency signal generated by the small signal generator to a second power level greater than the first power level, a transmission line between the power amplifier and the enclosed cavity to feed the amplified radio frequency signal from the power amplifier to the enclosed cavity, and a controller configured to set the first power level based on the gain of the power amplifier and to set the predetermined duty cycle based on a ratio of an output power level for a desired heating cycle of operation to the second power level.
In the drawings:
The microwave oven 10 includes a power source 17 with an input range preferably ranging from less than 1 W to 250 W and at least one microwave generator 18, which is capable of generating a radio frequency electromagnetic energy field (hereafter, “energy field”), with an operating frequency preferably ranging from 2.401 GHz to 2.48 GHz. In an exemplary embodiment, the microwave oven 10 can have two or more microwave generators 18, wherein each microwave generator 18 is electrically coupled with the power source 17. Each microwave generator 18 can include at least one antenna (not shown) adapted to provide the energy field generated by the microwave generator 18, which is fed into the cavity 14 by way of at least one feeding port 20 electrically coupled with each microwave generator 18 by way of at least one conductor or transmission line 21.
The microwave oven 10 can also include a control system 22, communicatively coupled with the microwave generators 18, the power source 17, or a combination thereof, and programmed or configured to control the generation of the energy field by the microwave generator 18. For example, the control system 22 can operably control the power output of the power source 17, the operation of the at least one microwave generator 18, or electromagnetic characteristics of the generated energy field, such as power level or frequency. In embodiments of the disclosure wherein at least two microwave generators 18 are utilized, the control system 22 can further operably control the phase of the at least two microwave generators 18 to alter the interference pattern of the electromagnetic waves of the energy field.
During cooking or heating operations, the control system 22 of the microwave oven 10 operates to control the generation of the energy field by the microwave generators 18 and to provide the energy field into the cavity 14 by way of the feeding ports 20. The energy field interacts with the foodstuff 16 to heat or cook the foodstuff 16. The illustrated embodiment of
The memory 32 can include random access memory (RAM), read-only memory (ROM), flash memory, or one or more different types of portable electronic memory, such as discs, DVDs, CD-ROMs, etc., or any suitable combination of these types of memory. The control system 22 can be operably coupled with the memory 32 such that one of the control system 22 and the memory 32 can include all or a portion of a computer program having an executable instruction set for controlling the operation of the aforementioned components, or a method of operating the same. The program can include a computer program product that can include machine-readable media for carrying or having machine-executable instructions or data structures stored thereon. Such machine-readable media can be any available media, which can be accessed by a general purpose or special purpose computer or other machine with a processor. Generally, such a computer program can include routines, programs, objects, components, data structures, algorithms, etc., that have the technical effect of performing particular tasks or implement particular abstract data types.
Machine-executable instructions, associated data structures, and programs represent examples of program code for executing the exchange of information as disclosed herein. Machine-executable instructions can include, for example, instructions and data, which cause a general purpose computer, special purpose computer, control system 22, or special purpose processing machine to perform a certain function or group of functions. In implementation, the functions can be converted to a computer program comprising a set of executable instructions, which can be executed by the processor 30.
The control signal 28 can include a desired cooking signal representative of a heating or cooking energy field desired for heating or cooking the foodstuff 16. Embodiments of the control signal 28 can further include a desired cooking signal generated or selected, for example from a database, executable instruction set executed by the processor 30, look up table stored in memory 32, or the like, based at least partially on the foodstuff 16 to be heated or cooked. For example, a user can select from a variety of foodstuff 16 settings or values on a user interface for heating or cooking cycles of operation tailored to a particular foodstuff 16. In this sense, embodiments of the disclosure can include configurations wherein the control system 22 includes a user interface. Examples of tailored cooking cycles of operation can include, but is not limited to, a “defrost” selection, “popcorn” selection, “reheat” selection, “vegetables” selection, or the like.
