Method and apparatus for detecting and interpreting price label text

Information

  • Patent Grant
  • 11600084
  • Patent Number
    11,600,084
  • Date Filed
    Friday, May 5, 2017
    7 years ago
  • Date Issued
    Tuesday, March 7, 2023
    a year ago
Abstract
A method of price text detection by an imaging controller comprises obtaining, by the imaging controller, an image of a shelf supporting labels bearing price text, generating, by the imaging controller, a plurality of text regions containing candidate text elements from the image, assigning, by the imaging controller, a classification to each of the text regions, selected from a price text classification and a non-price text classification. The imaging controller, within each of a subset of the text regions having the price text classification: detects a price text sub-region and generates a price text string by applying character recognition to the price text sub-region. The method further includes presenting, by the imaging controller, the locations of the subset of text regions, in association with the corresponding price text strings.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is related to U.S. patent application Ser. No. 15/583,801, entitled “METHOD AND APPARATUS FOR EXTRACTING AND PROCESSING PRICE TEXT FROM AN IMAGE SET” by Zhang et al. and Ser. No. 15/583,786, entitled “METHOD AND APPARATUS FOR LABEL DETECTION” by Lam, as well as U.S. Provisional Patent Application No. 62/492,670, entitled “PRODUCT STATUS DETECTION SYSTEM” by Perrella et al., all having the filing date of May 1, 2017. The contents of the above-reference applications are incorporated herein by reference in their entirety.


BACKGROUND

Environments in which inventories of objects are managed, such as products for purchase in a retail environment, may be complex and fluid. For example, a given environment may contain a wide variety of objects with different attributes (size, shape, price and the like). Further, the placement and quantity of the objects in the environment may change frequently. Still further, imaging conditions such as lighting may be variable both over time and at different locations in the environment. These factors may reduce the accuracy with which information concerning the objects may be collected within the environment.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The accompanying figures, where like reference numerals refer to identical or functionally similar elements throughout the separate views, together with the detailed description below, are incorporated in and form part of the specification, and serve to further illustrate embodiments of concepts that include the claimed invention, and explain various principles and advantages of those embodiments.



FIG. 1 is a schematic of a mobile automation system.



FIG. 2 is a block diagram of certain internal hardware components of the server in the system of FIG. 1.



FIG. 3 is a flowchart of a method of price text detection and interpretation.



FIG. 4 is a shelf image employed as input to the method of FIG. 3.



FIG. 5A illustrates example label formats processed in the method of FIG. 3.



FIG. 5B depicts a portion of the image of FIG. 4 during the performance of block 310 of the method of FIG. 3.



FIG. 6 depicts the image portion of FIG. 5B following the performance of block 310 of the method of FIG. 3.



FIGS. 7A-7B illustrate the generation of feature descriptors during the performance of the method of FIG. 3.



FIGS. 8-10A depict the processing of a text region during the performance of block 325 of the method of FIG. 3.



FIG. 10B is a price text sub-region detected during the performance of the method of FIG. 3.





Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the present invention.


The apparatus and method components have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present invention so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein.


DETAILED DESCRIPTION

Environments such as warehouses, retail locations (e.g. grocery stores) and the like typically contain a wide variety of products supported on shelves, for selection and purchase by customers. The products are generally labelled—for example, via a label placed on a shelf edge, or directly on the product itself—with information such as the price of the product, an identifier such as a SKU number, and the like. Such environments typically also store reference data relating to the products, for example in a central database, which is consulted by point-of-sale terminals during customer checkout to retrieve price information for the products being purchased. In some cases, the price physically labelled on or near the product on the shelves may not match the price stored in the above-mentioned database, leading to a conflict between the label price and the reference price at the point-of-sale terminal.


Mismatches between label and reference prices may require corrective action at one or both of the label and the central database. However, detecting such mismatches in order to allow corrective action to be taken is conventionally performed by human employees, via visual assessment of the shelves and manual barcode scanning. This form of detection is labor-intensive and therefore costly, as well as error-prone.


Attempts to automate the detection of such mismatches require the detection of the labelled price before an assessment may be conducted as to whether the label price matches the reference price. Various factors impede the accurate autonomous detection and interpretation of labelled prices, however. For example, in a retail environment in which a wide variety of products are arranged on shelves, many of the products themselves bear text (such as brand names, product names, ingredient lists and so on) that does not represent the price of the product. Further, the characters or text that do indicate the price of a product may be displayed in close proximity to other text on a label, rendering the detection and correct interpretation of the price by machine vision techniques difficult.


Examples disclosed herein are directed to a method of price text detection, comprising: obtaining an image of a shelf supporting labels bearing price text; generating a plurality of text regions containing candidate text elements from the image; assigning a classification to each of the text regions, selected from a price text classification and a non-price text classification; within each of a subset of the text regions having the price text classification: detecting a price text sub-region; and generating a price text string by applying character recognition to the price text sub-region; and presenting the locations of the subset of text regions, in association with the corresponding price text strings.



FIG. 1 depicts a mobile automation system 100 in accordance with the teachings of this disclosure. The system 100 includes a server 101 in communication with at least one mobile automation apparatus 103 (also referred to herein simply as the apparatus 103) and at least one mobile device 105 via communication links 107, illustrated in the present example as including wireless links. The system 100 is deployed, in the illustrated example, in a retail environment including a plurality of shelf modules 110 each supporting a plurality of products 112. The shelf modules 110 are typically arranged in a plurality of aisles, each of which includes a plurality of modules aligned end-to-end. More specifically, the apparatus 103 is deployed within the retail environment, and communicates with the server 101 (via the link 107) to at least partially autonomously navigate the length of at least a portion of the shelves 110. The apparatus 103 is equipped with a plurality of navigation and data capture sensors 104, such as image sensors (e.g. one or more digital cameras) and depth sensors (e.g. one or more lidar sensors), and is further configured to employ the sensors to capture shelf data. In the present example, the apparatus 103 is configured to capture a series of digital images of the shelves 110, as well as a series of depth measurements, each describing the distance and direction between the apparatus 103 and one or more points on a shelf 110.


The server 101 includes a special purpose imaging controller, such as a processor 120, specifically designed to control the mobile automation apparatus 103 to capture data, obtain the captured data via the communications interface 124 and store the captured data in a repository 132 in the memory 122. The server 101 is further configured to perform various post-processing operations on the captured data and to detect the status of the products 112 on the shelves 110. When certain status indicators are detected by the imaging processor 120, the server 101 is also configured to transmit status notifications (e.g. notifications indicating that products are out-of-stock, low stock or misplaced) to the mobile device 105. The processor 120 is interconnected with a non-transitory computer readable storage medium, such as a memory 122, having stored thereon computer readable instructions for executing price text detection and interpretation, as discussed in further detail below. The memory 122 includes a combination of volatile (e.g. Random Access Memory or RAM) and non-volatile memory (e.g. read only memory or ROM, Electrically Erasable Programmable Read Only Memory or EEPROM, flash memory). The processor 120 and the memory 122 each comprise one or more integrated circuits. In an embodiment, the processor 120, further includes one or more central processing units (CPUs) and/or graphics processing units (GPUs). In an embodiment, a specially designed integrated circuit, such as a Field Programmable Gate Array (FPGA), is designed to perform the price text detection and interpretation discussed herein, either alternatively or in addition to the imaging controller/processor 120 and memory 122. As those of skill in the art will realize, the mobile automation apparatus 103 also includes one or more controllers or processors and/or FPGAs, in communication with the controller 120, specifically configured to control navigational and/or data capture aspects of the apparatus 103.


The server 101 also includes a communications interface 124 interconnected with the processor 120. The communications interface 124 includes suitable hardware (e.g. transmitters, receivers, network interface controllers and the like) allowing the server 101 to communicate with other computing devices—particularly the apparatus 103 and the mobile device 105—via the links 107. The links 107 may be direct links, or links that traverse one or more networks, including both local and wide-area networks. The specific components of the communications interface 124 are selected based on the type of network or other links that the server 101 is required to communicate over. In the present example, a wireless local-area network is implemented within the retail environment via the deployment of one or more wireless access points. The links 107 therefore include both wireless links between the apparatus 103 and the mobile device 105 and the above-mentioned access points, and a wired link (e.g. an Ethernet-based link) between the server 101 and the access point.


The memory 122 stores a plurality of applications, each including a plurality of computer readable instructions executable by the processor 120. The execution of the above-mentioned instructions by the processor 120 configures the server 101 to perform various actions discussed herein. The applications stored in the memory 122 include a control application 128, which may also be implemented as a suite of logically distinct applications. In general, via execution of the control application 128 or subcomponents thereof, the processor 120 is configured to implement various functionality. The processor 120, as configured via the execution of the control application 128, is also referred to herein as the controller 120. As will now be apparent, some or all of the functionality implemented by the controller 120 described below may also be performed by preconfigured hardware elements (e.g. one or more ASICs) rather than by execution of the control application 128 by the processor 120.


In the present example, in particular, the server 101 is configured via the execution of the control application 128 by the processor 120, to process image and depth data captured by the apparatus 103 to identify portions of the captured data depicting price labels, and to detect and interpret the text indicative of product prices on such labels.


Turning now to FIG. 2, before describing the operation of the application 128 to identify and interpret price text from captured image data, certain components of the application 128 will be described in greater detail. As will be apparent to those skilled in the art, in other examples the components of the application 128 may be separated into distinct applications, or combined into other sets of components. Some or all of the components illustrated in FIG. 2 may also be implemented as dedicated hardware components, such as one or more Application-Specific Integrated Circuits (ASICs) or FPGAs. For example, in one embodiment, to improve reliability and processing speed, at least some of the components of FIG. 2 are programmed directly into the imaging controller 120, which may be an FPGA or an ASIC having circuit and memory configuration specifically designed to optimize image processing and detection of high volume price label image data being received from the mobile automation apparatus 103. In such an embodiment, some or all of the control application 128, discussed below, is an FPGA or an ASIC chip.


