Method and apparatus for detecting false hypoglycemic conditions

Information

  • Patent Grant
  • 10117606
  • Patent Number
    10,117,606
  • Date Filed
    Wednesday, June 3, 2015
    9 years ago
  • Date Issued
    Tuesday, November 6, 2018
    6 years ago
Abstract
Embodiments of the present disclosure include detecting a concurrent occurrence of a decrease in monitored analyte level and a corresponding decrease in monitored on-skin temperature, confirming a presence of an impending hypoglycemic condition, and asserting a notification corresponding to the confirmed impending hypoglycemic condition. Devices, methods, systems and kits incorporating the same are also provided.
Description
BACKGROUND

For diabetic patients, it is desirable and often necessary to detect symptoms related to hypoglycemic condition, or the onset of such condition. If not treated in a timely manner, hypoglycemia (or commonly associated with low blood sugar level and sometimes referred to as “insulin shock”) will have detrimental if not lethal effect on the patient. As insulin therapy becomes more prevalent for the treatment of diabetes mellitus, the detection of the onset of such conditions is significant.


When a diabetic person experiences hypoglycemic condition, often, the person will experience increased heart rate, perspiration, involuntary shaking, rapid decline in body temperature, paleness, and over the course of a period of hours, the declining blood sugar level may impact the brain functions, potentially resulting in dizziness, hindered bodily coordination, undesirable modification in behavior and the like. Death or permanent brain damage is not uncommon if the declining blood sugar level is left untreated.


Commercially available continuous glucose monitoring systems provide tools for diabetic patients to continuously monitor the glucose levels and provide on-going feedback to the patient to take corrective action. Such systems use glucose sensors which at times exhibit inaccuracies. That is, there are times when the glucose sensor may falsely indicate a low glucose reading, triggering a false warning to the user. The false indications, sometimes referred to as sensor signal dropouts, may be attributable to a variety of factors, such as inherent inaccuracies in the system, the instability of the sensor during the initial time period of use, changes in the sensor's environment, pressure on a blood vessel supplying glucose to the tissue in which the sensor is implanted, noise in the system, and the like. It has been found that such false positive indication of low glucose readings generated by the sensor in use occur more often during night time. This in turn causes a significant inconvenience or disadvantage to the user or the patient if alarms or notifications are associated with low glucose measurements and are triggered during night time, when in fact the glucose level of the patient or the user is not low and the triggered alarm or notification was a false alarm.


SUMMARY

In view of the foregoing, in aspects of the present disclosure, methods, systems, apparatus and kits are provided which reduce the occurrence of false alarms or notifications to the user associated with false hypoglycemic condition detection based on data from analyte sensors. In particular, in aspects of the present disclosure, a user's glucose level is monitored in conjunction with the temperature and/or perspiration level of the patient, and the fluctuations of the glucose level and the temperature and/or perspiration level is monitored such that, when a potential hypoglycemic condition or a potential impending hypoglycemic condition is detected, the presence of such potential conditions is confirmed before the associated notification or alarm is asserted.


In addition to the monitored temperature or perspiration level, within the scope of the present disclosure, other physiological parameters may be monitored for confirming the presence of hypoglycemic condition, such as, for example, a user's heart rate, detected tremor, or oxygen saturation level of the user's blood.


A method in accordance with one embodiment includes receiving a plurality of time spaced analyte related data monitored by an analyte sensor in fluid contact with an analyte during a first time period, detecting when one or more of the received plurality of time spaced analyte related data crosses a predetermined analyte threshold level during the first time period, receiving a plurality of time spaced temperature data during the first time period, determining a rate of change of the received plurality of time spaced temperature data and detecting when the determined rate of change crosses a predetermined rate of temperature change; and asserting a notification when the determined rate of change of the received plurality of the time spaced temperature data reaches the predetermined rate of temperature change and when the one or more of the received plurality of time spaced analyte related data reaches the predetermined threshold analyte level during the first time period.


A method in accordance with another embodiment includes receiving a plurality of time spaced analyte related data monitored by an analyte sensor in fluid contact with an analyte during a first time period, detecting when one or more of the received plurality of time spaced analyte related data reaches a predetermined analyte threshold level during the first time period, receiving a plurality of time spaced temperature data during the first time period, detecting when one or more of the time spaced temperature related data crosses a predetermined threshold temperature level during the first time period, and asserting a notification when the one or more of the received plurality of time spaced analyte related data reaches a predetermined threshold analyte level and when the one or more of the plurality of time spaced temperature related data reaches the predetermined temperature threshold level during the first time period.


In still another aspect, a method in accordance with certain embodiments of the present disclosure includes monitoring a variation in on-skin temperature in proximity to a transcutaneously positioned analyte sensor having at least a portion in fluid contact with an analyte during a monitoring time period, detecting the variation in the monitored temperature exceeding a predetermined threshold level, confirming a presence of a medically significant condition when the detected variation in the monitored temperature exceeds the predetermined threshold level, and asserting a notification associated with the medically significant condition when it is confirmed, wherein confirming the presence of the medically significant condition includes determining a variation in the monitored analyte level exceeding the predetermined threshold level based on comparing a slope indicative of the change in the monitored analyte level substantially to a slope indicative of the change in the monitored on-skin temperature variation.


A method in still another embodiment includes detecting a concurrent occurrence of a decrease in monitored analyte level and a corresponding decrease in monitored on-skin temperature, confirming a presence of an impending hypoglycemic condition, and asserting a notification corresponding to the confirmed impending hypoglycemic condition.


A method of confirming hypoglycemic condition in a patient in yet still a further embodiment includes monitoring a directional change in glucose level based on data stream received from an analyte sensor during a monitoring time period, monitoring a directional change in a first physiological parameter during the monitoring time period, monitoring a directional change in a second physiological parameter during the monitoring time period, detecting an initialization of a hypoglycemic alarm based, at least in part, on the directional change of the monitored glucose level, and comparing the directional change in one or more of the first or the second physiological parameters relative to the directional change in the glucose level prior to the assertion of the hypoglycemic alarm.


An apparatus in accordance with one embodiment includes one or more processors, and a memory for storing instructions which, when executed by the one or more processors, causes the one or more processors to receive a plurality of time spaced analyte related data monitored by an analyte sensor in fluid contact with an analyte during a first time period, determine a rate of change of the received plurality of time spaced analyte related data, receive a plurality of time spaced temperature data during the first time period, determine a rate of change of the received plurality of time spaced temperature data, compare the determined rate of change of the received plurality of the time spaced temperature data to the predetermined threshold level when the determined rate of change of the received plurality of time spaced analyte related data exceeds a predetermined threshold level, and assert a notification when the determined rate of change of the received plurality of the time spaced temperature data exceeds the predetermined threshold level.


An apparatus in accordance with still another aspect includes one or more processors, and a memory for storing instructions which, when executed by the one or more processors, causes the one or more processors to monitor a variation in on-skin temperature in proximity to a transcutaneously positioned analyte sensor having at least a portion in fluid contact with an analyte during a monitoring time period, detect the variation in the monitored temperature exceeding a predetermined threshold level, confirm a presence of a medically significant condition when the detected variation in the monitored temperature exceeds the predetermined threshold level, and assert a notification associated with the medically significant condition when it is confirmed, wherein the memory for storing instructions which, when executed by the one or more processors, causes the one or more processors to determine a variation in the monitored analyte level exceeding the predetermined threshold level based on comparing a slope indicative of the change in the monitored analyte level substantially to a slope indicative of the change in the monitored on-skin temperature variation.


An apparatus in accordance with still another aspect includes one or more processors, and a memory for storing instructions which, when executed by the one or more processors, causes the one or more processors to detect a concurrent occurrence of a decrease in monitored analyte level and a corresponding decrease in monitored on-skin temperature, confirm a presence of an impending hypoglycemic condition, and assert a notification corresponding to the confirmed impending hypoglycemic condition.