The control signal 28 can also include a desired cooking signal representative of heating or cooking energy field characteristics desired for heating or cooking of the foodstuff 16. For example, the heating or cooking energy field characteristics of the control signal 28 can include, but is not limited to, a first power level desired, a second power level desired, a signal switching frequency, and the like. At least a subset of the aforementioned representative signals included in or carried by the control signal 28 can be configured, selected, or determined based on the foodstuff 16 to be heating or cooked, such as from a user interface as explained above. In another non-limiting example, at least a subset of the aforementioned representative signals can be configured, selected, or determined based on the electrical efficiency or gain of the microwave generator 18, the small signal generator 24, the solid state amplifier 26, or a combination thereof. For instance, the subset of representative signals can be configured, selected, or determined based on operating the microwave 10 at a maximum electrical efficiency, an electrical efficiency above an efficiency threshold value, an electrical efficiency with an efficiency threshold range, at maximum output power, at maximum amplification stage gain, or a combination thereof.
Embodiments of the disclosure can include configurations wherein at least a subset of the aforementioned representative signals included in or carried by the control signal 28, including the aforementioned embodiments, can further be configured, selected, or determined by executable software operated by the microwave oven 10, control system 22, or processor 30, or from a look up table stored in memory 32 and accessible by the control system 22 or processor 30. For example, the maximum electrical efficiency, maximum gain, efficiency threshold value, efficiency threshold range, or a combination thereof can include respective predetermined values stored in memory 32, or can be derived based on executable software to determine, develop, compute such values. In yet another embodiment of the disclosure, at least a subset of the aforementioned representative signals included in or carried by the control signal 28 can be configured, selected, or determined based on feedback or sensed characteristics of the foodstuff 16. Such feedback or sensed characteristics can be observer, sensed, or measured by way of a plurality of sensors, including, but not limited to, an optical sensor such as a camera, a steam or temperature sensor, or the like.
The small signal generator 24 receives the control signal 28, and in response to the control signal 28 and included representative signals, generates a first radio frequency signal 34 at the first low power level. As used herein, a “low” power level denotes a signal, power, or energy level below the energy field level utilized to heat or cook the foodstuff 16. In one embodiment of the disclosure, the small signal generator 24 can generate a first radio frequency signal 34 in response to the control signal 28, wherein the first radio frequency signal 34 is, for example, pulse width modulated at a predetermined switching frequency. In this example, the predetermined switching frequency is defined, controlled, selected, or instructed by the signal switching frequency energy field characteristic of the control signal 28. Non-limiting embodiments of the disclosure can include wherein the predetermined switching frequency is at least 20 KHz. It will be understood that the predetermined switching frequency can define or affect the energy field generated by the microwave generator 18. For example, the predetermined switching frequency can include controlling, altering, or defining a duty cycle for the microwave generator 18, the small signal generator 24, or the solid state amplifier 26.
In another non-limiting embodiment of the disclosure the predetermined switching frequency can be related to electrical regulations or practical power source 17 concerns regarding the predetermined switching on and off of the power, including flickering, modulation, power surges or deficiencies, and the like. It is understood that pulse width modulation signals can be configured to operably control, select, or limit an amount of energy field supplied to the cavity 14. Another non-limiting embodiment, the first radio frequency signal 34 can include a first low power level of less than 1 Watt, such as 300 milliwatt.
In yet another embodiment of the disclosure, the first radio frequency signal 34 can be selected or generated based on the expected, predetermined, estimated, or derived electrical efficiency or gain of at least one of the microwave generator 18, the small signal generator 24, or the solid state amplifier 26. For instance, the first radio frequency signal 34 can include a predetermined switching frequency based at least on a ratio of an expected or estimated output power level of the energy field generated by the microwave generator 18, for a desired heating or cooking cycle of operation.