The control application 128, in brief, includes components configured to identify text within a shelf image that is likely to represent a label price, and to interpret (i.e. recognize the characters in, or “read”) that text. The control application 128 includes a text region generator 200 (also referred to herein simply as a region generator 200) and a classifier 204 that are configured to detect text regions in the image that are likely to correspond to price text labels (since the image may contain a multitude of text regions that are not prices). The control application 128 also includes a sub-region detector 208 configured, for the regions that are considered likely to be price text labels as identified by the region generator 200 and the classifier 204, to detect price text sub-regions within the text regions. The price text sub-regions are specific areas identified as containing price text characters rather than other characters also printed on a price label. The control application 128 also includes an interpreter 212 configured to interpret the text within the above-mentioned sub-regions, in order to generate a machine-readable representation of the price text printed on the physical label.


The functionality of the control application 128 will now be described in greater detail, with reference to the components illustrated in FIG. 2. Turning to FIG. 3, a method 300 of price text detection is shown. The method 300 will be described in conjunction with its performance on the system 100 as described above; however, it will be apparent to those skilled in the art that the method 300 may also be performed on other systems.


The performance of the method 300 begins at block 305, at which the controller 120 is configured to obtain a digital image of the shelf 110, for example captured by the apparatus 103 and stored in the repository 132. An example image 400 is illustrated in FIG. 4, depicting a portion of a shelf 110. In particular, the image 400 depicts a shelf edge 404 and a shelf back 408, as well as a support surface 412 extending the between the shelf edge 404 and the shelf back 408 and supporting products 112-1 and 112-2. As seen in FIG. 4, the products 112 bear text such as the name or brand of a product, a weight, a calorie count, and the like. The image also depicts labels 416-1 and 416-2 (corresponding to the products 112-1 and 112-2, respectively), which in the present example are placed on the shelf edge 404, but may also be placed on the products 112 themselves or in their vicinity in other examples.


The labels 416 include price text, and may also carry various other text. Turning to FIG. 5A, the labels 416 are shown in isolation. As is evident from the example label formats of FIG. 5A, the labels 416 bear a variety of text in addition to a price, and arrange the price and other text in different positions. For example, the labels 416-1 and 416-2 both include a price text element 500-1, 500-2. However, the price text 500-1 has a different font size for the price itself than for the currency symbol “$”. Further, the price text 500-2 uses a larger font for a portion of the price (including the currency symbol) than the font size employed by the label 416-1, but a smaller font size for another portion of the price. Still further, both labels 416 include barcodes 504-1 and 504-2, but the locations of the barcodes 504 relative to the price text 500-1, 500-2 is different between the labels 416. In further examples, some or all labels may omit barcodes entirely. In addition, both labels 416 include additional non-price text elements, some of which are in close proximity to the price text 500, such as the string “ACM crch” above the price text 500-2. The examples in FIG. 5A are merely illustrative; as will be apparent to those skilled in the art, a wide variety of label formats exist and may therefore be depicted in any given shelf image. Variations among label formats include variations not only in text positioning and size as shown in FIG. 5A, but also in label shape, colors, and the like.


Returning to FIG. 3, at block 310 the region generator 200 is configured to generate a plurality of text regions containing candidate text elements from the image. In the present example, the region generator 200 is configured to apply a suitable blob detection operation to the image obtained at block 305. For example, the region generator 200 can apply a maximally stable extremal regions (MSER) operation on the image to identify elements in the image likely to be characters of text. As those of skill in the art will realize, a variety of blob detection operations are within the scope of the present disclosure.


Turning to FIG. 5B, a portion of the image 400 is shown with candidate text elements indicated in dashed lines, as identified by the region generator 200. As will be apparent, the exact nature of the candidate text elements identified by the region generator 200 depends on the specific blob detection operation performed and the configuration parameters employed for the blob detection operation. For example, while the strings “48” and “cal” are indicated as having been detected as distinct candidate text elements in FIG. 5B, in other examples the region generator 200 may identify the string “48 cal” as a single contiguous candidate text element. Also note that, in the illustrated example, the barcode of the label 416-2 is detected as a candidate text region.


The region generator 200 is further configured, in the present example, to refine the identification of text regions by grouping the candidate text elements. In particular, the region generator 200 is configured, for each pair of the candidate text elements, to determine whether a distance between the pair is below a predetermined distance threshold. The distance threshold may be preconfigured, for example as a number of pixels, a percentage of the width or height of the candidate text elements under consideration, or the like. When the distance between two candidate text elements is below the threshold, the region generator 200 is configured to generate a text region that encompasses both of the candidate text elements. When the distance between candidate text elements exceeds the threshold, the elements are not encompassed within a single text region. That is, the region generator 200 is configured to generate text regions specific to each of the candidate elements.


In the present example, the region generator 200 is configured to generate the text region as a rectangular region with dimensions selected to encompass the entirety of both candidate text elements. The above process is repeated for each pair of candidate text elements, or where a candidate text element has already been incorporated into a text region, between the text region and another candidate text element (or even between two text regions).


The region generator 200 is also configured, in some examples, to apply a size difference threshold to respective pairs of candidate text elements, text regions, or both. In other words, for each pair of candidate text elements the region generator 200 is configured to determine a size attribute (e.g. a height, width, area or the like) for the elements, and to determine whether a difference between the size attributes exceeds a preconfigured threshold (e.g. a percentage of the above-mentioned size attributes). When the difference between size attributes does not exceed the threshold, the candidate elements are not combined in a single text region. As above, the thresholding process is repeated until no further change is dictated in the extent of the text regions (that is, until the comparisons between text regions no longer result in the combination or extension of any of the text regions to encompass additional candidate text elements).


The above-mentioned size and distance-based thresholds may also be combined by the region generator 200, in order to generate text regions encompassing candidate text elements that are sufficiently close to each other in both size and distance. In other examples, the region generator 200 applies only one or the other of the above-mentioned thresholds. In further examples, additional properties of the candidate text elements may also be considered, such as color. Referring to FIG. 6, the portion of the image 400 illustrated in FIG. 5B is shown again, following the application of size and distance-based thresholds. In particular, the candidate text elements shown in FIG. 5B are encompassed within two text regions 600-1 and 600-2.


Referring again to FIG. 3, at block 315 the classifier 204 is configured to assign a classification to each of the text regions 600, selected from a price text classification and a non-price text classification. In general, the classifier 204 is configured to distinguish between text regions likely to contain price text, and text regions that, although containing text, are not likely to contain price text. In the present example, the classifier 204 is configured to assign one of the above-mentioned classifications to the text regions 600 by generating a feature descriptor corresponding to each text region 600, providing the feature descriptor as an input to a trained classification engine, and receiving a classification as an output from the trained classification engine.


In the present example, the classifier 204 is configured to generate a feature descriptor for each text region 600 in the form of a combined feature vector generated from a histogram of oriented gradients (HOG) and a local binary pattern (LBP). In other examples, the feature descriptor is based on either the HOG or the local binary pattern. In further examples, as will be apparent to those skilled in the art, other suitable feature descriptors or combinations of feature descriptors can be employed.


To generate the above-mentioned HOG descriptor for a text region 600, the classifier 204 extracts each text region 600 from the image 400, and divides the extracted text region 600 into cells 700-1, 700-2, 700-3, 700-4 and so on, shown in FIG. 7A. The cells 700 can have predetermined dimensions (e.g. 4×4, 8×8 pixels or other suitable dimensions), or dimensions that vary based on the dimensions of the text regions 600 (for example, each text region 600 can be divided into four cells 700 of equal size). For each pixel of each cell 700, the classifier 204 then generates a gradient vector 704 indicating the angle of the greatest change in intensity between the pixel and its neighbors, as well as the magnitude of the change in intensity. Having obtained the above-mentioned vectors 704, the classifier 204 is configured to build a histogram, with bins corresponding to ranges of angles (e.g. 8 bins each accounting for an unsigned range of 20 degrees). The magnitude of each vector is added to the bin encompassing the vector's angle; in some example implementations, vectors with angles near the boundary between two adjacent bins may have their magnitudes divided between those bins. The resulting histogram for each cell is employed to construct a 1×N vector 708 (vectors 708-1, 708-2, 708-3, 708-4 are illustrated in FIG. 7A), where N is the number of histogram bins (8 in the present example, though other numbers of bins may also be employed), containing the magnitudes assigned to each of the bins. The classifier 204 is then configured to concatenate the feature vectors 708 of the cells 700 for each text region 600 into a single vector.


To generate the LBP descriptor for a text region 600, as illustrated in FIG. 7B, the classifier 204, as above, extracts each text region 600 from the image 400, and divides the extracted text region 600 into cells 700. For each pixel 712 (two pixels 712-1 and 712-2 are labelled for illustrative purposes in FIG. 7B) within each cell 700, the classifier 204 is then configured to traverse the eight neighbors of that pixel in a predetermined direction (typically clockwise or counter_clockwise). For each neighboring pixel, the classifier 204 is configured to determine a difference 716 between the intensities of the central pixel and the neighboring pixel (the difference 716-2 between the intensities of the pixels 712-1 and 712-2 is labelled in FIG. 7B). The classifier 204 is further configured to determine whether the above-mentioned difference 716 is greater or smaller than zero (i.e. whether the neighboring pixel 712 has a smaller or greater intensity than the central pixel 712). Binary values 720 (an example binary value 720-2 of which is labeled in FIG. 7B) are selected based on the above determination, and assembled into a feature vector 724 for the central pixel. Specifically, when the neighboring pixel 712 has a greater intensity than the central pixel, a “1” is appended to a feature vector 724 for the central pixel (otherwise, a “0” is appended to the feature vector 724). The result is, for each pixel, an eight-digit binary number, as seen in FIG. 7B. The classifier 204 is then configured to generate a histogram for the cell 700 based on the set of above-mentioned eight-digit numbers, in which the bins correspond to the positions of neighboring pixels in the above-mentioned clockwise or counter_clockwise traverses. The histogram indicates the frequency, within the cell, with which each of the eight neighboring positions has a greater intensity than the central pixel (e.g. the frequency of “1” values in the present example). The histogram is employed to construct a vector 728, and the vectors 728 for all cells are then concatenated to produce a feature descriptor for the text region 600.


