The present disclosure relates to navigation of medical devices within a subjects body, including complex composite surgical devices, and more particularly to the use of magnetic navigation for the performance of heart surgery interventions, such as electrophysiology ablation therapy.
A variety of techniques are currently available to physicians for performing minimally invasive cardiac electrical and electrophysiological disorder repair. For example, magnetic steering techniques provide computer-assisted control of a catheter tip while allowing an operating physician to remain outside the operating room x-ray field.
When navigating medical devices by mechanical means, the need to transfer a proximally applied push force, and more critically, the need to effect a distal rotation through proximally applied torque leads to a relatively high device stiffness requirement. Device stiffness, in turn, limits device tip flexibility, maneuverability, and ability to maintain tissue contact during a cardiac cycle, resulting in relatively unpredictable ablation properties and therapy results.
The present invention relates to the navigation of medical devices for surgical heart interventions, such as heart wall tissue ablation and cardiac rhythm restoration in electrophysiology procedures, and similar minimally invasive heart surgeries.
In one embodiment of the present invention, medical devices enabling improved ablation therapy control and performance are disclosed.
In another embodiment of the present invention, various embodiments of a method are disclosed that facilitate control of an ablation therapy by providing well-defined, measurable, and unambiguous local ablation endpoint measures.
In a further aspect of the present invention, various embodiments of a system for the improved performance of ablative heart therapy and related procedures are disclosed.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
Throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.
The various embodiments of the invention provide for devices, methods, and systems for enhanced performance of ablative procedures within a subject's body through the use of specifically designed measurement instruments, controls, ablative energy devices, guidewires, and catheters. These improvements can lead to highly accurate device positioning, significantly shorter intervention times, and improved cardiac therapy results.
An elongate navigable medical device 120 having a proximal end 122 and a distal end or tip 124 is provided for use in an interventional system 100, as shown in
As shown in
In closed loop implementations, navigation controller 178 automatically provides input commands to the system magnet(s) and device actuation sub-system 140, based on feedback data and previously provided navigation input instructions. In semi-closed loop implementations, the physician fine-tunes the navigation control, based in part upon feedback and imaging data. Control commands and feedback data may be communicated from the user interface 160 and controller 178 to the device and from the device, back to the feedback block 174, through cables or other means, such as wireless communications and interfaces.
As known in the art, system 100 comprises an electromechanical device actuation block 140 controlling a device advancer 142 capable of precise device advance and retraction, based on corresponding control commands. Deflection actuation sub-block 144, controls device tip deflection; several deflection modalities that allow computer controlled navigation are known in the art, such as magnetic navigation, mechanical pull wire actuation, electrostrictive or magnetostrictive deflection, hydraulic methods, among others. In specific applications, such as in electrophysiology, cardiac wall tissue ablation is performed in order to destroy diseased tissues, including sites of spurious secondary electrical activity or to isolate such sites from essential cardiac structures that may otherwise suffer from fibrillation or asynchronous stimulation. Block 180 in
After having been navigated to contact the atrial wall at precise target location 182, and subsequent to verification of the quality of contact between the catheter tip and the target tissues, the ablation catheter electrode is energized to perform cardiac wall tissue ablation per the therapeutic needs established during electrophysiological disorder diagnostic and characterization. During the ablation time, the tissue target 182 moves as a consequence of the cardiac rhythm, as schematically illustrated by arrow 196 The specific magnetic navigation catheter features, including softness and flexibility, make it possible for the ablation catheter tip to remain precisely positioned on the cardiac wall at tissue target 182 during the entire ablation treatment. Further, these features also allow maintaining a device tip contact quality appropriate for ablation energy delivery during one or more cardiac cycles within the ablative phase.
Radio-frequency (RF) power delivery and resulting tissue ablation treatment, constitutes a standard interventional procedure part of the arsenal of therapies available to modern medicine for the treatment of cardiac arrhythmias. It is usually performed with a catheter comprising a shaped conducting electrode tip that when energized, delivers RF energy to cardiac tissue. While such procedures are often performed manually, technological advances have been implemented that enable computer-controlled navigational steering and improved access to desired cardiac target locations. Such novel technologies include magnetic navigation systems and advances made thereto.
An example of such advances relating to device distal orientation and associated contact quality control is described in PCT application PCT/US05/46641, incorporated herein by reference. In PCT application PCT/US05/46641 assigned to Stereotaxis and entitled “contact over torque with three-dimensional anatomical data,” a method of improving contact between a magnetic catheter distal tip and a three-dimensional tissue surface is disclosed that comprises obtaining a target location on the surface for the device tip to contact, obtaining local surface geometry information in a neighborhood of the target location, and using this information to determine a change of at least one control variable for effecting an over-torque of the medical device to enhance contact of the device with the target surface.