The first radio frequency signal 34 can be provided to the solid state amplifier 26. Solid state amplifiers 26 include the operably ability to be tunable and coherent, that is precisely controllable to amplify a specific signal, compared with a magnetron source that is not narrow band and not tunable (i.e. emits microwave signals at a changing frequency over time that is not precisely selectable). The solid state amplifier 26 can operably amplify the first radio frequency signal 34 having the first low power level to a second radio frequency signal 36 having a second high power level embodying the heating or cooking energy field utilized to heat or cook the foodstuff 16. During amplification by the solid state amplifier 26, the power level can be increased from the first low power level to the second high power level, and the predetermined switching frequency can be unchanged, or can remain constant through the power amplification process. One non-limiting embodiment of the second radio frequency signal 34 can include a second high power level of greater than 50 or 100 Watts, such as 250 Watts. The second high power level can also be described in terms of a gain, such as a 32 dB gain. While a single solid state amplifier 26 is illustrated for brevity, embodiments of the disclosure can include a plurality of solid state amplifiers 26, each amplifying a first radio frequency signal 34. The final output power of the energy field, for example from a plurality of microwave generators 18 can include 1000 Watts or more.
The second radio frequency signal 36 can then be provided to the cavity 14, for example, by way of the feeding ports 20, wherein the energy field can interact with the foodstuff 16 to heat or cook the foodstuff 16, as desired. As illustrated, the power source 17 can be electrically coupled with the control system 22, the small signal generator 24, the solid state amplifier 26, or a combination thereof, to operably supply power to the respective components. The power supplied by the power source 17 can be utilized by the respective components to, for example, generate the control signal 28 in the control system 22, generate the first radio frequency signal 34 in the small signal generator 24, amplify the first radio frequency signal 34 to the second radio frequency signal 36 in the solid state amplifier 26, or a combination thereof.
When foodstuff 16 is heated or cooked by operably utilizing such a high predetermined switching frequency, the food acts similar to a lowpass filter such that the measureable heating effect increases the cooking efficiency of the microwave. Additionally, the heating or cooking employed by the above-described embodiments can result in a more uniform or even temperature rise of the foodstuff 16, compared with conventional microwaves.
While the aforementioned description explains that the first radio frequency signal 34 having the first low power level can be amplified to the second radio frequency signal 36 having a second high power level, embodiments of the disclosure can be included wherein the control signal 28 includes representative signals indicative of the estimated or expected second radio frequency signal 36 or the estimated or expected second high power level, and wherein the first radio frequency signal 34 or the first low power level is determined or selected based on the second radio frequency signal 36 or second high power level. For example, the first radio frequency signal 34 or the first low power level can be determined, selected, or generated by the small signal generator 24 (e.g. by the control system 22 or processor 30, as explained herein, and received by way of the control signal 28) such that the first radio frequency signal 34 is amplified to the second radio frequency signal 36, wherein the microwave generator 18 operates at the maximum electrical efficiency or gain, above or higher than the electrical efficiency threshold value, within the bounds of an efficiency threshold range, maximum output power, maximum gain, or a combination thereof.
The above-described embodiment is effective in increasing or maximizing the electrical efficiency of the microwave generator 18 when the estimated or expected second radio frequency signal 36 or second high power level is known, and the amplification or gain of the solid state amplifier 26 is known to occur at a high or maximum electrical efficiency or gain. For instance, the solid state amplifier 26 can be selected such that the desired, known, or predetermined operable amplification for the microwave 10 or microwave generator 18 occurs in the compression zone of the solid state device, for improved electrical performance and efficiency.
As used herein, the “compression zone” or “gain compression” of the solid state amplifier 26 is related to the nonlinearity of the transfer function of a solid state amplifying device. Outside the range of the compression zone, the nonlinearity of the gain becomes apparent, and the efficiency of the gain is reduced due to, for example, thermal limits or thermal efficiencies of the solid state device. Stated another way, when a solid state amplifier 26 amplifier an input signal to a gained output signal outside of the compression zone, an increase in input will not be matched by a proportional increase in output, reducing the effective efficiency of the solid state amplifier 26. The compression zone can be determined, predetermined, or defined based on the selected solid state amplifier 26, and can include a “deep gain compression zone” relative to a “compression point,” that is, a zone of substantially liner amplification relative to a maximum electrical efficiency or gain point of amplification, or a zone or range about the compression point, such as plus or minus 3 dB about the compression point.