The classifier 204 is further configured, in the present example, to combine the HOG and LBP descriptors, for example by concatenation. Following the generation of feature descriptors as discussed above, the classifier 204 is configured to assign a classification to each text region 600 based on the feature descriptors. The classification, as noted above, is one of price text classification and a non-price text classification, and may be assigned in a variety of ways.


In the present example, the classifier 204—specifically a preconfigured (i.e. trained) classification engine of the classifier 204—is configured to accept the above-mentioned feature descriptor as an input and to generate, as an output, a score for each text region 600. The score (for example, a percentage or a value between zero and one) indicates a level of confidence that the text region 600 represents a label containing price text. The classification engine can be a suitable classification engine, such as a neural network, support vector machine (SVM), or the like. The classification engine, as will be apparent to those skilled in the art, is trained prior to performance of the method 300. Training the classification engine is typically conducted by providing a plurality of ground truth examples (i.e. “correct” text regions that are known to contain price text) and a plurality of negative examples (i.e. “incorrect” text regions that are known not to contain price text). The classification engine is configured to construct model parameters allowing it to correctly identify price text-containing samples.


In some environments, as noted earlier, various label formats may be employed. The classification engine is trained, in such environments, to identify each label type separately. Therefore, in addition to a classification score, the output of the classifier 204 can include a label type identifier indicating the label format that best matches the text region 600. In other embodiments, classification may be performed by template matching or another suitable mechanism, rather than by a trained classification engine as discussed above.


The outcome of the performance of block 315 is a subset of the text regions 600 to which a price text classification was assigned at block 315. The subset of price text-classified text regions (region 600-2, in the example illustrated in FIG. 6) may be provided by the classifier 204 as, for example, rectangular bounding boxes associated with the above-mentioned scores.


At block 320, the control application is configured to determine whether all the price text-classified text regions have been processed. When the determination is negative, the performance of the method 300 proceeds to block 325. At block 325, the sub-region detector 208 is configured, for each of the subset of text regions 600 classified as containing price text, to detect a price text sub-region within the text region.


Turning to FIG. 8, the sub-region detector 208 is configured, in some examples, to begin the performance of block 320 by binarizing the extracted text region. FIG. 8 illustrates an example text region 800 extracted from a shelf image, in which the contrast ratio between the various text elements of the text region 800 is low. The sub-region detector 208 is therefore configured to generate a binarized version 804 of the text region 800 by applying any suitable binarization operation (e.g. an adaptive binarization operation). In other examples, binarization is omitted. In further examples, the sub-region detector 208 is configured to determine a contrast ratio for the text region under consideration (that is, the ratio of the intensity of the brightest pixel in the text region to the intensity of the least bright pixel in the text region). The sub-region detector 208 is then configured to apply binarization only when the contrast ratio fails to exceed a predetermined threshold.


Within the binarized text region 804 generated, the sub-region detector 208 is configured to group candidate text elements within the binarized text region 804 by size. In FIG. 8, a plurality of candidate text elements 808-1, 808-2, 808-3, 808-4, 808-5, 808-6 are illustrated (for example, as identified earlier at block 310) in dashed lines. In other embodiments, a distinct candidate text element operation may be performed at block 320, with parameters selected to increase the likelihood of individual characters of the price text being selected as distinct text elements.


As seen in FIG. 8, the candidate text elements 808 have different dimensions. The sub-region detector 208 is configured to group the text elements 808 based on their dimensions; in particular, in the present example the sub-region generator is configured to group the text elements 808 by height (that is, the substantially vertical dimension as illustrated in FIG. 8). That is, the sub-region generator is configured to compare the height of each pair of text elements 808, and when the difference between the heights is below a predefined threshold, the sub-region detector 208 is configured to group the text elements 808 together. FIG. 9 illustrates the completion of the grouping process for the binarized text region 804. In particular, the three text elements 808-3, 808-4 and 808-5 have been grouped into a text group 900. The group 900 is defined, in the present example, as a rectangular bounding box dimensioned to encompass each of the candidate text elements 808-3, 808-4 and 808-5. Of particular note, the candidate text element 808-2 is greater in height than the elements of the group 900, because the character “2” and the characters “png” in the element 808-2 have been identified as a single candidate text element. Therefore, the element 808-2 has not been grouped with the group 900. The remaining elements 808 have also not been grouped, and are therefore considered independent groups.


Having grouped the text elements, the sub-region detector 208 is configured to select a primary one of the groups. In general, the selection of a primary group aims to select the group most likely to contain solely price text characters. In the present example, the primary group is selected based on a comparison of the two-dimensional area of the sub-regions. Thus, the area of the group 900 is compared with the respective areas of the remaining text elements 808 shown in FIG. 9 (which, for the present analysis, are considered to be groups). The sub-region detector 208 is configured to select the group with the greatest area as the primary sub-region. In the example of FIG. 9, the group 900 has a greater area than the other sub-regions, and is therefore selected as the primary group.


Following the selection of a primary group, the sub-region detector 208 is configured to fit upper and lower boundary lines to the primary group. Turning to FIG. 10A, upper and lower boundary lines 1000 and 1004, respectively, are illustrated. The sub-region detector 208 is configured to fit the boundary lines 1000 and 1004 by determining a position and slope of the upper and lower edges of the rectangular bounding box of the primary group 900, and generating lines having the same positions and slopes, and extending the entire width of the text region 804.


Having fitted the boundary lines 1000 and 1004 to the primary group 900, the sub-region detector 208 is then configured to extend the bounding box of the primary group 900 along the upper and lower boundary lines to define the price text sub-region. As a result, the sub-region detector 208 generates a price text sub-region 1008 as shown in isolation in FIG. 10B (in practice, the sub-region 1008 need not be extracted from the text region 804). As seen in FIG. 10B, the sub-region 1008 includes the string “5.77” previously encompassed by the group 900, but also includes the characters “$” and “2” which were previously excluded from the group 900. Still further, the sub-region 1008 excludes the characters “png” which were previously included with the character “2” as a single candidate text element due to their proximity with the “2”.


Returning to FIG. 3, following the detection of a price text sub-region, at block 330 the interpreter 212 is configured to generate a price text string from the price text sub-region. To generate the price text string, the interpreter 212 is configured to apply a suitable optical character recognition (OCR) technique to the price text sub-region. In the present example, the interpreter 212 is configured to apply a set of operations comprising an OCR pipeline, including a feature extraction step to generate a feature descriptor (e.g. an HOG descriptor), followed by a linear discriminant analysis (LDA), a distance classification operation such as a modified quadrant discriminant function (MQDF) and a comparison of the outputs of the above-mentioned operations with a character database stored in the memory 122. The database may be restricted to only numerical digits and currency symbols in some examples. A variety of other suitable OCR techniques may also be applied, as will now be apparent to those skilled in the art.


It has been found that the generation of text regions and detection of a price text sub-region 1008, as shown in FIG. 10B, may result in increased price text interpretation accuracy, even when conventional OCR techniques are applied by the interpreter 212 at block 330. In contrast, the application of a conventional OCR technique, such as that provided by a first common portable document format (PDF) reader application, to the text region 804 in FIG. 8 fails to identify the price text as a text string, and therefore fails to correctly interpret the price text. The OCR function provided by a second common PDF reader application identifies a portion of the price text, although only at a certain scale. The output of this second application is the string “25 77” which lacks the decimal point and a currency unit and is therefore not a correct actionable price text string. At other scales, the second application, like the first, fails to recognize the price digits as text at all. However, applying both of the above-mentioned conventional OCR techniques to the price text sub-region 1008 in FIG. 10B, at a variety of scales, yields the correct price text string “$25.77”.


Testing of the processing techniques described above has, revealed that by performing the method 300, the controller 120 correctly identifies text region locations at a rate of between 93% and 96% at various imaging distances (e.g. distances between the apparatus 103 and the shelves 110), varying between 50 cm and 85 cm. Further, the detection and interpretation of price text from within those text regions was performed correctly for a minimum of 88% of samples (at an imaging distance of 50 cm) and a maximum of 92% (at an imaging distance of 85 cm).


Returning to FIG. 3, following the generation of a price text string at block 330, the control application 128 returns to block 320 to determine whether any price text-classified text regions remain to be processed. When the determination is negative, the performance of the method 300 proceeds to block 335, at which the control application 128 is configured to present the locations of the detected text regions (e.g. regions 600), as well as the price text strings interpreted therefrom. In some examples, the control application 128 is configured to present the text regions and price text strings as an overlay on the image obtained at block 305, for example on a display of the mobile device 105 or another client computing device; the overlaid image can also be stored in the repository 132 instead of, or in addition to, display on the mobile device 105 or other client computing device. In other examples, the control application 128 presents—for display at the mobile device 105, another client device, or both, alone or in combination with presentation to the repository 132 for storage—the text regions and price text strings as a list of bounding box coordinates (e.g. relative to the image obtained at block 305, or relative to a common frame of reference corresponding to the retail environment in which the shelves 110 are located). The list includes, with each bounding box, the corresponding price text string, as well as a label type indicator (where multiple label types were detected by the classifier 204) and a confidence value generated by the interpreter 212 at block 330. An example of such a list is shown below in Table 1.









TABLE 1







Price Text String List










Bounding Box
Price Text String
Label Type
Confidence





[X1, Y1] [X2, Y2]
 $2.45
Type-A
83%


[X1, Y1] [X2, Y2]
$12.99
Type-B
92%









Variations to the techniques set out above are contemplated. For example, in the detection of a price text sub-region at block 325, geometric constraints may be applied by the sub-region detector 208 in addition to the size constraint mentioned above. For example, the sub-region detector 208 is configured in some examples to group the candidate text elements by size and only in certain directions, such that candidate text elements are only grouped in a horizontal direction, whether or not similarly-sized elements are present above or below.