An apparatus in still yet a further embodiment includes one or more processors, and a memory for storing instructions which, when executed by the one or more processors, causes the one or more processors to monitor a directional change in glucose level based on data stream received from an analyte sensor during a monitoring time period, monitor a directional change in a first physiological parameter during the monitoring time period, monitor a directional change in a second physiological parameter during the monitoring time period, detect an initialization of a hypoglycemic alarm based, at least in part, on the directional change of the monitored glucose level, and compare the directional change in one or more of the first or the second physiological parameters relative to the directional change in the glucose level prior to the assertion of the hypoglycemic alarm.


In this manner, in aspects of the present disclosure, the occurrence of false notifications associated with the presence of hypoglycemic condition, impending hypoglycemic condition, or onset of hypoglycemic condition is reduced, providing robustness to the glucose monitoring system.


These and other features, objects and advantages of the present disclosure will become apparent to those persons skilled in the art upon reading the details of the present disclosure as more fully described below.





BRIEF DESCRIPTION OF THE DRAWINGS

A detailed description of various aspects, features and embodiments of the present disclosure is provided herein with reference to the accompanying drawings, which are briefly described below. The drawings are illustrative and are not necessarily drawn to scale, with some components and features being exaggerated for clarity. The drawings illustrate various aspects or features of the present disclosure and may illustrate one or more embodiment(s) or example(s) of the present disclosure in whole or in part. A reference numeral, letter, and/or symbol that is used in one drawing to refer to a particular element or feature may be used in another drawing to refer to a like element or feature. Included in the drawings are the following:



FIG. 1 shows a block diagram of an embodiment of a data monitoring and management system with which a sensor according to the present disclosure is usable;



FIG. 2 shows a block diagram of an embodiment of the data processing unit of the data monitoring and management system of FIG. 1;



FIG. 3 shows a block diagram of an embodiment of the receiver/monitor unit of the data monitoring and management system of FIG. 1;



FIG. 4 is a flowchart illustrating a routine associated with determining false signal attenuation of an analyte sensor in one aspect of the present disclosure;



FIG. 5 is a flowchart illustrating a routine associated with determining false signal attenuation of an analyte sensor in another aspect of the present disclosure;



FIG. 6 is a flowchart illustrating a routine associated with determining false signal attenuation of an analyte sensor in a further aspect of the present disclosure;



FIG. 7 is graphical illustration of the monitored glucose level and the corresponding temperature level during the same time period confirming a hypoglycemic event; and



FIG. 8 is a graphical illustration of the monitored glucose level and the corresponding temperature level during the same time period indicating a false hypoglycemic event.





INCORPORATION BY REFERENCE

Patents, applications and/or publications described herein, including the following patents, applications and/or publications are incorporated herein by reference for all purposes: U.S. Pat. Nos. 4,545,382, 4,711,245, 5,262,035, 5,262,305, 5,264,104, 5,320,715, 5,356,786, 5,509,410, 5,543,326, 5,593,852, 5,601,435, 5,628,890, 5,820,551, 5,822,715, 5,899,855, 5,918,603, 6,071,391, 6,103,033, 6,120,676, 6,121,009, 6,134,461, 6,143,164, 6,144,837, 6,161,095, 6,175,752, 6,270,455, 6,284,478, 6,299,757, 6,338,790, 6,377,894, 6,461,496, 6,503,381, 6,514,460, 6,514,718, 6,540,891, 6,560,471, 6,579,690, 6,591,125, 6,592,745, 6,600,997, 6,605,200, 6,605,201, 6,616,819, 6,618,934, 6,650,471, 6,654,625, 6,676,816, 6,730,200, 6,736,957, 6,746,582, 6,749,740, 6,764,581, 6,773,671, 6,881,551, 6,893,545, 6,932,892, 6,932,894, 6,942,518, 7,041,468, 7,167,818, and 7,299,082, U.S. Published Application Nos. 2004/0186365, now U.S. Pat. No. 7,811,231, 2005/0182306, now U.S. Pat. No. 8,771,183, 2006/0025662, now U.S. Pat. No. 7,740,581, 2006/0091006, 2007/0056858, now U.S. Pat. No. 8,298,389, 2007/0068807, now U.S. Pat. No. 7,846,311, 2007/0095661, 2007/0108048, now U.S. Pat. No. 7,918,975, 2007/0199818, now U.S. Pat. No. 7,811,430, 2007/0227911, now U.S. Pat. No. 7,887,682, 2007/0233013, 2008/0066305, now U.S. Pat. No. 7,895,740, 2008/0081977, now U.S. Pat. No. 7,618,369, 2008/0102441, now U.S. Pat. No. 7,822,557, 2008/0148873, now U.S. Pat. No. 7,802,467, 2008/0161666, 2008/0267823, and 2009/0054748, now U.S. Pat. No. 7,885,698, U.S. patent application Ser. No. 11/461,725, now U.S. Pat. No. 7,866,026, Ser. Nos. 12/131,012, 12/393,921, 12/242,823, now U.S. Pat. No. 8,219,173, Ser. No. 12/363,712, now U.S. Pat. No. 8,346,335, Ser. Nos. 12/495,709, 12/698,124, 12/698,129, 12/714,439, 12/794,721, now U.S. Pat. No. 8,595,607, Ser. Nos. 12/807,278, 12/842,013, and 12/871,901, now U.S. Pat. No. 8,514,086, and U.S. Provisional Application Nos. 61/238,646, 61/246,825, 61/247,516, 61/249,535, 61/317,243, 61/345,562, 61/325,260 and 61/361,374.


DETAILED DESCRIPTION

Before the present disclosure is described, it is to be understood that this disclosure is not limited to particular embodiments described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present disclosure will be limited only by the appended claims.


Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the disclosure. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges as also encompassed within the disclosure, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the disclosure.


It must be noted that as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise.


As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present disclosure.


Generally, embodiments of the present disclosure relate to methods and devices for detecting at least one analyte, such as glucose, in body fluid. Embodiments relate to the continuous and/or automatic in vivo monitoring of the level of one or more analytes using a continuous analyte monitoring system that includes an analyte sensor for the in vivo detection, of an analyte, such as glucose, lactate, and the like, in a body fluid. Embodiments include wholly implantable analyte sensors and analyte sensors in which only a portion of the sensor is positioned under the skin and a portion of the sensor resides above the skin, e.g., for contact to a control unit, transmitter, receiver, transceiver, processor, etc. At least a portion of a sensor may be, for example, subcutaneously positionable in a patient for the continuous or semi-continuous monitoring of a level of an analyte in a patient's interstitial fluid. For the purposes of this description, semi-continuous monitoring and continuous monitoring will be used interchangeably, unless noted otherwise.


The sensor response may be correlated and/or converted to analyte levels in blood or other fluids. In certain embodiments, an analyte sensor may be positioned in contact with interstitial fluid to detect the level of glucose, which may be used to infer the glucose level in the patient's bloodstream. Analyte sensors may be insertable into a vein, artery, or other portion of the body containing fluid. Embodiments of the analyte sensors of the subject disclosure may be configured for monitoring the level of the analyte over a time period which may range from minutes, hours, days, weeks, or longer.


In aspects of the present disclosure, temperature, perspiration or other characteristics of a patient such as, for example, other measurable characteristics are monitored concurrently with the monitored analyte level, and used to, in one embodiment, either confirm or reject notifications associated with the medically significant condition such as the onset or impending hypoglycemic condition initially detected based on the monitored analyte level.