In this sense, embodiments of the disclosure can increase or maximize the electrical efficiency or gain of the microwave generator 18 by the control system 22 or processor 30 determining a desired second radio frequency signal 36 for heating or cooking the foodstuff 16, and configure, select, or determine at least a subset of the aforementioned representative signals included in or carried by the control signal 28 such that the amplification of the first radio frequency signal 34 generated by the small signal generator 24 occurs with maximum electrical efficiency or gain (e.g. based on a efficiency value or efficiency range, including amplification operation within the compression zone, deep gain compression zone, or substantially at or near the compression point, as explained above) based on operating the solid state amplifier 26 in a predetermined compression zone.
In embodiments wherein the efficiency is based on a maximum electrical efficiency or gain, the first radio frequency signal 34 can be selected such that the solid state amplifier 26 amplifies the first radio frequency signal 34 to the second radio frequency signal 36 with actual or estimated maximum electrical efficiency. In embodiments wherein the efficiency is based on an electrical efficiency above an efficiency threshold value, the first radio frequency signal 34 can be selected such that the solid state amplifier 26 amplifies the first radio frequency signal 34 to the second radio frequency signal 36 with actual or estimated electrical efficiency greater than the efficiency threshold value. In embodiments wherein the efficiency is based on an electrical efficiency threshold range, the first radio frequency signal 34 can be selected such that the solid state amplifier 26 amplifies the first radio frequency signal 34 to the second radio frequency signal 36 with actual or estimated electrical efficiency within the bounds of the electrical efficiency threshold range.
Alternatively, or in addition to the above-described embodiment, embodiments of the disclosure can include configurations wherein the amplification of the first radio frequency signal 34 by the solid state amplifier 26 operates such that the first radio frequency signal 34 is amplified to the second radio frequency signal 36 such that the second radio frequency signal 36 includes the maximum output power or maximum gain operable for the solid state amplifier 26. This embodiment can include operating the solid state amplifier 26 in a maximum output power region or a maximum gain region of the amplifier 26, compared with a maximum electrical efficiency, described herein.
The determination of electrical efficiency or gain can further account for the actual or expected duty cycle or predetermined switching frequency of the first or second radio frequency signal 34, 36 during operation. In yet another example embodiment of the disclosure the control system 22 or processor 30 can select or define an expected duty cycle or predetermined switching frequency for the first or second radio frequency signal 34, 36 to maximize the electrical efficiency or gain of the microwave generator 18, as explained herein.
Sensing or measuring the power of at least the first or second radio frequency signal 34, 36 can include determining a value indicative of or related to the power level of the respective signal, rather than directly sensing or measuring the power itself. The sensed or measured values can be provided to additional components. For instance, the value can be provided to a control system 22 or processor 30, and the control system 22 or processor 30 can perform processing on the value to determine a power level of the respective signal or a characteristic representative of said power level.
The second embodiment of the disclosure can utilize the at least one power sensor 140 provide feedback to the control system 22 or processor 30 of the actual power levels of at least the first or second radio frequency signals 34, 36. The feedback can enable the control system 22 or the processor 30 to, for example, estimate, calculate, or determined the compression zone of the solid state amplifier 26, or any other power level useful in estimating or determining the electrical efficiency or gain of the microwave 110 or the microwave generator 118. In this sense, the control system 22 or processor 30 can determine the maximum electrical efficiency or gain (as described above) based on the sensed power from the at least one power sensor 140.
Many other possible embodiments and configurations in addition to that shown in the above figures are contemplated by the present disclosure.