In a further example, the sub-region detector 208 is configured to determine whether the difference in size (e.g. area) of two or more candidate primary groups is below a predetermined threshold. When the determination is affirmative, the sub-region detector 208 is configured to apply one or more additional criteria to select the primary group. For example, based on the label type output from the classifier 204, the sub-region detector 208 can be configured to select the primary group candidate closest to an expected price text position (e.g. the center of the label, in the case of the format of the label 416-2).


In the foregoing specification, specific embodiments have been described. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of present teachings.


The benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential features or elements of any or all the claims. The invention is defined solely by the appended claims including any amendments made during the pendency of this application and all equivalents of those claims as issued.


Moreover in this document, relational terms such as first and second, top and bottom, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” “has”, “having,” “includes”, “including,” “contains”, “containing” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises, has, includes, contains a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by “comprises . . . a”, “has . . . a”, “includes . . . a”, “contains . . . a” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises, has, includes, contains the element. The terms “a” and “an” are defined as one or more unless explicitly stated otherwise herein. The terms “substantially”, “essentially”, “approximately”, “about” or any other version thereof, are defined as being close to as understood by one of ordinary skill in the art, and in one non-limiting embodiment the term is defined to be within 10%, in another embodiment within 5%, in another embodiment within 1% and in another embodiment within 0.5%. The term “coupled” as used herein is defined as connected, although not necessarily directly and not necessarily mechanically. A device or structure that is “configured” in a certain way is configured in at least that way, but may also be configured in ways that are not listed.


It will be appreciated that some embodiments may be comprised of one or more generic or specialized processors (or “processing devices”) such as microprocessors, digital signal processors, customized processors and field programmable gate arrays (FPGAs) and unique stored program instructions (including both software and firmware) that control the one or more processors to implement, in conjunction with certain non-processor circuits, some, most, or all of the functions of the method and/or apparatus described herein. Alternatively, some or all functions could be implemented by a state machine that has no stored program instructions, or in one or more application specific integrated circuits (ASICs), in which each function or some combinations of certain of the functions are implemented as custom logic. Of course, a combination of the two approaches could be used.


Moreover, an embodiment can be implemented as a computer-readable storage medium having computer readable code stored thereon for programming a computer (e.g., comprising a processor) to perform a method as described and claimed herein. Examples of such computer-readable storage mediums include, but are not limited to, a hard disk, a CD-ROM, an optical storage device, a magnetic storage device, a ROM (Read Only Memory), a PROM (Programmable Read Only Memory), an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically Erasable Programmable Read Only Memory) and a Flash memory. Further, it is expected that one of ordinary skill, notwithstanding possibly significant effort and many design choices motivated by, for example, available time, current technology, and economic considerations, when guided by the concepts and principles disclosed herein will be readily capable of generating such software instructions and programs and ICs with minimal experimentation.


The Abstract of the Disclosure is provided to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in various embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed subject matter.