In one aspect, the hypoglycemic condition may be associated with a low blood glucose level such as, for example, 40-50 mg/dL or less (depending upon, for example, age, gender, and the like). Accordingly, alarms or notifications may be configured, as a default setting or programmed specific to each patient, to be triggered when the monitored glucose level decreases at a rate that approaches the hypoglycemic condition within a defined time period to enable the patient or the user (or the healthcare provider) to timely take corrective actions. For example, each alarm or notification may be programmed to be asserted or triggered when the monitored glucose level reaches approximately 80 to 100 mg/dL, and decreasing at a rate of 2 mg/dL/minute or more. Referring now to the Figures, an exemplary overall analyte monitoring system including the various components is described below.



FIG. 1 illustrates a data monitoring and management system such as, for example, an analyte (e.g., glucose) monitoring system 100 in accordance with certain embodiments. Embodiments of the subject disclosure are further described primarily with respect to glucose monitoring devices and systems, and methods of glucose detection, for convenience only and such description is in no way intended to limit the scope of the disclosure. It is to be understood that the analyte monitoring system may be configured to monitor a variety of analytes instead of or in addition to glucose, e.g., at the same time or at different times.


Analytes that may be monitored include, but are not limited to, acetyl choline, amylase, bilirubin, cholesterol, chorionic gonadotropin, creatine kinase (e.g., CK-MB), creatine, creatinine, DNA, fructosamine, glucose, glutamine, growth hormones, hormones, ketone bodies, lactate, oxygen, peroxide, prostate-specific antigen, prothrombin, RNA, thyroid stimulating hormone, and troponin. The concentration of drugs, such as, for example, antibiotics (e.g., gentamicin, vancomycin, and the like), digitoxin, digoxin, drugs of abuse, theophylline, and warfarin, may also be monitored. In those embodiments that monitor more than one analyte, the analytes may be monitored at the same or different times.


The analyte monitoring system 100 includes a sensor 101, a data processing unit 102 connectable to the sensor 101, and a primary receiver unit 104 which is configured to communicate with the data processing unit 102 via a communication link 103. In certain embodiments, the primary receiver unit 104 may be further configured to transmit data to a data processing terminal 105 to evaluate or otherwise process or format data received by the primary receiver unit 104. The data processing terminal 105 may be configured to receive data directly from the data processing unit 102 via a communication link which may optionally be configured for bi-directional communication. Further, the data processing unit 102 may include a transmitter or a transceiver to transmit and/or receive data to and/or from the primary receiver unit 104 and/or the data processing terminal 105 and/or optionally the secondary receiver unit 106.


The electrochemical sensors of the present disclosure may employ any suitable measurement technique, e.g., may detect current, may employ potentiometry, etc. Techniques may include, but are not limited to, amperometry, coulometry, and voltammetry. In some embodiments, sensing systems may be optical, colorimetric, and the like.


Also shown in FIG. 1 is an optional secondary receiver unit 106 which is operatively coupled to the communication link 103 and configured to receive data transmitted from the data processing unit 102. The secondary receiver unit 106 may be configured to communicate with the primary receiver unit 104, as well as the data processing terminal 105. The secondary receiver unit 106 may be configured for bi-directional wireless communication with each of the primary receiver unit 104 and the data processing terminal 105. As discussed in further detail below, in certain embodiments the secondary receiver unit 106 may be a de-featured receiver as compared to the primary receiver unit 104, i.e., the secondary receiver unit 106 may include a limited or minimal number of functions and features as compared with the primary receiver unit 104. As such, the secondary receiver unit 106 may include a smaller (in one or more, including all, dimensions), compact housing or embodied in a device such as a wrist watch, arm band, etc., for example.


Alternatively, the secondary receiver unit 106 may be configured with the same or substantially similar functions and features as the primary receiver unit 104. The secondary receiver unit 106 may include a docking portion to be mated with a docking cradle unit for placement by, e.g., the bedside for nighttime monitoring, and/or a bi-directional communication device. A docking cradle may recharge a power supply.


Only one sensor 101, data processing unit 102 and data processing terminal 105 are shown in the embodiment of the analyte monitoring system 100 illustrated in FIG. 1. However, it will be appreciated by one of ordinary skill in the art that the analyte monitoring system 100 may include more than one sensor 101 and/or more than one data processing unit 102, and/or more than one data processing terminal 105. Multiple sensors may be positioned in a patient for analyte monitoring at the same or different times. In certain embodiments, analyte information obtained by a first positioned sensor may be employed as a comparison to analyte information obtained by a second sensor. This may be useful to confirm or validate analyte information obtained from one or both of the sensors. Such redundancy may be useful if analyte information is contemplated in critical therapy-related decisions.


The analyte monitoring system 100 may be a continuous monitoring system or semi-continuous. In a multi-component environment, each component may be configured to be uniquely identified by one or more of the other components in the system so that communication conflict may be readily resolved between the various components within the analyte monitoring system 100. For example, unique identification codes (IDs), communication channels, and the like, may be used.


In certain embodiments, the sensor 101 is physically positioned in and/or on the body of a user whose analyte level is being monitored. The sensor 101 may be configured to continuously or semi-continuously sample the analyte level of the user automatically (without the user initiating the sampling), based on a programmed interval such as, for example, but not limited to, once every minute, once every five minutes and so on, and convert the sampled analyte level into a corresponding signal for transmission by the data processing unit 102. The data processing unit 102 is coupleable to the sensor 101 so that both devices are positioned in or on the user's body, with at least a portion of the analyte sensor 101 positioned transcutaneously. The data processing unit may include a fixation element such as adhesive or the like to secure it to the user's body. A mount (not shown) attachable to the user and mateable with the unit 102 may be used. For example, a mount may include an adhesive surface. The data processing unit 102 performs data processing functions, where such functions may include, but are not limited to, filtering and encoding of data signals, each of which corresponds to a sampled analyte level of the user, for transmission to the primary receiver unit 104 via the communication link 103. In one embodiment, the sensor 101 or the data processing unit 102 or a combined sensor/data processing unit may be wholly implantable under the skin layer of the user.


In certain embodiments, the primary receiver unit 104 may include a signal interface section including an RF receiver and an antenna that is configured to communicate with the data processing unit 102 via the communication link 103, and a data processing section for processing the received data from the data processing unit 102 such as data decoding, error detection and correction, data clock generation, data bit recovery, etc., or any combination thereof.


In operation, the primary receiver unit 104 in certain embodiments is configured to synchronize with the data processing unit 102 to uniquely identify the data processing unit 102, based on, for example, an identification information of the data processing unit 102, and thereafter, to continuously or semi-continuously receive signals transmitted from the data processing unit 102 associated with the monitored analyte levels detected by the sensor 101. Referring again to FIG. 1, the data processing terminal 105 may include a personal computer, a portable computer such as a laptop or a handheld device (e.g., personal digital assistants (PDAs), telephone such as a cellular phone (e.g., a multimedia and Internet-enabled mobile phone such as an iPhone, Blackberry device or similar phone), mp3 player, pager, global position system (GPS)) drug delivery device, each of which may be configured for data communication with the receiver via a wired or a wireless connection. Additionally, the data processing terminal 105 may further be connected to a data network (not shown) for storing, retrieving, updating, and/or analyzing data corresponding to the detected analyte level of the user.


The data processing terminal 105 may include an infusion device such as an insulin infusion pump or the like, which may be configured to administer insulin to patients, and which may be configured to communicate with the primary receiver unit 104 for receiving, among others, the measured analyte level. Alternatively, the primary receiver unit 104 may be configured to integrate an infusion device therein so that the primary receiver unit 104 is configured to administer insulin (or other appropriate drug) therapy to patients, for example, for administering and modifying basal profiles, as well as for determining appropriate boluses for administration based on, among others, the detected analyte levels received from the data processing unit 102. An infusion device may be an external device or an internal device (wholly implantable in a user).