The technical effect of the above described embodiments enable a method and apparatus for delivering radio frequency electromagnetic energy to cook foodstuff in a cooking device, such as a microwave. One advantage that can be realized in the above embodiments is that the above described embodiments have superior electrical operating efficiency compared to conventional microwave systems. Additionally, by operating the energy field at the predetermined switching frequency, the measurable heating effects on the foodstuff are consistent over the high efficiency cooking period. Compare this with the heating effects while cooking foodstuff with a conventional microwave, wherein the significantly longer or slower switching periods (on the order of seconds) produce measureable heating effects followed by a sudden temperature decrease as the energy field is shut down, producing undesirable cooking temperature oscillations. The aforementioned oscillations in cooking temperature reduce the effective cooking efficiency or performance of the microwave.
To the extent not already described, the different features and structures of the various embodiments can be used in combination with each other as desired. That one feature cannot be illustrated in all of the embodiments is not meant to be construed that it cannot be, but is done for brevity of description. Thus, the various features of the different embodiments can be mixed and matched as desired to form new embodiments, whether or not the new embodiments are expressly described. Moreover, while “a set of” or “a plurality of” various elements have been described, it will be understood that “a set” or “a plurality” can include any number of the respective elements, including only one element. Combinations or permutations of features described herein are covered by this disclosure.
This written description uses examples to disclose embodiments of the disclosure, including the best mode, and also to enable any person skilled in the art to practice embodiments of the disclosure, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the disclosure is defined by the claims, and can include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/015363 | 1/28/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/131698 | 8/3/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2742612 | Cohn | Apr 1956 | A |
2956143 | Schall | Oct 1960 | A |
2958754 | Hahn | Nov 1960 | A |
2981904 | Ajioka et al. | Apr 1961 | A |
3260832 | Johnson | Jul 1966 | A |
3265995 | Hamasaki | Aug 1966 | A |
3430023 | Tingley | Feb 1969 | A |
3440385 | Smith | Apr 1969 | A |
3489135 | Astrella | Jan 1970 | A |
3536129 | White | Oct 1970 | A |
3639717 | Mochizuki | Feb 1972 | A |
3731035 | Jarvis et al. | May 1973 | A |
3737812 | Gaudio et al. | Jun 1973 | A |
3812316 | Milburn | May 1974 | A |
4000390 | Graff | Dec 1976 | A |
4088861 | Zwillinger | May 1978 | A |
D248607 | Yamamura et al. | Jul 1978 | S |