Claims
  • 1. A method of price text detection by an imaging controller, comprising: obtaining, by the imaging controller, an image of a shelf supporting labels bearing price text;generating, by the imaging controller, a plurality of text regions containing candidate text elements from the image;assigning, by the imaging controller, a classification to each of the text regions, selected from a price text classification and a non-price text classification for a respective text region, wherein the price text classification includes a non-numeric text element;wherein the imaging controller, within each of a subset of the text regions having the price text classification: detects a price text sub-region by: (a) assigning the candidate text elements within the text region to groups based on respective sizes of the candidate text elements, and (b) selecting a group having a largest area as a primary one of the groups; andgenerates a price text string by applying character recognition to the price text sub-region; andpresenting, by the imaging controller, locations of the subset of text regions, in association with the corresponding price text strings.
  • 2. The method of claim 1, further comprising: prior to generating the text regions, identifying the candidate text elements comprises applying a blob detection operation to the image.
  • 3. The method of claim 2, wherein generating the text regions comprises: for each pair of the candidate text elements, determining whether a distance between the pair is below a distance threshold.
  • 4. The method of claim 2, wherein generating the text regions comprises: for each pair of the candidate text elements, determining whether a difference between a size of each of the pair is below a size threshold.
  • 5. The method of claim 1, wherein assigning the classification to each of the text regions comprises: generating a feature descriptor for the text region;providing the feature descriptor to a classifier; andreceiving the classification from the classifier.
  • 6. The method of claim 1, wherein detecting the price text sub-region comprises: fitting upper and lower bounding lines to the primary group; andextending the primary group along the bounding lines to define the price text sub-region.
  • 7. The method of claim 6, further comprising: prior to assigning the candidate text elements within the text region to groups, binarizing the text region.
  • 8. The method of claim 6, wherein at least one of the upper and lower bounding lines intersects a candidate text element in a group other than the primary group.
  • 9. The method of claim 1, the presenting further comprising presenting a confidence level corresponding to each price text string.
  • 10. A server for detecting price text, comprising: a memory storing an image of a shelf supporting labels bearing price text;an imaging controller coupled to the memory, the imaging controller comprising: a text region generator configured to generate a plurality of text regions containing candidate text elements from the image;a classifier configured to assign a classification to each of the text regions, selected from a price text classification and a non-price text classification for a respective text region, wherein the price text classification includes a non-numeric text element;a sub-region generator configured to detect a price text sub-region within each of a subset of the text regions having the price text classification by: (a) assigning the candidate text elements within the text region to groups based on respective sizes of the candidate text elements, and (b) selecting a group having a largest area as a primary one of the groups; andan interpreter configured to generate a price text string by applying character recognition to the price text sub-region; and to present locations of the subset of text regions, in association with the corresponding price text strings.
  • 11. The server of claim 10, the text region generator further configured, prior to generating the text regions, to identify the candidate text elements by applying a blob detection operation to the image.
  • 12. The server of claim 11, the text region generator configured to generate the text regions by: for each pair of the candidate text elements, determining whether a distance between the pair is below a distance threshold.
  • 13. The server of claim 11, the text region generator configured to generate the text regions by: for each pair of the candidate text elements, determining whether a difference between a size of each of the pair is below a size threshold.
  • 14. The server of claim 10, the classifier configured to assign the classification to each of the text regions by: generating a feature descriptor for the text region;providing the feature descriptor to a classifier; andreceiving the classification from the classifier.
  • 15. The server of claim 10, the sub-region generator configured to detect the price text sub-region by: fitting upper and lower bounding lines to the primary group; andextending the primary group along the bounding lines to define the price text sub-region.
  • 16. The server of claim 15, the sub-region generator further configured, prior to assigning the candidate text elements within the text region to groups, to binarize the text region.
  • 17. The server of claim 15, wherein at least one of the upper and lower bounding lines intersects a candidate text element in a group other than the primary group.
  • 18. The server of claim 10, the interpreter further configured to present a confidence level corresponding to each price text string.
PCT Information
Filing Document Filing Date Country Kind
PCT/CN2017/083143 5/5/2017 WO
Publishing Document Publishing Date Country Kind
WO2018/201423 11/8/2018 WO A
US Referenced Citations (468)
Number Name Date Kind
5209712 Ferri May 1993 A
5214615 Bauer May 1993 A
5408322 Hsu et al. Apr 1995 A
5414268 McGee May 1995 A
5423617 Marsh et al. Jun 1995 A
5534762 Kim Jul 1996 A
5566280 Fukui et al. Oct 1996 A
5704049 Briechle Dec 1997 A
5953055 Huang et al. Sep 1999 A
5988862 Kacyra et al. Nov 1999 A
6026376 Kenney Feb 2000 A
6034379 Bunte et al. Mar 2000 A
6075905 Herman et al. Jun 2000 A
6115114 Berg et al. Sep 2000 A
6141293 Amorai-Moriya et al. Oct 2000 A
6304855 Burke Oct 2001 B1
6442507 Skidmore et al. Aug 2002 B1
6549825 Kurata Apr 2003 B2
6580441 Schileru-Key Jun 2003 B2
6711293 Lowe Mar 2004 B1
6721723 Gibson et al. Apr 2004 B1
6721769 Rappaport et al. Apr 2004 B1
6836567 Silver et al. Dec 2004 B1
6995762 Pavlidis et al. Feb 2006 B1
7090135 Patel Aug 2006 B2
7137207 Armstrong et al. Nov 2006 B2
7245558 Willins et al. Jul 2007 B2
7248754 Cato Jul 2007 B2
7277187 Smith et al. Oct 2007 B2
7373722 Cooper et al. May 2008 B2
7474389 Greenberg et al. Jan 2009 B2
7487595 Armstrong et al. Feb 2009 B2
7493336 Noonan Feb 2009 B2
7508794 Feather et al. Mar 2009 B2
7527205 Zhu et al. May 2009 B2
7605817 Zhang et al. Oct 2009 B2
7647752 Magnell Jan 2010 B2
7693757 Zimmerman Apr 2010 B2
7726575 Wang et al. Jun 2010 B2
7751928 Antony et al. Jul 2010 B1
7783383 Eliuk et al. Aug 2010 B2
7839531 Sugiyama Nov 2010 B2
7845560 Emanuel et al. Dec 2010 B2
7885865 Benson et al. Feb 2011 B2
7925114 Mai et al. Apr 2011 B2
7957998 Riley et al. Jun 2011 B2
7996179 Lee et al. Aug 2011 B2
8009864 Linaker et al. Aug 2011 B2
8049621 Egan Nov 2011 B1
8091782 Cato et al. Jan 2012 B2
8094902 Crandall et al. Jan 2012 B2
8094937 Teoh et al. Jan 2012 B2
8132728 Dwinell et al. Mar 2012 B2
8134717 Pangrazio et al. Mar 2012 B2
8189855 Opalach et al. May 2012 B2
8199977 Krishnaswamy et al. Jun 2012 B2
8207964 Meadow et al. Jun 2012 B1
8233055 Matsunaga et al. Jul 2012 B2
8260742 Cognigni et al. Sep 2012 B2
8265895 Willins et al. Sep 2012 B2
8277396 Scott et al. Oct 2012 B2
8284988 Sones et al. Oct 2012 B2
8423431 Rouaix et al. Apr 2013 B1
8429004 Hamilton et al. Apr 2013 B2
8463079 Ackley et al. Jun 2013 B2
8479996 Barkan et al. Jul 2013 B2
8520067 Ersue Aug 2013 B2
8542252 Perez et al. Sep 2013 B2
8571314 Tao et al. Oct 2013 B2
8599303 Stettner Dec 2013 B2
8630924 Groenevelt et al. Jan 2014 B2
8660338 Ma et al. Feb 2014 B2
8743176 Stettner et al. Jun 2014 B2
8757479 Clark et al. Jun 2014 B2
8812226 Zeng Aug 2014 B2
8923893 Austin et al. Dec 2014 B2
8939369 Olmstead et al. Jan 2015 B2
8954188 Sullivan et al. Feb 2015 B2
8958911 Wong et al. Feb 2015 B2
8971637 Rivard Mar 2015 B1
8989342 Liesenfelt et al. Mar 2015 B2
9007601 Steffey et al. Apr 2015 B2
9037287 Grauberger et al. May 2015 B1
9064394 Trundle Jun 2015 B1
9070285 Ramu et al. Jun 2015 B1
9072929 Rush et al. Jul 2015 B1
9120622 Elazary et al. Sep 2015 B1
9129277 Macintosh Sep 2015 B2
9135491 Morandi et al. Sep 2015 B2
9159047 Winkel Oct 2015 B2
9171442 Clements Oct 2015 B2
9247211 Zhang et al. Jan 2016 B2
9329269 Zeng May 2016 B2
9349076 Liu et al. May 2016 B1
9367831 Besehanic Jun 2016 B1
9380222 Clayton et al. Jun 2016 B2
9396554 Williams et al. Jul 2016 B2
9400170 Steffey Jul 2016 B2
9424482 Patel et al. Aug 2016 B2
9517767 Kentley et al. Dec 2016 B1
9542746 Wu et al. Jan 2017 B2
9549125 Goyal et al. Jan 2017 B1
9562971 Shenkar et al. Feb 2017 B2
9565400 Curlander et al. Feb 2017 B1
9589353 Mueller-Fischer et al. Mar 2017 B2
9600731 Yasunaga et al. Mar 2017 B2
9600892 Patel et al. Mar 2017 B2
9612123 Levinson et al. Apr 2017 B1
9639935 Douady-Pleven et al. May 2017 B1
9697429 Patel et al. Jul 2017 B2
9766074 Roumeliotis et al. Sep 2017 B2
9778388 Connor Oct 2017 B1
9779205 Namir Oct 2017 B2
9791862 Connor Oct 2017 B1
9805240 Zheng et al. Oct 2017 B1
9811754 Schwartz Nov 2017 B2
9827683 Hance et al. Nov 2017 B1
9880009 Bell Jan 2018 B2
9928708 Lin et al. Mar 2018 B2
9953420 Wolski et al. Apr 2018 B2
9980009 Jiang et al. May 2018 B2
9994339 Colson et al. Jun 2018 B2
9996818 Ren et al. Jun 2018 B1