In certain embodiments, the data processing terminal 105, which may include an insulin pump, may be configured to receive the analyte signals from the data processing unit 102, and thus, incorporate the functions of the primary receiver unit 104 including data processing for managing the patient's insulin therapy and analyte monitoring. In certain embodiments, the communication link 103 as well as one or more of the other communication interfaces shown in FIG. 1, may use one or more of an RF communication protocol, an infrared communication protocol, a Bluetooth® enabled communication protocol, an 802.11x wireless communication protocol, or an equivalent wireless communication protocol which would allow secure, wireless communication of several units (for example, per HIPAA requirements), while avoiding potential data collision and interference.



FIG. 2 shows a block diagram of an embodiment of a data processing unit of the data monitoring and detection system shown in FIG. 1. The data processing unit 102 thus may include one or more of an analog interface 201 configured to communicate with the sensor 101 (FIG. 1), a user input 202, and a temperature measurement section 203, each of which is operatively coupled to a processor 204 such as a central processing unit (CPU). User input and/or interface components may be included or a data processing unit may be free of user input and/or interface components. In certain embodiments, one or more application-specific integrated circuits (ASIC) may be used to implement one or more functions or routines associated with the operations of the data processing unit (and/or receiver unit) using for example one or more state machines and buffers.


Further shown in FIG. 2 are a transmitter serial communication section 205 and an RF transmitter 206, each of which is also operatively coupled to the processor 204. The RF transmitter 206, in some embodiments, may be configured as an RF receiver or an RF transmitter/receiver, such as a transceiver, to transmit and/or receive data signals. Moreover, a power supply 207, such as a battery, may also be provided in the data processing unit 102 to provide the necessary power for the data processing unit 102. Additionally, as can be seen from the Figure, clock 208 may be provided to, among others, supply real time information to the processor 204.


As can be seen in the embodiment of FIG. 2, the sensor 101 (FIG. 1) includes four contacts, three of which are electrodes—working electrode (W) 210, guard contact (G) 211, reference electrode (R) 212, and counter electrode (C) 213, each operatively coupled to the analog interface 201 of the data processing unit 102. In certain embodiments, each of the working electrode (W) 210, guard contact (G) 211, reference electrode (R) 212, and counter electrode (C) 213 may be made using a non-corroding conductive material that may be applied by, e.g., chemical vapor deposition (CVD), physical vapor deposition, sputtering, reactive sputtering, printing, coating, ablating (e.g., laser ablation), painting, dip coating, etching, and the like. Materials include, but are not limited to, carbon (such as graphite), gold, iridium, ruthenium, palladium, platinum, rhenium, rhodium, silver, mixtures thereof, and alloys thereof, and metallic oxides, like ruthenium dioxide or iridium dioxide, of these elements.


In certain embodiments, a unidirectional input path is established from the sensor 101 (FIG. 1) and/or manufacturing and testing equipment to the analog interface 201 of the data processing unit 102, while a unidirectional output is established from the output of the RF transmitter 206 of the data processing unit 102 for transmission to the primary receiver unit 104. In this manner, a data path is shown in FIG. 2 between the aforementioned unidirectional input and output via a dedicated link 209 from the analog interface 201 to serial communication section 205, thereafter to the processor 204, and then to the RF transmitter 206. As such, in certain embodiments, via the data path described above, the data processing unit 102 is configured to transmit to the primary receiver unit 104 (FIG. 1), via the communication link 103 (FIG. 1), processed and encoded data signals received from the sensor 101 (FIG. 1). Additionally, the unidirectional communication data path between the analog interface 201 and the RF transmitter 206 discussed above allows for the configuration of the data processing unit 102 for operation upon completion of the manufacturing process as well as for direct communication for diagnostic and testing purposes.


The processor 204 may be configured to transmit control signals to the various sections of the data processing unit 102 during the operation of the data processing unit 102. In certain embodiments, the processor 204 also includes memory (not shown) for storing data such as the identification information for the data processing unit 102, as well as the data signals received from the sensor 101. The stored information may be retrieved and processed for transmission to the primary receiver unit 104 under the control of the processor 204. Furthermore, the power supply 207 may include a commercially available battery.


The data processing unit 102 is also configured such that the power supply section 207 is capable of providing power to the data processing unit 102 for a minimum period of time, e.g., at least about one month, e.g., at least about three months or more, of continuous operation. The minimum time period may be after (i.e., in addition to), a period of time, e.g., up to about eighteen months, of being stored in a low- or no-power (non-operating) mode. In certain embodiments, this may be achieved by the processor 204 operating in low power modes in the non-operating state, for example, drawing no more than minimal current, e.g., approximately 1 μA of current or less. In certain embodiments, a manufacturing process of the data processing unit 102 may place the data processing unit 102 in the lower power, non-operating state (i.e., post-manufacture sleep mode). In this manner, the shelf life of the data processing unit 102 may be significantly improved. Moreover, as shown in FIG. 2, while the power supply unit 207 is shown as coupled to the processor 204, and as such, the processor 204 is configured to provide control of the power supply unit 207, it should be noted that within the scope of the present disclosure, the power supply unit 207 is configured to provide the necessary power to each of the components of the data processing unit 102 shown in FIG. 2.


Referring back to FIG. 2, the power supply section 207 of the data processing unit 102 in one embodiment may include a rechargeable battery unit that may be recharged by a separate power supply recharging unit (for example, provided in the receiver unit 104) so that the data processing unit 102 may be powered for a longer period of usage time. In certain embodiments, the data processing unit 102 may be configured without a battery in the power supply section 207, in which case the data processing unit 102 may be configured to receive power from an external power supply source (for example, a battery, electrical outlet, etc.) as discussed in further detail below.


Referring yet again to FIG. 2, a temperature detection section 203 of the data processing unit 102 is configured to monitor the temperature of the skin near the sensor insertion site. The temperature reading may be used to adjust the analyte readings obtained from the analog interface 201. In a further aspect, the temperature measurement or reading generated from the temperature detection section 203 may be used in conjunction with the received analyte data to determine or confirm a monitored condition such as an impending or onset of hypoglycemic condition as discussed in further detail below. For example, the temperature measurement section may include a thermistor to monitor the on-skin (or ambient) temperature in direct or indirect contact with the patient's skin. Example embodiments of temperature measurement section are provided in, for example, U.S. Pat. No. 6,175,752, and application Ser. No. 11/026,766 entitled “Method and Apparatus for Providing Temperature Sensor Module in a Data Communication System,” each assigned to the assignee of the present application, and the disclosure of each of which are incorporated herein by reference for all purposes.


In a further embodiment, the temperature measurement or reading may be generated or determined from a different area of the body such as the ear canal, rectum, mouth, other body cavity, or forehead using a suitable temperature measuring device or components which incorporate the temperature measurement functionalities and capable of transmitting (wirelessly or via wired connection) the determined temperature information to the receiver unit 104/106 (FIG. 1) and/or data processing terminal/infusion section 105 (FIG. 1) for further processing.


Referring back to FIG. 2, the data processing unit 102 may also include a condition monitoring unit 215 in signal communication with the processor 204, and configured to monitor one or more physiological or other characteristics of the patient or the user of the data processing unit 102. For example, the perspiration level may be monitored by the condition monitoring unit 215 in one embodiment by detecting or determining conductance signal levels that vary depending upon the presence or absence of perspiration on skin, for example, using electrodes or probes or contacts on the skin of the patient. In one aspect, the electrodes, probes or contacts to determine or monitor the one or more physiological characteristics such as level of perspiration may be provided on the housing of the data processing unit 102, or alternatively, may be provided as a separate unit that is configured to provide or transfer the monitored characteristics information or data to the processor 204 of the data processing unit 102. Accordingly, in one aspect, the microprocessor based logic provided to the processor 204 may be configured to process the detected conductance signal levels to determine the presence of absence of perspiration and/or, to determine the level of and change in perspiration based on, for example, monitored or detected conductance signal level.