4101750 | Doner | Jul 1978 | A |
4107502 | Tanaka et al. | Aug 1978 | A |
4136271 | Tanaka et al. | Jan 1979 | A |
4139828 | Commault et al. | Feb 1979 | A |
4143646 | Sampsel et al. | Mar 1979 | A |
4166207 | Burke | Aug 1979 | A |
4196332 | MacKay et al. | Jan 1980 | A |
4264800 | Jahnke et al. | Apr 1981 | A |
4283614 | Tanaka et al. | Aug 1981 | A |
4321445 | Kristof et al. | Mar 1982 | A |
4354562 | Newman | Oct 1982 | A |
4374319 | Guibert | Feb 1983 | A |
D268079 | Miyake et al. | Mar 1983 | S |
4463324 | Rolfs | Jul 1984 | A |
D275546 | Tanaka et al. | Sep 1984 | S |
D276122 | Tanaka et al. | Oct 1984 | S |
D277355 | Miyake et al. | Jan 1985 | S |
4595827 | Hirai et al. | Jun 1986 | A |
D285893 | Mizuma et al. | Sep 1986 | S |
4628351 | Heo | Dec 1986 | A |
4673800 | Hirai et al. | Jun 1987 | A |
4703151 | Sakamoto | Oct 1987 | A |
4743728 | Nagafusa et al. | May 1988 | A |
D297698 | Nishikawa et al. | Sep 1988 | S |
D297800 | Feil et al. | Sep 1988 | S |
4786774 | Kaminaka | Nov 1988 | A |
D303063 | Satake | Aug 1989 | S |
4870238 | Hodgetts et al. | Sep 1989 | A |
4886046 | Welch et al. | Dec 1989 | A |
4937413 | Spruytenburg et al. | Jun 1990 | A |
4999459 | Smith et al. | Mar 1991 | A |
5075525 | Jung | Dec 1991 | A |
D330144 | Takebata et al. | Oct 1992 | S |
5369254 | Kwon | Nov 1994 | A |
D353511 | Saimen | Dec 1994 | S |
5483045 | Gerling | Jan 1996 | A |
5546927 | Lancelot | Aug 1996 | A |
5558800 | Page | Sep 1996 | A |
D378723 | Weiss | Apr 1997 | S |
5619983 | Smith | Apr 1997 | A |
D385155 | Weiss et al. | Oct 1997 | S |
5735261 | Kieslinger | Apr 1998 | A |
5831253 | Han et al. | Nov 1998 | A |
5878910 | Gibernau et al. | Mar 1999 | A |
D411074 | Sakai et al. | Jun 1999 | S |
5919389 | Uehashi et al. | Jul 1999 | A |
5928540 | Antoine et al. | Jul 1999 | A |
5973305 | Kim et al. | Oct 1999 | A |
5981929 | Maeda et al. | Nov 1999 | A |
6018158 | Kang | Jan 2000 | A |
6054696 | Lewis et al. | Apr 2000 | A |
6057535 | Derobert et al. | May 2000 | A |
6097019 | Lewis et al. | Aug 2000 | A |
6268593 | Sakai | Jul 2001 | B1 |
6359270 | Bridson | Mar 2002 | B1 |
6429370 | Norte et al. | Aug 2002 | B1 |
6433321 | Lee | Aug 2002 | B1 |
6557756 | Smith | May 2003 | B1 |
6559882 | Kerchner | May 2003 | B1 |
D481582 | Seum et al. | Nov 2003 | S |
6664523 | Kim et al. | Dec 2003 | B1 |
6696678 | Hudson et al. | Feb 2004 | B2 |
D495556 | Milrud et al. | Sep 2004 | S |
6853399 | Gilman et al. | Feb 2005 | B1 |
6975525 | Kernahan | Dec 2005 | B2 |
D521799 | Ledingham et al. | May 2006 | S |
D522801 | Lee | Jun 2006 | S |
D527572 | Lee et al. | Sep 2006 | S |
7105787 | Clemen, Jr. | Sep 2006 | B2 |
7111247 | Choi et al. | Sep 2006 | B2 |
D530973 | Lee et al. | Oct 2006 | S |
D531447 | Lee et al. | Nov 2006 | S |
D532645 | Lee | Nov 2006 | S |
7193195 | Lundstrom et al. | Mar 2007 | B2 |
D540105 | Lee et al. | Apr 2007 | S |
D540613 | Jeon | Apr 2007 | S |
D550024 | Jeon | Sep 2007 | S |
7361871 | Cho et al. | Apr 2008 | B2 |