10019803 Venable et al. Jul 2018 B2
10111646 Nycz et al. Oct 2018 B2
10121072 Kekatpure Nov 2018 B1
10127438 Fisher et al. Nov 2018 B1
10133951 Mendonca Nov 2018 B1
10197400 Jesudason et al. Feb 2019 B2
10210603 Venable et al. Feb 2019 B2
10229386 Thomas Mar 2019 B2
10248653 Blassin et al. Apr 2019 B2
10262294 Hahn et al. Apr 2019 B1
10265871 Hance et al. Apr 2019 B2
10289990 Rizzolo et al. May 2019 B2
10336543 Sills et al. Jul 2019 B1
10349031 DeLuca Jul 2019 B2
10352689 Brown et al. Jul 2019 B2
10373116 Medina et al. Aug 2019 B2
10394244 Song et al. Aug 2019 B2
20010031069 Kondo et al. Oct 2001 A1
20010041948 Ross et al. Nov 2001 A1
20020006231 Jayant et al. Jan 2002 A1
20020059202 Hadzikadic et al. May 2002 A1
20020097439 Braica Jul 2002 A1
20020146170 Rom Oct 2002 A1
20020158453 Levine Oct 2002 A1
20020164236 Fukuhara et al. Nov 2002 A1
20030003925 Suzuki Jan 2003 A1
20030094494 Blanford et al. May 2003 A1
20030174891 Wenzel et al. Sep 2003 A1
20040021313 Gardner et al. Feb 2004 A1
20040084527 Bong et al. May 2004 A1
20040131278 Imagawa et al. Jul 2004 A1
20040240754 Smith et al. Dec 2004 A1
20050016004 Armstrong et al. Jan 2005 A1
20050114059 Chang et al. May 2005 A1
20050174351 Chang Aug 2005 A1
20050213082 DiBernardo et al. Sep 2005 A1
20050213109 Schell et al. Sep 2005 A1
20060032915 Schwartz Feb 2006 A1
20060045325 Zavadsky et al. Mar 2006 A1
20060064286 Fink et al. Mar 2006 A1
20060106742 Bochicchio et al. May 2006 A1
20060279527 Zehner et al. Dec 2006 A1
20060285486 Roberts et al. Dec 2006 A1
20070036398 Chen Feb 2007 A1
20070074410 Armstrong et al. Apr 2007 A1
20070272732 Hindmon Nov 2007 A1
20080002866 Fujiwara Jan 2008 A1
20080025565 Zhang et al. Jan 2008 A1
20080027591 Lenser et al. Jan 2008 A1
20080077511 Zimmerman Mar 2008 A1
20080159634 Sharma et al. Jul 2008 A1
20080164310 Dupuy et al. Jul 2008 A1
20080175513 Lai et al. Jul 2008 A1
20080181529 Michel et al. Jul 2008 A1
20080183730 Enga Jul 2008 A1
20080238919 Pack Oct 2008 A1
20080294487 Nasser Nov 2008 A1
20090009123 Skaff Jan 2009 A1
20090024353 Lee et al. Jan 2009 A1
20090057411 Madej et al. Mar 2009 A1
20090059270 Opalach et al. Mar 2009 A1
20090060349 Linaker et al. Mar 2009 A1
20090063306 Fano et al. Mar 2009 A1
20090063307 Groenovelt et al. Mar 2009 A1
20090074303 Filimonova et al. Mar 2009 A1
20090088975 Sato et al. Apr 2009 A1
20090103773 Wheeler et al. Apr 2009 A1
20090125350 Lessing et al. May 2009 A1
20090125535 Basso et al. May 2009 A1
20090152391 McWhirk Jun 2009 A1
20090160975 Kwan Jun 2009 A1
20090192921 Hicks Jul 2009 A1
20090206161 Olmstead Aug 2009 A1
20090236155 Skaff Sep 2009 A1
20090252437 Li et al. Oct 2009 A1
20090287587 Bloebaum et al. Nov 2009 A1
20090323121 Valkenburg et al. Dec 2009 A1
20100017407 Beniyama et al. Jan 2010 A1
20100026804 Tanizaki et al. Feb 2010 A1
20100070365 Siotia et al. Mar 2010 A1
20100082194 Yabushita et al. Apr 2010 A1
20100091094 Sekowski Apr 2010 A1
20100118116 Tomasz et al. May 2010 A1
20100131234 Stewart et al. May 2010 A1
20100141806 Uemura et al. Jun 2010 A1
20100161569 Schreter Jun 2010 A1
20100171826 Hamilton et al. Jul 2010 A1
20100208039 Setettner Aug 2010 A1
20100214873 Somasundaram et al. Aug 2010 A1
20100235033 Yamamoto et al. Sep 2010 A1
20100241289 Sandberg Sep 2010 A1
20100257149 Cognigni et al. Oct 2010 A1
20100295850 Katz et al. Nov 2010 A1
20100315412 Sinha et al. Dec 2010 A1
20100326939 Clark et al. Dec 2010 A1
20110047636 Stachon et al. Feb 2011 A1
20110052043 Hyung et al. Mar 2011 A1
20110093306 Nielsen et al. Apr 2011 A1
20110137527 Simon et al. Jun 2011 A1
20110168774 Magal Jul 2011 A1
20110172875 Gibbs Jul 2011 A1
20110188759 Filimonova Aug 2011 A1
20110216063 Hayes Sep 2011 A1
20110242286 Pace et al. Oct 2011 A1
20110246503 Bender et al. Oct 2011 A1
20110254840 Halstead Oct 2011 A1
20110286007 Pangrazio et al. Nov 2011 A1
20110288816 Thierman Nov 2011 A1
20110310088 Adabala et al. Dec 2011 A1
20120017028 Tsirkin Jan 2012 A1
20120019393 Wolinsky et al. Jan 2012 A1
20120022913 VolKmann et al. Jan 2012 A1
20120051730 Cote et al. Mar 2012 A1
20120069051 Hagbi et al. Mar 2012 A1
20120075342 Choubassi et al. Mar 2012 A1
20120133639 Kopf et al. May 2012 A1
20120307108 Forutanpour Jun 2012 A1
20120169530 Padmanabhan et al. Jul 2012 A1
20120179621 Moir et al. Jul 2012 A1
20120185112 Sung et al. Jul 2012 A1
20120194644 Newcombe et al. Aug 2012 A1
20120197464 Wang et al. Aug 2012 A1
20120201466 Funayama et al. Aug 2012 A1
20120209553 Doytchinov et al. Aug 2012 A1
20120236119 Rhee et al. Sep 2012 A1
20120249802 Taylor Oct 2012 A1
20120250978 Taylor Oct 2012 A1
20120269383 Bobbitt et al. Oct 2012 A1
20120287249 Choo et al. Nov 2012 A1
20120323620 Hofman et al. Dec 2012 A1
20130030700 Miller et al. Jan 2013 A1
20130076586 Karhuketo et al. Mar 2013 A1
20130090881 Janardhanan et al. Apr 2013 A1
20130119138 Winkel May 2013 A1
20130132913 Fu et al. May 2013 A1
20130134178 Lu May 2013 A1
20130138246 Gutmann et al. May 2013 A1
20130142421 Silver et al. Jun 2013 A1
20130144565 Miller Jun 2013 A1
20130154802 O'Haire et al. Jun 2013 A1
20130156292 Chang et al. Jun 2013 A1
20130162806 Ding et al. Jun 2013 A1
20130176398 Bonner et al. Jul 2013 A1
20130178227 Vartanian et al. Jul 2013 A1
20130182114 Zhang et al. Jul 2013 A1
20130226344 Wong et al. Aug 2013 A1
20130228620 Ahem et al. Sep 2013 A1
20130232039 Jackson et al. Sep 2013 A1
20130235165 Gharib et al. Sep 2013 A1
20130235206 Smith et al. Sep 2013 A1
20130236089 Litvak et al. Sep 2013 A1
20130278631 Border et al. Oct 2013 A1
20130299306 Jiang et al. Nov 2013 A1
20130299313 Baek, IV et al. Nov 2013 A1
20130300729 Grimaud Nov 2013 A1
20130303193 Dharwada et al. Nov 2013 A1
20130321418 Kirk Dec 2013 A1
20130329013 Metois et al. Dec 2013 A1
20130341400 Lancaster-Larocque Dec 2013 A1
20130342363 Paek et al. Dec 2013 A1
20140002597 Taguchi et al. Jan 2014 A1
20140003655 Gopalkrishnan et al. Jan 2014 A1
20140003727 Lortz et al. Jan 2014 A1
20140006229 Birch et al. Jan 2014 A1
20140016832 Kong et al. Jan 2014 A1
20140019311 Tanaka Jan 2014 A1
20140025201 Ryu et al. Jan 2014 A1
20140028837 Gao et al. Jan 2014 A1
20140047342 Breternitz et al. Feb 2014 A1
20140049616 Stettner Feb 2014 A1
20140052555 MacIntosh Feb 2014 A1
20140086483 Zhang et al. Mar 2014 A1
20140098094 Neumann et al. Apr 2014 A1
20140100813 Shaowering Apr 2014 A1
20140104413 McCloskey et al. Apr 2014 A1
20140129027 Schnittman May 2014 A1
20140156133 Cullinane et al. Jun 2014 A1
20140161359 Magri et al. Jun 2014 A1
20140192050 Qiu et al. Jul 2014 A1
20140195095 Flohr et al. Jul 2014 A1
20140195374 Bassemir et al. Jul 2014 A1
20140214547 Signorelli et al. Jul 2014 A1
20140214600 Argue et al. Jul 2014 A1
20140267614 Ding et al. Sep 2014 A1
20140267688 Aich et al. Sep 2014 A1
20140277691 Jacobus et al. Sep 2014 A1
20140277692 Buzan et al. Sep 2014 A1
20140279294 Field-Darragh et al. Sep 2014 A1
20140300637 Fan et al. Oct 2014 A1
20140316875 Tkachenko et al. Oct 2014 A1
20140330835 Boyer Nov 2014 A1
20140344401 Varney et al. Nov 2014 A1
20140351073 Murphy et al. Nov 2014 A1
20140369607 Patel et al. Dec 2014 A1
20150015602 Beaudoin Jan 2015 A1
20150019391 Kumar et al. Jan 2015 A1
20150029339 Kobres et al. Jan 2015 A1
20150032304 Nakamura et al. Jan 2015 A1
20150039458 Reid Feb 2015 A1
20150052029 Wu et al. Feb 2015 A1
20150088618 Basir et al. Mar 2015 A1
20150088701 Desmarais et al. Mar 2015 A1
20150088703 Yan Mar 2015 A1
20150092066 Geiss et al. Apr 2015 A1
20150106403 Haverinen et al. Apr 2015 A1
20150117788 Patel et al. Apr 2015 A1
20150139010 Jeong et al. May 2015 A1
20150154467 Feng et al. Jun 2015 A1
20150161793 Takahashi Jun 2015 A1
20150170256 Pettyjohn et al. Jun 2015 A1
20150181198 Baele et al. Jun 2015 A1
20150212521 Pack et al. Jul 2015 A1
20150235157 Avegliano et al. Aug 2015 A1
20150245358 Schmidt Aug 2015 A1
20150262116 Katircioglu et al. Sep 2015 A1
20150279035 Wolski et al. Oct 2015 A1
20150298317 Wang et al. Oct 2015 A1
20150310601 Rodriguez et al. Oct 2015 A1
20150332368 Vartiainen et al. Nov 2015 A1
20150352721 Wicks et al. Dec 2015 A1
20150353280 Brazeau et al. Dec 2015 A1
20150355639 Versteeg et al. Dec 2015 A1
20150363625 Wu Dec 2015 A1
20150363758 Wu Dec 2015 A1
20150365660 Wu et al. Dec 2015 A1
20150379704 Chandrasekar et al. Dec 2015 A1
20160026253 Bradski et al. Jan 2016 A1
20160042223 Suh et al. Feb 2016 A1
20160044862 Kocer Feb 2016 A1
20160061591 Pangrazio et al. Mar 2016 A1
20160070981 Sasaki et al. Mar 2016 A1
20160092943 Vigier et al. Mar 2016 A1
20160012588 Taguchi et al. Apr 2016 A1
20160104041 Bowers et al. Apr 2016 A1
20160107690 Oyama et al. Apr 2016 A1
20160112628 Super et al. Apr 2016 A1
20160114488 Mascorro Medina et al. Apr 2016 A1
20160129592 Saboo et al. May 2016 A1
20160132815 Itoko et al. May 2016 A1
20160150217 Popov May 2016 A1
20160156898 Ren et al. Jun 2016 A1
20160163067 Williams et al. Jun 2016 A1
20160171336 Schwartz Jun 2016 A1
20160171429 Schwartz Jun 2016 A1
20160171707 Schwartz Jun 2016 A1
20160185347 Lefevre et al. Jun 2016 A1
20160191759 Somanath et al. Jun 2016 A1
20160224927 Pettersson Aug 2016 A1
20160253735 Scudillo et al. Sep 2016 A1
20160253844 Petrovskaya et al. Sep 2016 A1
20160259329 High et al. Sep 2016 A1
20160260051 Wu Sep 2016 A1
20160260054 High et al. Sep 2016 A1
20160271795 Vicenti Sep 2016 A1
20160313133 Zeng et al. Oct 2016 A1
20160328618 Patel et al. Nov 2016 A1
20160328767 Bonner et al. Nov 2016 A1
20160353099 Thomson et al. Dec 2016 A1
20160364634 Davis et al. Dec 2016 A1
20170004649 Collet Romea et al. Jan 2017 A1
20170011281 Dijkman et al. Jan 2017 A1
20170011308 Sun et al. Jan 2017 A1
20170032311 Rizzolo Feb 2017 A1
20170041553 Cao et al. Feb 2017 A1
20170054965 Raab et al. Feb 2017 A1
20170066459 Singh Mar 2017 A1
20170074659 Giurgiu et al. Mar 2017 A1
20170083774 Solar et al. Mar 2017 A1
20170109940 Guo et al. Apr 2017 A1
20170147966 Aversa et al. May 2017 A1