Referring back to FIG. 2, the RF transmitter 206 of the data processing unit 102 may be configured for operation in a certain frequency band, e.g., the frequency band of 315 MHz to 322 MHz, for example, in the United States. The operating frequency band may vary depending upon the location of use, communication protocol used, components used to implement the RF communication, and accordingly, the present disclosure contemplates varying ranges of operating frequency bands. Further, in certain embodiments, the RF transmitter 206 is configured to modulate the carrier frequency by performing, e.g., Frequency Shift Keying and Manchester encoding, and/or other protocol(s). In certain embodiments, the data transmission rate is set for efficient and effective transmission. For example, in certain embodiments the data transmission rate may be about 19,200 symbols per second, with a minimum transmission range for communication with the primary receiver unit 104.


Also shown is a leak detection circuit 214 coupled to the guard contact (G) 211 and the processor 204 in the data processing unit 102 of the data monitoring and management system 100. The leak detection circuit 214 may be configured to detect leakage current in the sensor 101 to determine whether the measured sensor data is corrupt or whether the measured data from the sensor 101 is accurate. Such detection may trigger a notification to the user.



FIG. 3 shows a block diagram of an embodiment of a receiver/monitor unit such as the primary receiver unit 104 of the data monitoring and management system shown in FIG. 1. The primary receiver unit 104 may include one or more of: a blood glucose test strip interface 301 for in vitro testing, an RF receiver 302, an input 303, a temperature detection section 304, and a clock 305, each of which is operatively coupled to a processing and storage section 307. The primary receiver unit 104 also includes a power supply 306 operatively coupled to a power conversion and monitoring section 308. Further, the power conversion and monitoring section 308 is also coupled to the receiver processor 307. Moreover, also shown are a receiver serial communication section 309, and an output 310, each operatively coupled to the processing and storage unit 307. The receiver may include user input and/or interface components or may be free of user input and/or interface components.


In certain embodiments having a test strip interface 301, the interface includes a glucose level testing portion to receive a blood (or other body fluid sample) glucose test or information related thereto. For example, the interface may include a test strip port to receive an in vitro glucose test strip. The device may determine the glucose level of the test strip, and optionally display (or otherwise report or output) the glucose level on the output 310 of the primary receiver unit 104. Any suitable test strip may be employed, e.g., test strips that only require a very small amount (e.g., one microliter or less, e.g., 0.5 microliter or less, e.g., 0.1 microliter or less), of applied sample to the strip in order to obtain accurate glucose information, e.g. FreeStyle® and Precision® blood glucose test strips from Abbott Diabetes Care Inc. Glucose information obtained by the in vitro glucose testing device may be used for a variety of purposes, computations, etc. For example, the information may be used to calibrate sensor 101 (however, calibration of the subject sensors may not be necessary), confirm results of the sensor 101 to increase the confidence thereof (e.g., in instances in which information obtained by sensor 101 is employed in therapy related decisions), etc. Exemplary blood glucose monitoring systems are described, e.g., in U.S. Pat. Nos. 6,071,391; 6,120,676; 6,338,790; and 6,616,819; and in U.S. application Ser. No. 11/282,001, now U.S. Pat. No. 7,918,975; and Ser. No. 11/225,659, now U.S. Pat. No. 8,298,389, the disclosures of which are herein incorporated by reference.


The RF receiver 302 is configured to communicate, via the communication link 103 (FIG. 1) with the RF transmitter 206 of the data processing unit 102, to receive encoded data signals from the data processing unit 102 for, among others, signal mixing, demodulation, and other data processing. The input 303 of the primary receiver unit 104 is configured to allow the user to enter information into the primary receiver unit 104 as needed. In one aspect, the input 303 may include keys of a keypad, a touch-sensitive screen, and/or a voice-activated input command unit, and the like. The temperature monitor section 304 is configured to provide temperature information of the primary receiver unit 104 to the receiver processing and storage unit 307, while the clock 305 provides, among others, real time information to the receiver processing and storage unit 307.


Each of the various components of the primary receiver unit 104 shown in FIG. 3 is powered by the power supply 306 (and/or other power supply) which, in certain embodiments, includes a battery. Furthermore, the power conversion and monitoring section 308 is configured to monitor the power usage by the various components in the primary receiver unit 104 for effective power management and may alert the user, for example, in the event of power usage which renders the primary receiver unit 104 in sub-optimal operating conditions. An example of such sub-optimal operating condition may include, for example, operating the vibration output mode (as discussed below) for a period of time thus substantially draining the power supply 306 while the processing and storage unit 307 (thus, the primary receiver unit 104) is turned on. Moreover, the power conversion and monitoring section 308 may additionally be configured to include a reverse polarity protection circuit such as a field effect transistor (FET) configured as a battery activated switch.


The serial communication section 309 in the primary receiver unit 104 is configured to provide a bi-directional communication path from the testing and/or manufacturing equipment for, among others, initialization, testing, and configuration of the primary receiver unit 104. Serial communication section 309 can also be used to upload data to a computer, such as time-stamped blood glucose data. The communication link with an external device (not shown) can be made, for example, by cable, infrared (IR) or RF link. The output 310 of the primary receiver unit 104 is configured to provide, among others, a graphical user interface (GUI) such as a liquid crystal display (LCD) for displaying information. Additionally, the output 310 may also include an integrated speaker for outputting audible signals as well as to provide vibration output as commonly found in handheld electronic devices, such as mobile telephones, pagers, etc. In certain embodiments, the primary receiver unit 104 also includes an electro-luminescent lamp configured to provide backlighting to the output 310 for output visual display in dark ambient surroundings.


Referring back to FIG. 3, the primary receiver unit 104 may also include a storage section such as a programmable, non-volatile memory device as part of the processing and storage unit 307, or provided separately in the primary receiver unit 104, operatively coupled to the processor. The processing and storage unit 307 may be configured to perform Manchester decoding (or other protocol(s)) as well as error detection and correction upon the encoded data signals received from the data processing unit 102 via the communication link 103.


In further embodiments, the data processing unit 102 and/or the primary receiver unit 104 and/or the secondary receiver unit 106, and/or the data processing terminal/infusion section 105 may be configured to receive the blood glucose value from a wired connection or wirelessly over a communication link from, for example, a blood glucose meter. In further embodiments, a user manipulating or using the analyte monitoring system 100 (FIG. 1) may manually input the blood glucose value using, for example, a user interface (for example, a keyboard, keypad, voice commands, and the like) incorporated in the one or more of the data processing unit 102, the primary receiver unit 104, secondary receiver unit 106, or the data processing terminal/infusion section 105.


In certain embodiments, the data processing unit 102 (FIG. 1) is configured to detect the current signal from the sensor 101 (FIG. 1) and optionally the skin and/or ambient temperature near the sensor 101, which may be preprocessed by, for example, the data processing unit processor 204 (FIG. 2) and transmitted to the receiver unit (for example, the primary receiver unit 104 (FIG. 1)) at least at a predetermined time interval, such as for example, but not limited to, once per minute, once every two minutes, once every five minutes, or once every ten minutes. Although specific time frames have been mentioned, it is contemplated that the predetermined time interval may correspond to any amount of time selected by the patient, user or healthcare provider. Additionally, the data processing unit 102 may be configured to perform sensor insertion detection and data quality analysis, information pertaining to which may also be transmitted to the receiver unit 104 periodically at the predetermined time interval. In turn, the receiver unit 104 may be configured to perform, for example, skin temperature compensation as well as calibration of the sensor data received from the data processing unit 102.