D568675 | Kawata | May 2008 | S |
7476828 | Genua | Jan 2009 | B2 |
7482562 | Song et al. | Jan 2009 | B2 |
D586619 | Pino et al. | Feb 2009 | S |
D587959 | Hensel | Mar 2009 | S |
7556033 | Kim | Jul 2009 | B2 |
D602306 | Lavy | Oct 2009 | S |
7770985 | Davis et al. | Aug 2010 | B2 |
D625557 | Pino et al. | Oct 2010 | S |
D626370 | Baek | Nov 2010 | S |
7919735 | Kiyono et al. | Apr 2011 | B2 |
7926313 | Schenkl et al. | Apr 2011 | B2 |
D638249 | Ryan et al. | May 2011 | S |
8074637 | Yamauchi | Dec 2011 | B2 |
D655970 | De'Longhi | Mar 2012 | S |
D658439 | Curtis et al. | May 2012 | S |
D662759 | Blacken et al. | Jul 2012 | S |
D663156 | Curtis et al. | Jul 2012 | S |
D670529 | Hensel | Nov 2012 | S |
D673000 | De'Longhi | Dec 2012 | S |
D673418 | Lee et al. | Jan 2013 | S |
D678711 | Reiner | Mar 2013 | S |
8389916 | Ben-Shmuel et al. | Mar 2013 | B2 |
8455803 | Danzer et al. | Jun 2013 | B2 |
8492686 | Bilchinsky et al. | Jul 2013 | B2 |
8530807 | Niklasson et al. | Sep 2013 | B2 |
8610038 | Hyde et al. | Dec 2013 | B2 |
8745203 | McCoy | Jun 2014 | B2 |
8803051 | Lee et al. | Aug 2014 | B2 |
D717579 | Gregory et al. | Nov 2014 | S |
9040879 | Libman et al. | May 2015 | B2 |
D736554 | Steiner et al. | Aug 2015 | S |
D737620 | Miller et al. | Sep 2015 | S |
D737622 | Miller et al. | Sep 2015 | S |
9131543 | Ben-Shmuel et al. | Sep 2015 | B2 |
9132408 | Einziger et al. | Sep 2015 | B2 |
9179506 | Sim et al. | Nov 2015 | B2 |
9210740 | Libman et al. | Dec 2015 | B2 |
9215756 | Bilchinsky et al. | Dec 2015 | B2 |
9351347 | Torres et al. | May 2016 | B2 |
9374852 | Bilchinsky et al. | Jun 2016 | B2 |
D769669 | Kim et al. | Oct 2016 | S |
9560699 | Zhylkov et al. | Jan 2017 | B2 |
9585203 | Sadahira et al. | Feb 2017 | B2 |
20040074760 | Portnoff et al. | Apr 2004 | A1 |
20050162335 | Ishii | Jul 2005 | A1 |
20060289526 | Takizaki et al. | Dec 2006 | A1 |
20090134155 | Kim et al. | May 2009 | A1 |
20100176121 | Nobue et al. | Jul 2010 | A1 |
20100187224 | Hyde et al. | Jul 2010 | A1 |
20110031236 | Ben-Shmuel et al. | Feb 2011 | A1 |
20110168699 | Oomori et al. | Jul 2011 | A1 |
20110290790 | Sim et al. | Dec 2011 | A1 |
20120067872 | Libman et al. | Mar 2012 | A1 |
20120103972 | Okajima | May 2012 | A1 |
20120152939 | Nobue et al. | Jun 2012 | A1 |
20120160830 | Bronstering | Jun 2012 | A1 |
20130048881 | Einziger et al. | Feb 2013 | A1 |
20130080098 | Hadad et al. | Mar 2013 | A1 |
20130142923 | Torres et al. | Jun 2013 | A1 |
20130156906 | Raghavan et al. | Jun 2013 | A1 |
20130186887 | Hallgren et al. | Jul 2013 | A1 |
20130200066 | Gelbart et al. | Aug 2013 | A1 |
20130277353 | Joseph et al. | Oct 2013 | A1 |
20140197161 | Dobie | Jul 2014 | A1 |
20140203012 | Corona et al. | Jul 2014 | A1 |
20140208957 | Imai et al. | Jul 2014 | A1 |
20140277100 | Kang | Sep 2014 | A1 |
20150034632 | Brill et al. | Feb 2015 | A1 |
20150070029 | Libman et al. | Mar 2015 | A1 |
20150136758 | Yoshino et al. | May 2015 | A1 |