20170150129 Pangrazio May 2017 A1
20170178060 Schwartz Jun 2017 A1
20170178227 Gornish Jun 2017 A1
20170178310 Gornish Jun 2017 A1
20170193434 Shah et al. Jul 2017 A1
20170219338 Brown et al. Aug 2017 A1
20170219353 Alesiani Aug 2017 A1
20170227645 Swope et al. Aug 2017 A1
20170227647 Baik Aug 2017 A1
20170228885 Baumgartner Aug 2017 A1
20170261993 Venable et al. Sep 2017 A1
20170262724 Wu et al. Sep 2017 A1
20170280125 Brown et al. Sep 2017 A1
20170286773 Skaff et al. Oct 2017 A1
20170286901 Skaff et al. Oct 2017 A1
20170297478 Sherman et al. Oct 2017 A1
20170323253 Enssle et al. Nov 2017 A1
20170323376 Glaser et al. Nov 2017 A1
20170337508 Bogolea et al. Nov 2017 A1
20180001481 Shah et al. Jan 2018 A1
20180005035 Bogolea et al. Jan 2018 A1
20180005176 Williams et al. Jan 2018 A1
20180020145 Kotfis et al. Jan 2018 A1
20180051991 Hong Feb 2018 A1
20180053091 Savvides et al. Feb 2018 A1
20180053305 Gu et al. Feb 2018 A1
20180075403 Mascorro Medina et al. Mar 2018 A1
20180089613 Chen et al. Mar 2018 A1
20180101813 Paat et al. Apr 2018 A1
20180108120 Venable et al. Apr 2018 A1
20180108134 Venable et al. Apr 2018 A1
20180114183 Howell Apr 2018 A1
20180129201 Douglas et al. May 2018 A1
20180130011 Jacobsson May 2018 A1
20180143003 Clayton et al. May 2018 A1
20180174325 Fu et al. Jun 2018 A1
20180190160 Bryan et al. Jul 2018 A1
20180197139 Hill Jul 2018 A1
20180201423 Drzewiecki et al. Jul 2018 A1
20180204111 Zadeh et al. Jul 2018 A1
20180251253 Taira et al. Sep 2018 A1
20180276596 Murthy et al. Sep 2018 A1
20180281191 Sinyayskiy et al. Oct 2018 A1
20180293442 Fridental et al. Oct 2018 A1
20180293543 Tiwari Oct 2018 A1
20180306958 Goss et al. Oct 2018 A1
20180313956 Rzeszutek et al. Nov 2018 A1
20180314260 Jen et al. Nov 2018 A1
20180314908 Lam Nov 2018 A1
20180315007 Kingsford et al. Nov 2018 A1
20180315065 Zhang et al. Nov 2018 A1
20180315173 Phan et al. Nov 2018 A1
20180315865 Haist et al. Nov 2018 A1
20180321692 Castillo-Effen et al. Nov 2018 A1
20180370727 Hance et al. Dec 2018 A1
20190049962 Ouellette et al. Feb 2019 A1
20190057588 Savvides et al. Feb 2019 A1
20190065861 Savvides et al. Feb 2019 A1
20190073554 Rzeszutek Mar 2019 A1
20190073559 Rzeszutek et al. Mar 2019 A1
20190073627 Nakdimon et al. Mar 2019 A1
20190077015 Shibasaki et al. Mar 2019 A1
20190087663 Yamazaki et al. Mar 2019 A1
20190094876 Moore et al. Mar 2019 A1
20190108606 Komiyama Apr 2019 A1
20190160675 Paschal, II et al. May 2019 A1
20190178436 Mao et al. Jun 2019 A1
20190180150 Taylor et al. Jun 2019 A1
20190197439 Wang Jun 2019 A1
20190197728 Yamao Jun 2019 A1
20190236530 Cantrell et al. Aug 2019 A1
20190304132 Yoda et al. Oct 2019 A1
20190392212 Sawhney et al. Dec 2019 A1
20200053325 Deyle et al. Feb 2020 A1
20200314333 Liang et al. Oct 2020 A1
Foreign Referenced Citations (44)
Number Date Country
2835830 Nov 2012 CA
3028156 Jan 2018 CA
102214343 Oct 2011 CN
104200086 Dec 2014 CN
105989512 Oct 2016 CN
107067382 Aug 2017 CN
206952978 Feb 2018 CN
766098 Apr 1997 EP
1311993 May 2007 EP
2309378 Apr 2011 EP
2439487 Apr 2012 EP
2472475 Jul 2012 EP
2562688 Feb 2013 EP
2662831 Nov 2013 EP
2693362 Feb 2014 EP
3400113 Nov 2018 EP
2323238 Sep 1998 GB
2330265 Apr 1999 GB
2014170431 Sep 2014 JP
2016194834 Nov 2016 JP
2016194834 Nov 2016 JP
2017016539 Jan 2017 JP
1020190031431 Mar 2019 KR
WO 9923600 May 1999 WO
WO 2003002935 Jan 2003 WO
WO 2003025805 Mar 2003 WO
WO 2006136958 Dec 2006 WO
WO 2007042251 Apr 2007 WO
WO 2008057504 May 2008 WO
WO 2008154611 Dec 2008 WO
WO 2012103199 Aug 2012 WO
WO 2012103202 Aug 2012 WO
WO 2012154801 Nov 2012 WO
WO 2013165674 Nov 2013 WO
WO 2014066422 May 2014 WO
WO 2014092552 Jun 2014 WO
WO 2014181323 Nov 2014 WO
WO 2015127503 Sep 2015 WO
WO 2016020038 Feb 2016 WO
WO 2017187106 Nov 2017 WO
WO 2018018007 Jan 2018 WO
WO 2018204308 Nov 2018 WO
WO 2018204342 Nov 2018 WO
WO 2019023249 Jan 2019 WO
Non-Patent Literature Citations (102)
Entry
International Search Report and Written Opinion for International Application No. PCT/CN2017/083143 dated Feb. 11, 2018.
Notice of allowance for U.S. Appl. No. 15/211,103 dated Apr. 5, 2017.
Olson, Clark F., etal. “Wide-Baseline Stereo Vision for terrain Mapping” in Machine Vision and Applications, Aug. 2010.
Oriolo et al., “An iterative learning controller for nonholonomic mobile Robots”, the international Journal of Robotics Research, Aug. 1997, pp. 954-970.
Ostafew et al., “Visual Teach and Repeat, Repeat, Repeat: Iterative learning control to improve mobile robot path tracking in challenging outdoor environment”, IEEE/RSJ International Conference on Intelligent robots and Systems, Nov. 2013, pp. 176-.
Park et al., “Autonomous mobile robot navigation using passive rfid in indoor environment,” IEEE, Transactions on industrial electronics, vol. 56, issue 7, pp. 2366-2373 (Jul. 2009).
Perveen et al. (An overview of template matching methodologies and its application, International Journal of Research in Computer and Communication Technology, v2n10, Oct. 2013) (Year: 2013).
Pivtoraiko et al., “Differentially constrained mobile robot motion planning in state lattices”, journal of field robotics, vol. 26, No. 3, 2009, pp. 308-333.
Pratt W K Ed: “Digital Image processing, 10-image enhancement, 17-image segmentation”, Jan. 1, 2001, Digital Image Processing: PIKS Inside, New York: John Wily & Sons, US, pp. 243-258, 551.
Puwein, J., et al.“Robust Multi-view camera calibration for wide-baseline camera networks,” in IEEE Workshop on Applications of computer vision (WACV), Jan. 2011.
Rusu, et al. “How to incrementally register pairs of clouds,” PCL Library, retrieved from internet on Aug. 22, 2016 [http://pointclouds.org/documentation/tutorials/pairwise_incremental_registration.php.
Rusu, et al. “Spatial Change detection on unorganized point cloud data,” PCL Library, retrieved from internet on Aug. 19, 2016 [http://pointclouds.org/documentation/tutorials/octree_change.php].
Schnabel et al. “Efficient RANSAC for Point-Cloud Shape Detection”, vol. 0, No. 0, pp. 1-12 (1981).
Senthilkumaran, et al., “Edge Detection Techniques for Image Segmentation—A Survey of Soft Computing Approaches”, International Journal of Recent Trends in Engineering, vol. 1, No. 2 (May 2009).
Szeliski, “Modified Hough Transform”, Computer Vision. Copyright 2011, pp. 251-254. Retrieved on Aug. 17, 2017 [http://szeliski.org/book/drafts/SzeliskiBook_20100903_draft.pdf].
Tahir, Rabbani, et al., “Segmentation of point clouds using smoothness constraint,” International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36.5 (Sep. 2006): 248-253.
Trevor et al., “Tables, Counters, and Shelves: Semantic Mapping of Surfaces in 3D,” Retrieved from Internet Jul. 3, 2018 @ http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.703.5365&rep=rep1&type=p.
Tseng, et al., “A Cloud Removal Approach for Aerial Image Visualization”, International Journal of Innovative Computing, Information & Control, vol. 9, No. 6, pp. 2421-2440 (Jun. 2013).
Uchiyama, et al., “Removal of Moving Objects from a Street-View Image by Fusing Multiple Image Sequences”, Pattern Recognition, 2010, 20th International Conference on, IEEE, Piscataway, NJ pp. 3456-3459 (Aug. 23, 2010).
United Kingdom Intellectual Property Office, “Combined Search and Examination Report” for GB Patent Application No. 1813580.6 dated Feb. 21, 2019.
United Kingdom Intellectual Property Office, Combined Search and Examination Report dated Jan. 22, 2016 for GB Patent Application No. 1417218.3.
United Kingdom Intellectual Property Office, Combined Search and Examination Report dated Jan. 22, 2016 for GB Patent Application No. 1521272.3.
United Kingdom Intellectual Property Office, Combined Search and Examination Report dated Mar. 11, 2015 for GB Patent Application No. 1417218.3.
United Kingdom Intellectual Property Office, Combined Search and Examination Report dated May 13, 2020 for GB Patent Application No. 1917864.9.
Varol Gul et al: “Product placement detection based on image processing”, 2014 22nd Signal Processing and Communication Applications Conference (SIU), IEEE, Apr. 23, 2014.
Varol Gul et al: “Toward Retail product recognition on Grocery shelves”, Visual Communications and image processing; Jan. 20, 2004; San Jose, (Mar. 4, 2015).
Weber et al., “Methods for Feature Detection in Point clouds,” visualization of large and unstructured data sets—IRTG Workshop, pp. 90-99 (2010).
Zhao Zhou et al.: “An Image contrast Enhancement Algorithm Using PLIP-based histogram Modification”, 2017 3rd IEEE International Conference on Cybernetics (CYBCON), IEEE, (Jun. 21, 2017).
Ziang Xie et al., “Multimodal Blending for High-Accuracy Instance Recognition”, 2013 IEEE RSJ International Conference on Intelligent Robots and Systems, p. 2214-2221.
Fan Zhang et al., “Parallax-tolerant Image Stitching”, 2014 Computer Vision Foundation, pp. 4321-4328.
Kaimo Lin et al., “SEAGULL: Seam-guided Local Alignment for Parallax-tolerant Image Stitching”, Retrieved on Nov. 16, 2020 [http://publish.illinois.edu/visual-modeling-and-analytics/files/2016/08/Seagull.pdf].
Julio Zaragoza et al., “As-Projective-As-Possible Image Stitching with Moving DLT”, 2013 Computer Vision Foundation, pp. 2339-2346.
Zeng et al., Multi-view Self Supervised Deep Learning for 6D Pose Estimation in the Amazon Picking Challenge, May 7, 2017. Retrieved on Nov. 16, 2019 [https://arxiv.org/pdf/1609.09475.pdf].
Dubois, M., et al., A comparison of geometric and energy-based point cloud semantic segmentation methods, European Conference on Mobile Robots (ECMR), p. 88-93, Sep. 25-27, 2013.
Duda, et al., “Use of the Hough Transformation to Detect Lines and Curves in Pictures”, Stanford Research Institute, Menlo Park, California, Graphics and Image Processing, Communications of the ACM, vol. 15, No. 1 (Jan. 1972).