Additional detailed descriptions are provided in U.S. Pat. Nos. 5,262,035; 5,262,035; 5,264,104; 5,262,305; 5,320,715; 5,593,852; 6,103,033; 6,134,461; 6,175,752; 6,560,471; 6,579,690; 6,605,200; 6,654,625; 6,746,582; and 6,932,894; and in U.S. Published Patent Application No. 2004/0186365, now U.S. Pat. No. 7,811,231, the disclosures of which are herein incorporated by reference. Description of exemplary methods for forming the sensor is provided in U.S. patents and applications noted herein, including U.S. Pat. Nos. 5,262,035; 6,103,033; 6,175,752; and 6,284,478, the disclosures of which are herein incorporated by reference. Examples of sensing layers that may be employed are described in U.S. patents and applications noted herein, including, e.g., in U.S. Pat. Nos. 5,262,035; 5,264,104; 5,543,326; 6,605,200; 6,605,201; 6,676,819; and 7,299,082; the disclosures of which are herein incorporated by reference.


The subject analyte measurement systems may include an alarm system that, e.g., based on information from a processor, warns the patient of a potentially detrimental condition of the analyte. For example, if glucose is the analyte, an alarm system may warn a user of conditions such as hypoglycemia and/or hyperglycemia and/or impending hypoglycemia, and/or impending hyperglycemia. An alarm system may be triggered when analyte levels approach, reach or exceed a threshold value. An alarm system may also, or alternatively, be activated when the rate of change, or the acceleration of the rate of change in the analyte level increase or decrease, approaches, reaches or exceeds a threshold rate or acceleration. A system may also include system alarms that notify a user of system information such as battery condition, calibration, sensor dislodgment, sensor malfunction, etc. Alarms may be, for example, auditory and/or visual. Other sensory-stimulating alarm systems may be used including alarm systems which heat, cool, vibrate, or produce a mild electrical shock when activated.


The subject disclosure also includes sensors used in sensor-based drug delivery systems. The system may provide a drug to counteract the high or low level of the analyte in response to the signals from one or more sensors. Alternatively, the system may monitor the drug concentration to ensure that the drug remains within a desired therapeutic range. The drug delivery system may include one or more (e.g., two or more) sensors, a processing unit such as a transmitter, a receiver/display unit, and a drug administration system. In some cases, some or all components may be integrated in a single unit. A sensor-based drug delivery system may use data from the one or more sensors to provide necessary input for a control algorithm/mechanism to adjust the administration of drugs, e.g., automatically or semi-automatically. As an example, a glucose sensor may be used to control and adjust the administration of insulin from an external or implanted insulin pump.


Referring back to the Figures, FIG. 4 is a flowchart illustrating a routine associated with determining false signal attenuation of an analyte sensor in one aspect of the present disclosure. As shown, in one embodiment, a rate of change of analyte level such as monitored glucose level variation is determined or compared against a predetermined threshold level (410). In one aspect, the predetermined threshold level may be pre-programmed and stored in a memory storage device of the data processing unit 102 (FIG. 1) and/or the processing and storage unit 307 (FIG. 3) of the receiver 104/106. In other aspects, the predetermined threshold level may be programmable or adjustable by the user or the healthcare provider. In still a further aspect, the predetermined threshold level may include a plurality of threshold levels, each corresponding to a particular time of day (for example, day time, meal time, or night time) or an event such as exercise, meal, sleeping, intake of medication and the like.


Referring again to FIG. 4, when it is determined that the rate of change of the monitored analyte level crosses a predetermined threshold level (410) (for example, by exceeding an upper threshold level, or by falling below a lower threshold level), a temporary hold assertion function is called and executed to temporarily hold the assertion of a programmed notification based on the detected analyte level rate of change (420). That is, in one aspect, when an alarm or alert notification is programmed to be asserted based on the analyte level rate of change crossing the predetermined threshold, before the assertion of the alarm or alert notification is implemented, the receiver 104 or the data processing unit 102 may be programmed to execute a hold function to temporarily hold off the assertion of the alarm/alert notification.


Thereafter, as shown in FIG. 4, a rate of change or variation of another monitored parameter is compared against a predetermined limit (pre-programmed or adjusted by the user or the healthcare provider) to determine whether the rate of change of the monitored parameter crosses the predetermined limit (430). That is, in one aspect, a monitored temperature and/or perspiration level is retrieved and the rate of change of the temperature level is determined and compared against the predetermined limit. In one aspect, the time period of determining the rate of change of the monitored parameter is programmed or set to coincide with the time period of the monitored analyte level (based on which the alarm/alert notification is initiated). While the level of temperature or perspiration is described above as the monitored parameter which is determined upon detection of an alarm/alert notification based on the analyte level rate of change, within the scope of the present disclosure, other physiological and/or environmental parameters may be determined or analyzed individually, or in combination with one or more of the temperature level or the perspiration level.


Based on the determination of whether the rate of change of the monitored parameter crosses the predetermined limit (430), the presence/absence or onset of a medically significant condition associated with the alarm/alert notification discussed above, is confirmed (440), and thereafter upon confirmation of the presence of the medically significant condition, the hold assertion function is removed and the alarm/alert notification is output to, for example, notify the user or the healthcare provider (450). In one embodiment, the alarm/alert notification may include one or more of an audible notification (a discrete sound or a series of sounds or tones that either vary in intensity and/or output level), a vibratory notification (which may increase/decrease in the strength of vibration or be maintained at a steady vibration strength), or a visual notification (a numeric, graphical, textual or combinations thereof).


In this manner, in one aspect of the present disclosure, upon detection of a medically significant condition such as a hypoglycemic condition based on the monitored analyte levels, before any alarm or alert notification is output or presented to the user to take corrective actions, the detection of such condition is confirmed based on one or more other monitored parameters such as the level or variation of the user's body or on-skin temperature or the level or variation in perspiration. In this manner, the potential for a false positive indication of such alarm or alert condition determined based on the monitored analyte level alone may be reduced by confirmation of such condition based on other physiological and/or environmental parameters associated with the user.


Moreover, while hypoglycemia is described above, the medically significant condition may include other physiological conditions of the user where supplemental or additional monitored parameters are used to confirm the presence of the medically significant condition prior to notifying the user. Accordingly, the frequency of the false indication of the medically significant condition presence can be reduced and also, the user may be prevented from taking unnecessary corrective actions based on false indications of such condition.



FIG. 5 is a flowchart illustrating a routine associated with determining false signal attenuation of an analyte sensor in another aspect of the present disclosure. Referring to the Figure, in one aspect, when the initiation of hypoglycemic condition notification is detected (510), a hold condition to the notification is applied and the monitored temperature information is retrieved (520). Thereafter, the rate of change of the retrieved temperature level is compared to a threshold level (530). If it is determined that the determined rate of temperature level change crosses the threshold (530), then the hold condition is removed and the initiated hypoglycemic notification is asserted (540). On the other hand, if the determined rate of temperature level change is determined to not have crossed the threshold (530), then the hold condition is maintained and the initiated hypoglycemic notification is deactivated (550).


Referring back to FIG. 5, when the monitored temperature information is retrieved (520), in one embodiment, the time period of the retrieved monitored temperature information is determined to substantially coincide with the time period of monitored analyte level based on which the hypoglycemic condition notification is initiated (510). In an alternate embodiment, the time period of the retrieved monitored temperature information may include the time period of the monitored analyte level such that the monitored temperature for processing and/or analysis spans a wider time period range.


Still alternatively, the time period of the monitored temperature information may be a subset of the time period of the monitored analyte level based on which the hypoglycemic condition notification is initiated. Indeed, the variation in the monitored time period as well as the number of available data sets for the monitored temperature level and the monitored analyte level may vary based on one or more of the frequency of data sampling, the availability of the information, the degree of sensitivity of the temperature detection (e.g., thermistor), and the like.