20150156827 | Ibragimov et al. | Jun 2015 | A1 |
20150173128 | Hosokawa et al. | Jun 2015 | A1 |
20150271877 | Johansson | Sep 2015 | A1 |
20150289324 | Rober et al. | Oct 2015 | A1 |
20150305095 | Huang et al. | Oct 2015 | A1 |
20150334788 | Hofmann et al. | Nov 2015 | A1 |
20150373789 | Meusburger et al. | Dec 2015 | A1 |
20160029442 | Houbloss et al. | Jan 2016 | A1 |
20160088690 | Kubo et al. | Mar 2016 | A1 |
20160119982 | Kang et al. | Apr 2016 | A1 |
20160219656 | Hunter, Jr. | Jul 2016 | A1 |
20160327281 | Bhogal et al. | Nov 2016 | A1 |
20160353528 | Bilchinsky et al. | Dec 2016 | A1 |
20160353529 | Omori et al. | Dec 2016 | A1 |
20170099988 | Matloubian et al. | Apr 2017 | A1 |
20170105572 | Matloubian et al. | Apr 2017 | A1 |
Number | Date | Country |
---|---|---|
1523293 | Aug 2004 | CN |
2935699 | Aug 2007 | CN |
101118425 | Feb 2008 | CN |
201081287 | Jul 2008 | CN |
102012051 | Apr 2011 | CN |
102620324 | Aug 2012 | CN |
103156532 | Jun 2013 | CN |
203025135 | Jun 2013 | CN |
105042654 | Nov 2015 | CN |
204987134 | Jan 2016 | CN |
106103555 | Nov 2016 | CN |
3238441 | Apr 1984 | DE |
102004002466 | Aug 2005 | DE |
102008042467 | Apr 2010 | DE |
0199264 | Oct 1986 | EP |
0493623 | Aug 1992 | EP |
1193584 | Mar 2002 | EP |
1424874 | Jun 2004 | EP |
1426692 | Jun 2004 | EP |
1471773 | Oct 2004 | EP |
1732359 | Dec 2006 | EP |
1795814 | Jun 2007 | EP |
1970631 | Sep 2008 | EP |
2031938 | Mar 2009 | EP |
2205043 | Jul 2010 | EP |
2230463 | Sep 2010 | EP |
2220913 | May 2011 | EP |
2512206 | Oct 2012 | EP |
2405711 | Nov 2012 | EP |
2618634 | Jul 2013 | EP |
2775794 | Sep 2014 | EP |
2906021 | Aug 2015 | EP |
2393339 | Dec 2016 | EP |
2766272 | Jan 1999 | FR |
2976651 | Dec 2012 | FR |
639470 | Jun 1950 | GB |
1424888 | Feb 1976 | GB |
2158225 | Nov 1985 | GB |
2193619 | Feb 1988 | GB |
2367196 | Mar 2002 | GB |
S55155120 | Dec 1980 | JP |
57194296 | Dec 1982 | JP |
59226497 | Dec 1984 | JP |
H0510527 | Jan 1993 | JP |
H06147492 | May 1994 | JP |
8-171986 | Jul 1996 | JP |
2000304593 | Nov 2000 | JP |
2008060017 | Mar 2008 | JP |
2008108491 | May 2008 | JP |
2011146143 | Jul 2011 | JP |
2013073710 | Apr 2013 | JP |
2050002121 | Jul 2005 | KR |
101359460 | Feb 2014 | KR |
20160093858 | Aug 2016 | KR |
2122338 | Nov 1998 | RU |
2215380 | Oct 2003 | RU |
2003111214 | Nov 2004 | RU |
2003122979 | Feb 2005 | RU |
2008115817 | Oct 2009 | RU |
2008137844 | Mar 2010 | RU |
8807805 | Oct 1988 | WO |
0036880 | Jun 2000 | WO |
02065036 | Aug 2002 | WO |
03077601 | Sep 2003 | WO |
2008018466 | Feb 2008 | WO |
2008102360 | Aug 2008 | WO |
2009039521 | Mar 2009 | WO |
2011138680 | Nov 2011 | WO |
2012001523 | Jan 2012 | WO |
2012162072 | Nov 2012 | WO |
2011039961 | Feb 2013 | WO |
2015024177 | Feb 2015 | WO |
2015099648 | Jul 2015 | WO |
2015099650 | Jul 2015 | WO |
2015099651 | Jul 2015 | WO |
2016128088 | Aug 2016 | WO |
2017190792 | Nov 2017 | WO |
Number | Date | Country | |
---|---|---|---|
20190045589 A1 | Feb 2019 | US |