F.C.A. Groen et al., “The smallest box around a package,” Pattern Recognition, vol. 14, No. 1-6, Jan. 1, 1981, pp. 173-176, XP055237156, GB, ISSN: 0031-3203, DOI: 10.1016/0031-3203(81(90059-5 p. 176-p. 178.
Federico Tombari et al. “Multimodal cue integration through Hypotheses Verification for RGB-D object recognition and 6DOF pose estimation”, IEEE International Conference on Robotics and Automation, Jan. 2013.
Flores, et al., “Removing Pedestrians from Google Street View Images”, Computer Vision and Pattern Recognition Workshops, 2010 IEEE Computer Society Conference on, IEE, Piscataway, NJ, pp. 53-58 (Jun. 13, 2010).
Glassner, “Space Subdivision for Fast Ray Tracing.” IEEE Computer Graphics and Applications, 4.10, pp. 15-24, 1984.
Golovinskiy, Aleksey, et al. “Min-Cut based segmentation of point clouds.” Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on. IEEE, 2009.
Hackel et al., “Contour Detection in unstructured 3D point clouds,” IEEE, 2016 Conference on Computer vision and Pattern recognition (CVPR), Jun. 27-30, 2016, pp. 1-9.
Hao et al., “Structure-based object detection from scene point clouds,” Science Direct, v191, pp. 148-160 (2016).
Hu et al., “An improved method of discrete point cloud filtering based on complex environment,” International Journal of Applied Mathematics and Statistics, v48, i18 (2013).
International Search Report and Written Opinion for International Patent Application No. PCT/US2013/070996 dated Apr. 2, 2014.
International Search Report and Written Opinion for International Patent Application No. PCT/US2013/053212 dated Dec. 1, 2014.
International Search Report and Written Opinion for corresponding International Patent Application No. PCT/US2016/064110 dated Mar. 20, 2017.
International Search Report and Written Opinion for corresponding International Patent Application No. PCT/US2017/024847 dated Jul. 7, 2017.
International Search Report and Written Opinion for International Application No. PCT/US2018/030419 dated Aug. 31, 2018.
International Search Report and Written Opinion from International Patent Application No. PCT/US2018/030345 dated Sep. 17, 2018.
International Search Report and Written Opinion from International Patent Application No. PCT/US2018/030360 dated Jul. 9, 2018.
International Search Report and Written Opinion from International Patent Application No. PCT/US2018/030363 dated Jul. 9, 2018.
International Search Report and Written Opinion for International Application No. PCT/US2019/025859 dated Jul. 3, 2019.
International Search Report and Written Opinion from International Patent Application No. PCT/US2019/025849 dated Jul. 9, 2019.
International Search Report and Written Opinion from International Patent Application No. PCT/US2019/049761 dated Nov. 15, 2019.
International Search Report and Written Opinion from International Patent Application No. PCT/US2019/051312 dated Nov. 15, 2019.
International Search Report and Written Opinion from International Patent Application No. PCT/US2019/054103 dated Jan. 6, 2020.
International Search Report and Written Opinion from International Patent Application No. PCT/US2019/064020 dated Feb. 19, 2020.
International Search Report and Written Opinion for International Patent Application No. PCT/US2020/027948 dated Jul. 16, 2020.
International Search Report and Written Opinion for International Patent Application No. PCT/US2020/028133 dated Jul. 24, 2020.
International Search Report and Written Opinion from International Patent Application No. PCT/US2020/029134 dated Jul. 27, 2020.
International Search Report and Written Opinion from International Patent Application No. PCT/US2020/028183 dated Jul. 24, 2020.
International Search Report and Written Opinion from International Patent Application No. PCT/US2020/035285 dated Aug. 27, 2020.
International Search Report and Written Opinion for International Patent Application No. PCT/US2021/024805 dated Aug. 2, 2021.
Jadhav et al. “Survey on Spatial Domain dynamic template matching technique for scanning linear barcode,” International Journal of science and research v 5 n 3, Mar. 2016)(Year: 2016).
Jian Fan et al: “Shelf detection via vanishing point and radial projection”, 2014 IEEE International Conference on image processing (ICIP), IEEE, (Oct. 27, 2014), pp. 1575-1578.
Kang et al., “Kinematic Path-Tracking of Mobile Robot Using Iterative learning Control”, Journal of Robotic Systems, 2005, pp. 111-121.
Kay et al. “Ray Tracing Complex Scenes.” ACM SIGGRAPH Computer Graphics, vol. 20, No. 4, ACM, pp. 269-278, 1986.
Kelly et al., “Reactive Nonholonomic Trajectory Generation via Parametric Optimal Control”, International Journal of Robotics Research, vol. 22, No. 7-8, pp. 583-601 (Jul. 30, 2013).
Lari, Z., et al., “An adaptive approach for segmentation of 3D laser point cloud.” International Archives of the Photogrammertry, Remote sensing and spatial information Sciences, vol. XXXVIII-5/W12, 2011, ISPRS Calgary 2011 Workshop, Aug. 29-31, 2011, Calgary, Canada.
Lecking et al: “Localization in a wide range of industrial environments using relative 3D ceiling features”, IEEE, pp. 333-337 (Sep. 15, 2008).
Lee et al. “Statistically Optimized Sampling for Distributed Ray Tracing.” ACM SIGGRAPH Computer Graphics, vol. 19, No. 3, ACM, pp. 61-67, 1985.
Li et al., “An improved RANSAC for 3D Point cloud plane segmentation based on normal distribution transformation cells,” Remote sensing, V9: 433, pp. 1-16 (2017).
Likhachev, Maxim, and Dave Ferguson. “Planning Long dynamically feasible maneuvers for autonomous vehicles.” The international journal of Robotics Reasearch 28.8 (2009): 933-945. (Year:2009).
Marder-Eppstein et al., “The Office Marathon: robust navigation in an indoor office environment,” IEEE, 2010 International conference on robotics and automation, May 3-7, 2010, pp. 300-307.
McNaughton, Matthew, et al. “Motion planning for autonomous driving with a conformal spatiotemporal lattice.” Robotics and Automation (ICRA), 2011 IEEE International Conference on. IEEE, 2011. (Year: 2011).
Meyersohn, “Walmart turns to robots and apps in stores”, https://www.cnn.com/2018/12/07/business/walmart-robot-janitors-dotcom-store/index.html, Oct. 29, 2019.
Mitra et al., “Estimating surface normals in noisy point cloud data,” International Journal of Computational geometry & applications, Jun. 8-10, 2003, pp. 322-328.
N.D.F. Campbell et al. “Automatic 3D Object Segmentation in Multiple Views using Volumetric Graph-Cuts”, Journal of Image and Vision Computing, vol. 28, Issue 1, Jan. 2010, pp. 14-25.
Ni et al., “Edge Detection and Feature Line Tracing in 3D-Point Clouds by Analyzing Geometric Properties of Neighborhoods,” Remote Sensing, V8 I9, pp. 1-20 (2016).
Norriof et al., “Experimental comparison of some classical iterative learning control algorithms”, IEEE Transactions on Robotics and Automation, Jun. 2002, pp. 636-641.
Notice of allowance for U.S. Appl. No. 13/568,175 dated Sep. 23, 2014.
Notice of allowance for U.S. Appl. No. 13/693,503 dated Mar. 11, 2016.
Notice of allowance for U.S. Appl. No. 14/068,495 dated Apr. 25, 2016.
Notice of allowance for U.S. Appl. No. 14/518,091 dated Apr. 12, 2017.
“Fair Billing with Automatic Dimensioning” pp. 1-4, undated, Copyright Mettler-Toledo International Inc.
“Plane Detection in Point Cloud Data” dated Jan. 25, 2010 by Michael Ying Yang and Wolfgang Forstner, Technical Report 1, 2010, University of Bonn.
“Swift Dimension” Trademark Omniplanar, Copyright 2014.
Ajmal S. Mian et al., “Three-Dimensional Model Based Object Recognition and Segmentation in Cluttered Scenes”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, No. 10, Oct. 2006.
Batalin et al., “Mobile robot navigation using a sensor network,” IEEE, International Conference on robotics and automation, Apr. 26, May 1, 2004, pp. 636-641.
Bazazian et al., “Fast and Robust Edge Extraction in Unorganized Point clouds,” IEEE, 2015 International Conference on Digital Image Computing: Techniques and Applicatoins (DICTA), Nov. 23-25, 2015, pp. 1-8.
Biswas et al. “Depth Camera Based Indoor Mobile Robot Localization and Navigation” Robotics and Automation (ICRA), 2012 IEEE International Conference on IEEE, 2012.
Bohm, Multi-Image Fusion for Occlusion-Free Faade Texturing, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, pp. 867-872 (Jan. 2004).
Bristow et al., “A Survey of Iterative Learning Control”, IEEE Control Systems, Jun. 2006, pp. 96-114.
Buenaposada et al. “Realtime tracking and estimation of plane pose” Proceedings of the ICPR (Aug. 2002) vol. II, IEEE pp. 697-700.
Carreira et al., “Enhanced PCA-based localization using depth maps with missing data,” IEEE, pp. 1-8, Apr. 24, 2013.
Castorena et al., “Autocalibration of lidar and optical cameras via edge alignment”, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (Mar. 20, 2016).
Chen et al. “Improving Octree-Based Occupancy Maps Using Environment Sparsity with Application to Aerial Robot Navigation” Robotics and Automation (ICRA), 2017 IEEE.
Cleveland Jonas et al: “Automated System for Semantic Object Labeling with Soft-Object Recognition and Dynamic Programming Segmentation”, IEEE Transactions on Automation Science and Engineering, IEEE Service Center, New York, NY (Apr. 1, 2017).
Cook et al., “Distributed Ray Tracing” ACM SIGGRAPH Computer Graphics, vol. 18, No. 3, ACM pp. 137-145, 1984.
Datta, A., et al. “Accurate camera calibration using iterative refinement of control points,” in Computer Vision Workshops (ICCV Workshops), 2009.
Deschaud, et al., “A Fast and Accurate Place Detection algoritm for large noisy point clouds using filtered normals and voxel growing,” 3DPVT, May 2010, Paris, France, [hal-01097361].
Douillard, Bertrand, et al. “On the segmentation of 3D LIDAR point clouds.” Robotics and Automation (ICRA), 2011 IEEE International Conference on IEEE, 2011.
Related Publications (1)
Number Date Country
20210142092 A1 May 2021 US