BRIEF DESCRIPTION OF THE DRAWINGS
Aspects and features of the present invention will be appreciated as the same becomes better understood by reference to the following detailed description of the embodiments of the invention when considered in connection with the accompanying drawings, wherein:
FIG. 1 is a schematic diagram of an exemplary subcutaneous device in which the present invention may be usefully practiced;
FIG. 3 is an exemplary schematic diagram of electronic circuitry within a hermetically sealed housing of a subcutaneous device of the present invention;
FIG. 4 is a schematic diagram of signal processing aspects of a subcutaneous device according to an exemplary embodiment of the present invention;
FIG. 5 is a state diagram of detection of arrhythmias in a subcutaneous device according to an embodiment of the present invention;
FIG. 6 is a flow chart of a method for detecting arrhythmias in a subcutaneous device according to an embodiment of the present invention;
FIGS. 7A-7I are flow charts of a method for detecting arrhythmias in a subcutaneous device according to an embodiment of the present invention;
FIG. 8 is a graphical representation of sensing of cardiac activity according to an embodiment of the present invention;
FIG. 9A is a graphical representation of a determination of whether a signal is corrupted by muscle noise according to an embodiment of the present invention;
FIG. 9B is a flowchart of a method of determining whether a signal is corrupted by muscle noise according to an embodiment of the present invention;
FIG. 9C is a flowchart of a method of determining whether a signal is corrupted by muscle noise according to an embodiment of the present invention;
FIG. 10 is a graphical representation of a VF shock zone according to an embodiment of the present invention; and
FIGS. 11A and 11B are graphical representations of the determination of whether an event is within a shock zone according to an embodiment of the present invention.