FIG. 6 is a flowchart illustrating a routine associated with determining false signal attenuation of an analyte sensor in a further aspect of the present disclosure. As shown, in one embodiment, a plurality of time spaced analyte sensor data during a first time period is received (610). Thereafter, a plurality of time spaced on-skin temperature data during the first time period is received (620). Upon detection of a rapid decline in the received plurality of time spaced analyte sensor data during the first time period (630), the plurality of time spaced on-skin temperature data is analyzed. In one aspect, rapid decline in the received plurality of time spaced analyte sensor data may include a rate of change of the analyte sensor data at or greater than 2 mg/dL/min. Within the scope of the present disclosure, the rapid decline may include other variations of the rate of change that is greater or less than 2 mg/dL/min. Furthermore, while on skin temperature level monitoring and detection is described above, in accordance with aspects of the present disclosure, any suitable body temperature may be measured and used to confirm or reject the preliminary indication of a hypoglycemic condition.


Referring back to FIG. 6, upon detection of a steady state condition of the received plurality of time spaced temperature data during the first time period (640), low glucose alarm function (for example, in the data processing unit 102 and/or the receiver unit 104/106, or the data processing terminal/infusion section 105) is disabled (650) indicating that the detected rapid decline in the received plurality of time spaced analyte sensor data during the first time period (630) is not associated with a low glucose condition (or glucose level trending towards a low glucose condition), but rather, a false indication of the low glucose condition or an analyte sensor signal attenuation which may be attributable to parameters associated with the analyte sensor (e.g., unstable sensor), errors in data processing, dislodged sensor or the like. In one aspect, the steady state condition of the received plurality of time spaced temperature data may include variation of the temperature data during the first time period that does not cross a predetermined or preset level. That is, a steady state condition may include a relatively stable temperature information or level during the first time period.


While monitoring glucose level in addition to monitoring and determining temperature and/or perspiration level as described in conjunction with the various aspects of the present disclosure, other physiological parameters may be monitored and used to confirm or reject the occurrence of hypoglycemic condition. For example, palpitation or variation in heart rate may be monitored using, for example, a heart rate monitor, or the oxygen saturation level may be monitored using, for example, a pulse oximeter, to confirm or reject the occurrence of hypoglycemic condition indicated by the monitored glucose levels. Additional description of pulse oximetry for monitoring oxygen saturation level is provided in U.S. Pat. Nos. 6,606,511 and 6,912,413, disclosures of each of which are incorporated herein by reference. Furthermore, description of heart rate monitors for monitoring the heart rate is provided in U.S. Pat. No. 6,549,756, the disclosure of which is incorporated herein by reference.


Additionally, tremor may be monitored to confirm the detection of hypoglycemic condition where a variation in the movement may be used to confirm or reject the occurrence of hypoglycemic condition. Additional description of detecting tremor is provided in U.S. Pat. No. 5,293,879, the disclosure of which is incorporated herein by reference. Accordingly, when the monitored glucose level received from the analyte sensor indicates a hypoglycemic condition (or an impending hypoglycemic condition), a detection or variation of one or more of tremor, palpitation, perspiration, temperature or other physiological parameters may be used to in conjunction with the sensor data confirm or reject the indication of hypoglycemic condition.



FIG. 7 is a graphical illustration of the monitored glucose level and the corresponding temperature level during the same time period confirming a hypoglycemic event. In contrast, FIG. 8 provides a graphical illustration of the monitored glucose level and the corresponding temperature level during the same time period indicating a false hypoglycemic event. As shown in these graphical illustrations, in aspects of the present disclosure, when an actual analyte sensor signal attenuation is detected (indicating a low glucose level), the level of the supplemental or additional parameter such as the temperature level is similar attenuated providing a level of correlation between the direction of change of the analyte level and the temperature level (as shown in FIG. 7).


On the other hand, as shown in FIG. 8, if the analyte sensor signal reported by the sensor is a false indication of the monitored analyte level, the corresponding level of the monitored additional parameter such as the temperature level does not provide the level of correlation as discussed above, but rather, indicates a deviation in the direction of change compared to the direction of change of the monitored analyte level.


In the manner described, in accordance with the various embodiments of the present disclosure, the occurrence of false alarms associated with analyte sensor signal attenuation may be minimized or mitigated by correlating the monitored analyte level with one or more additional parameters such as temperature or perspiration level. Accordingly, alarm or alert functions associated with monitored analyte levels in accordance with the present disclosure may be asserted when the underlying conditions associated with the alarm or alert function accurately reflects the monitored condition such that the user or the patient is not prompted to take unnecessary corrective actions based on false indication of the monitored condition.


The various processes described above including the processes operating in the software application execution environment in the analyte monitoring system 100 including the data processing unit 102, the receiver unit 104/106 or the data processing terminal/infusion section 105, performing one or more routines associated with the false analyte sensor signal attenuation determination described in conjunction with FIGS. 4-6, may be embodied as computer programs developed using an object oriented language that allows the modeling of complex systems with modular objects to create abstractions that are representative of real world, physical objects and their interrelationships. The software required to carry out the inventive process, which may be stored in a memory or storage device of the storage unit of the data processing unit 102, the receiver unit 104/106 or the data processing terminal/infusion section 105 in the analyte monitoring system 100, may be developed by a person of ordinary skill in the art and may include one or more computer program products.


In one embodiment, a method may include receiving a plurality of time spaced analyte related data monitored by an analyte sensor in fluid contact with an analyte during a first time period, detecting when one or more of the received plurality of time spaced analyte related data crosses a predetermined analyte threshold level during the first time period, receiving a plurality of time spaced temperature data during the first time period, determining a rate of change of the received plurality of time spaced temperature data, detecting when the determined rate of change crosses a predetermined rate of temperature change, and asserting a notification when the determined rate of change of the received plurality of the time spaced temperature data reaches the predetermined rate of temperature change and when the one or more of the received plurality of time spaced analyte related data reaches the predetermined threshold analyte level during the first time period.


A further embodiment may include determining when the monitored analyte level based on the received plurality of time spaced analyte related data indicates approaching the predetermined analyte threshold level during a second time period.


The first time period may precede the second time period.


The asserted notification may include one or more of an audible alert, a vibratory alert, a visual alert, or one or more combinations thereof.


The predetermined analyte threshold level may be associated with one of an impending hypoglycemic condition or an onset of hypoglycemic condition.


Another aspect may include determining a rate of change of the received plurality of time spaced analyte related data and comparing a slope of the determined rate of change of the received plurality of time spaced analyte related data to a slope of the rate of change of the received plurality of time spaced temperature data.


The slope of the determined rate of change of the received plurality of analyte related data and the slope of the rate of change of the received plurality of time spaced temperature data may be coincident.


The asserted notification may include an impending hypoglycemic condition.


Yet another aspect may include when the determined rate of change of the received plurality of the time spaced temperature data does not exceed the predetermined rate of temperature change, deactivating a notification function.


The deactivated notification function may include a hypoglycemic alarm.


Another embodiment may comprise receiving a plurality of time spaced analyte related data monitored by an analyte sensor in fluid contact with an analyte during a first time period, detecting when one or more of the received plurality of time spaced analyte related data crosses a predetermined analyte threshold level during the first time period, receiving a plurality of time spaced temperature data during the first time period, detecting when one or more of the time spaced temperature related data crosses a predetermined threshold temperature level during the first time period, and asserting a notification when the one or more of the received plurality of time spaced analyte related data reaches a predetermined threshold analyte level and when the one or more of the plurality of time spaced temperature related data reaches the predetermined temperature threshold level during the first time period.


Another embodiment may further include determining when the monitored analyte level based on the received plurality of time spaced analyte related data indicates approaching the predetermined analyte threshold level during a second time period.


The first time period may precede the second time period.


The asserted notification may be associated with a medically significant condition.


The medically significant condition may include an impending hypoglycemic condition.