In general, when a lesion is created by delivery of RF energy, achieving a transmural lesion is a desirable feature, where the lesion extends most or all the way through the cardiac wall thickness. However, for safety reasons, the lesion must not create a hole or perforation through the cardiac wall. In current practice, as RF energy is being delivered, the temperature at the tip of the catheter is monitored with the aid of a thermocouple, or other temperature sensing device embedded in the catheter tip, and a temperature cutoff limits RF energy delivery to prevent excessive ablation. Unfortunately in some cases, the catheter tip temperature is highly dependent on unknown local conditions near the catheter tip, and the local tissue temperature of relevance can in fact, be quite different from the measured catheter tip temperature.
Therefore, there is a need to provide a reliable parametric measure of when RF energy delivery should cease during ablative therapy. The present invention provides such a measure whenever a stable catheter tip-tissue contact exists, as is typically the case when using a magnetic navigation system to steer an interventional device distal tip and maintain its contact with tissue as well as to maintain contact quality.
In a magnetic navigation system, external magnets are used to generate a desired magnetic field 192 within the navigation volume, as illustrated in
If the tip of the device is contacting a given location on the cardiac wall, as the wall moves with the heartbeat, the tip will tend to maintain contact at the same wall location due to a combination of two factors: the tendency of the tip to stay aligned with the magnetic field and the flexible nature of the catheter shaft that allows it to easily buckle proximally to the tip magnet as the wall moves. Furthermore, the variation in tip/tissue contact force over a cardiac cycle is smaller for a (soft) magnetic catheter than it is for stiffer non-magnetic catheters, resulting in generally more consistent contact force and overall contact quality over a cardiac cycle. These properties lead to increased stability in tip/tissue impedance readings, enabling the use of contact impedance as a parameter that can be monitored to indicate sufficient delivery of RF energy for transmural ablation. The magnetic catheter is also equipped with a sensor for obtaining high-resolution position and orientation information associated with the catheter tip. This information can be used by the magnetic navigation system to enhance contact and ensure that stable and high-quality tip/tissue contact is maintained.
In the application, schematically illustrated in
A key observation underlying the present invention is that during ablation with a magnetic catheter, a drop in local impedance (as measured through the catheter tip) occurs, with the drop from baseline (pre-ablative) to post-ablative impedance in the 5-12 ohm range. More specifically, a drop in measured impedance value of magnitude in the range 8-12 ohm typically indicates that sufficient RF energy has been delivered to obtain a transmural lesion. This drop in impedance value of a magnetic catheter in stable contact with the cardiac wall can thus be used as an indication of transmural lesion achievement, and delivery of RF energy can be stopped when this drop has been measured or observed, Alternatively to an absolute value of the impedance drop, a percentage drop in impedance can also be used as a measure to specify sufficiency of RF energy delivery; thus, starting from a baseline impedance value at the target location, an impedance drop in the approximate range 5-20%, and more specifically in the range 8-15%, indicates creation of a transmural lesion.
As illustrated in
It is important to note that the impedance-based ablation cutoff measure could be used by itself in one preferred embodiment, or in an alternative embodiment, it could be combined with an intra-cardiac ECG amplitude-based cutoff. Thus for instance in the latter embodiment, if the intra-cardiac ECG amplitude has dropped by 80%, and the impedance drop has reached a threshold value, then RF energy delivery is stopped.
Such an impedance-based measure of ablation effectiveness is also useful with a high-power RF catheter, such as for instance an irrigated catheter (that uses a flowing saline solution to carry away excess heat from the catheter tip), or with a catheter with a relatively short tip electrode (in the approximate length range 2-4 mm), or both.
In one preferred embodiment, the remote navigation system can communicate with the RF generator and receive realtime data including impedance information, and instruct the RF generator to turn off power delivery when an appropriate impedance endpoint, an ECG-based endpoint, or combination thereof has been achieved.
Thus, an RF generator circuit impedance measurement along with knowledge of the navigational state of a catheter can be used to control the delivery of energy for the purpose of delivering only as much RF energy as is necessary to achieve a clinically effective lesion and to stop RF energy delivery prior to the onset of an adverse event.
Although the present invention has been described with respect to several exemplary embodiments, there are many other variations of the above-described embodiments that will be apparent to those skilled in the art, even where elements have not explicitly been designated as exemplary. It is understood that these modifications are within the teaching of the present invention, which is to be limited only by the claims appended hereto.
This application claims priority to U.S. Provisional Patent Application Ser. No. 61/031,318, filed Feb. 25, 2008. The disclosure of the above-referenced application is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61031318 | Feb 2008 | US |