This application claims the priority of German patent document 10 2006 052 592.2, filed Nov. 8, 2006, the disclosure(s) of which is (are) expressly incorporated by reference herein.
The invention relates to a method and apparatus for depositing large textile fiber webs, particularly made of carbon fibers, for the manufacturing of fiber-reinforced plastic components (for example, CFCs, GFRPs, etc). Textile fiber webs of such a large size are those of a width of at least 500 mm.
An automatic depositing process for individual continuous fiber rovings is disclosed, for example, in German Patent Document DE 42 12 135 C2. In addition, mechanical depositing processes are also known for preimpregnated CFC strips, so-called tapes (U.S. Pat. No. 4,997,508). Since, as a result of their preimpregnation, these tapes are fixed immediately during their depositing, automatic processing can be carried out without difficulty. As a rule, the width of these tapes is only a few centimeters.
Heretofore, large textile fiber webs made of carbon fibers (for example, in the form of layings of a width of 1.27 m—corresponding to 50 inches—and of a length of up to 6 m), such as are used in airplane construction, could only be laid manually. However, manual depositing of such large laid webs can take place with only limited precision. Gaps occur between adjacent webs as well as waviness within a web.
German Patent Document DE 697 17 053 T2 describes a tape application head for producing sandwich-type plates by depositing textile fiber tapes. The end of the textile fiber tape, which is preimpregnated with resin and is to be deposited, is placed on a component shape. By displacing the tape application head, the textile fiber web is unwound from the roll and is deposited on the component shape. By means of a roller, the textile fiber web are draped simultaneously with the depositing.
European Patent Document EP 1 334 819 A1 describes a process for depositing preimpregnated fiber tapes, such that the alignment of the deposited tapes is continuously monitored by means of a camera. In addition, devices are provided by means of which the depositing operation is continuously monitored with respect to a predefined depositing rate.
European Patent Document EP 0 680 818 A2 describes a system for depositing preimpregnated, very thin fiber tapes. Movably disposed rolls are provided for the depositing of the fiber tape as well as for its compacting.
It is an object of the invention to provide a process for depositing large textile fiber webs, which achieves good quality of the manufactured fiber-reinforced plastic components, and which avoids fiber gaps, fiber waviness and fiber drawing, even in the case of complicated surface shapes.
This and other objects and advantages are achieved by the invention, which provides a fully automatic process for depositing large textile fiber webs, particularly made of carbon fibers, glass fibers or aramid fibers. In comparison to the manual process, the component quality is improved; in particular a fiber draft can largely be avoided and a good adaptation to the component shape can be achieved.
The textile fiber webs to be deposited are present in the form of dry materials; that is, they are not pre-impregnated by means of resin. They obtain their gluing properties, for example, by means of a thermoplastic binder nonwoven which is applied to the surface and melts under the effect of heat.
Dry textile fiber webs have the advantage that the individual fibers are fastened differently than in the case of pre-impregnated materials in that they remain movable within the fiber structure. By means of the draping operation, the textile fiber webs can therefore very easily be adapted to a curved component surface. In this case, the draping operation includes not only a compacting of the fiber material, but also a change of the fiber angles takes place within the fiber structure. The course of the fibers with respect to one another will change. As a result of this flexibility of the dry fiber material, it is possible to deposit large textile fiber webs of a width of 500 mm or more.
In order to achieve the adaptation to curved surfaces, according to the invention, high flexibility and mobility draping devices are used. In particular, these may be in the form of sliding metal sheets or movably disposed rolls.
In preferred embodiments, the textile fiber webs to be deposited have a surface of at least 3 m2.
One textile fiber web may be present particularly as a laying (several rovings laid above one another and fixed, for example sewn together) or as a woven (individual fibers woven to one another). As a rule, the textile fiber webs have parallel edges, but the webs may be contoured arbitrarily (for example, having curved edges at least in sections).
Other objects, advantages and novel features of the present invention will become apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawings.
The cloth gripper 5 carried by a second robot 50 is moved into its position. The cloth unwinding stand 11 positions the edge of the textile fiber web 10 over a receiving slot 7 (
In a further process step, illustrated in
The path, along which the textile fiber web 10 is to be deposited, can be defined, for example, by means of an optical web edge control, shown in
During depositing, it must be ensured that the textile fiber web 10 can be deposited in a uniform manner, and thus at a constant depositing rate (deposited textile fiber surface per time unit). Tensions in the fiber material as well as wave formations in the deposited textile fiber web are to be avoided. For this purpose, the linear movement of the table 40 or of the cloth unwinding stand 11 and the rotating movement of the roll 1 must be mutually coordinated. Continuous control is therefore necessary because, unwinding of the textile fiber web from the roll changes its diameter continuously.
One way of ensuring a uniform depositing is to determine continuously the diameter of the roll 1. As illustrated in
Another possibility for automatically adjusting a uniform depositing is the use of the so-called dancer roll 17, as illustrated in
Another possibility for automatically adjusting a uniform depositing, which is not shown in the figures, can be achieved by using a light barrier. By way of a difference in brightness, the latter determines the relative position of that section of the textile fiber web that is momentarily situated between the roll and the depositing table to be a desired value. A regulator circuit correspondingly regulates the rotational speed of the motor.
In the process according to the invention the applied textile fiber web is draped and fixed isochronously with the depositing, as is illustrated in two different embodiments contained in
In
According to the embodiment of
The cutting off of the textile fiber web 10 takes place along the component contour at the end of the deposited web, as illustrated in
The foregoing disclosure has been set forth merely to illustrate the invention and is not intended to be limiting. Since modifications of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed to include everything within the scope of the appended claims and equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
102006052592.2 | Nov 2006 | DE | national |