Yet another embodiment may comprise monitoring a variation in on-skin temperature in proximity to a transcutaneously positioned analyte sensor having at least a portion in fluid contact with an analyte during a monitoring time period, detecting the variation in the monitored temperature exceeding a predetermined threshold level, confirming a presence of a medically significant condition when the detected variation in the monitored temperature exceeds the predetermined threshold level, and asserting a notification associated with the medically significant condition when it is confirmed, wherein confirming the presence of the medically significant condition includes determining a variation in the monitored analyte level exceeding the predetermined threshold level based on comparing a slope indicative of the change in the monitored analyte level substantially to a slope indicative of the change in the monitored on-skin temperature variation.


In yet another embodiment, a method may comprise detecting a concurrent occurrence of a decrease in monitored analyte level and a corresponding decrease in monitored on-skin temperature, confirming a presence of an impending hypoglycemic condition, and asserting a notification corresponding to the confirmed impending hypoglycemic condition.


The decrease in the monitored analyte level may include a decrease exceeding approximately 2 mg/dL/minute.


The decrease in the monitored on-skin temperature may include a temperature decrease exceeding approximately 2° C./15 minutes.


Detecting the concurrent occurrence may include determining a rate of change of the monitored analyte level during a predetermined time period, determining a rate of change of the monitored on-skin temperature during the predetermined time period, and verifying the determined rate of change of the monitored analyte level and the determined rate of change of the monitored on-skin temperature exceeds a predetermined threshold level substantially at the same time.


In another embodiment, a method of confirming hypoglycemic condition in a patient may comprise monitoring a directional change in glucose level based on data stream received from an analyte sensor during a monitoring time period, monitoring a directional change in a first physiological parameter during the monitoring time period, monitoring a directional change in a second physiological parameter during the monitoring time period, detecting an initialization of a hypoglycemic alarm based, at least in part, on the directional change of the monitored glucose level, and comparing the directional change in one or more of the first or the second physiological parameters relative to the directional change in the glucose level prior to the assertion of the hypoglycemic alarm.


The first physiological parameter or the second physiological parameter may be one of a temperature level, a perspiration level, heart rate, detected tremor, or oxygen saturation level.


The hypoglycemic alarm may be asserted when the glucose level directional change and the first physiological parameter direction change are the same.


The alarm may be asserted only when the second physiological parameter directional change is opposite the first physiological parameter directional change.


The monitored directional change in glucose level may have a negative slope.


The monitored directional change in the first physiological parameter may have a negative slope, and further, the monitored directional change in the second physiological parameter may have a positive slope.


The monitoring time period may include approximately five days or seven days.


The hypoglycemic alarm initialization may be detected when the monitored directional change in glucose level exceeds a predetermined threshold.


The predetermined threshold may include a decreasing rate of glucose level of approximately 2 mg/dL/minute.


Comparing the directional change may include temporarily disabling the hypoglycemic alarm initialization based on the comparison.


The hypoglycemic alarm initialization may be disabled when the directional change of the first and second physiological parameters are the same.


The hypoglycemic alarm initialization may be disabled when the directional change of the monitored glucose level does not coincide with the directional change of either of the first and second physiological parameters.


In another embodiment, an apparatus may comprise one or more processors and a memory for storing instructions which, when executed by the one or more processors, causes the one or more processors to receive a plurality of time spaced analyte related data monitored by an analyte sensor in fluid contact with an analyte during a first time period, determine a rate of change of the received plurality of time spaced analyte related data, receive a plurality of time spaced temperature data during the first time period, determine a rate of change of the received plurality of time spaced temperature data, compare the determined rate of change of the received plurality of the time spaced temperature data to the predetermined threshold level when the determined rate of change of the received plurality of time spaced analyte related data exceeds a predetermined threshold level, and assert a notification when the determined rate of change of the received plurality of the time spaced temperature data exceeds the predetermined threshold level.


The asserted notification may include one or more of an audible alert, a vibratory alert, a visual alert, or one or more combinations thereof.


The predetermined threshold level may include 3% decrease between each adjacent time spaced analyte related data and 3% decrease between each adjacent time temperature data.


The determined rate of change of the received plurality of time spaced analyte related data and the determined rate of change of the received plurality of time spaced temperature data may be temporally coincident.


The asserted notification may be associated with a medically significant condition.


The medically significant condition may include an impending hypoglycemic condition.


The notification may be asserted only when the determined rate of change of the received plurality of time spaced temperature data and the determined rate of change of the received analyte related data exceeds the predetermined threshold level substantially at the same time during the first time period.


The first time period may correspond to an analyte sensor life.


A further aspect may include when the determined rate of change of the received plurality of the time spaced temperature data does not exceed the predetermined threshold level, deactivating a notification function configured to be asserted when the determined rate of change of the analyte related data exceeds the predetermined threshold level.


The deactivated notification function may include a hypoglycemic alarm.


In another embodiment, an apparatus may comprise one or more processors, and a memory for storing instructions which, when executed by the one or more processors, causes the one or more processors to monitor a variation in on-skin temperature in proximity to a transcutaneously positioned analyte sensor having at least a portion in fluid contact with an analyte during a monitoring time period, detect the variation in the monitored temperature exceeding a predetermined threshold level, confirm a presence of a medically significant condition when the detected variation in the monitored temperature exceeds the predetermined threshold level, and assert a notification associated with the medically significant condition when it is confirmed, wherein the memory for storing instructions which, when executed by the one or more processors, causes the one or more processors to determine a variation in the monitored analyte level exceeding the predetermined threshold level based on comparing a slope indicative of the change in the monitored analyte level substantially to a slope indicative of the change in the monitored on-skin temperature variation.


Yet another embodiment may include an apparatus comprising one or more processors, and a memory for storing instructions which, when executed by the one or more processors, causes the one or more processors to detect a concurrent occurrence of a decrease in monitored analyte level and a corresponding decrease in monitored on-skin temperature, confirm a presence of an impending hypoglycemic condition, and assert a notification corresponding to the confirmed impending hypoglycemic condition.


The decrease in the monitored analyte level may include a decrease exceeding approximately 2 mg/dL/minute.


The decrease in the monitored on-skin temperature may include a temperature decrease exceeding approximately 2° C./15 minutes.


The memory for storing instructions which, when executed by the one or more processors, may cause the one or more processors to determine a rate of change of the monitored analyte level during a predetermined time period, determine a rate of change of the monitored on-skin temperature during the predetermined time period, and verify the determined rate of change of the monitored analyte level and the determined rate of change of the monitored on-skin temperature exceeds a predetermined threshold level substantially at the same time.


In yet another embodiment, an apparatus may comprise one or more processors, and a memory for storing instructions which, when executed by the one or more processors, causes the one or more processors to monitor a directional change in glucose level based on data stream received from an analyte sensor during a monitoring time period, monitor a directional change in a first physiological parameter during the monitoring time period, monitor a directional change in a second physiological parameter during the monitoring time period, detect an initialization of a hypoglycemic alarm based, at least in part, on the directional change of the monitored glucose level, and compare the directional change in one or more of the first or the second physiological parameters relative to the directional change in the glucose level prior to the assertion of the hypoglycemic alarm.


The first physiological parameter or the second physiological parameter may be one of a temperature level, a perspiration level, heart rate, detected tremor, or oxygen saturation level.


The hypoglycemic alarm may be asserted when the glucose level directional change and the first physiological parameter directional change are the same.


The alarm may be asserted only when the second physiological parameter directional change is opposite the first physiological parameter directional change.


The monitored directional change in glucose level may have a negative slope.


The monitored directional change in the first physiological parameter may have a negative slope, and further, the monitored directional change in the second physiological parameter may have a positive slope.


The monitoring time period may include approximately five days or seven days.


The hypoglycemic alarm initialization may be detected when the monitored directional change in glucose level exceeds a predetermined threshold.


The predetermined threshold may include a decreasing rate of glucose level of approximately 2 mg/dL/minute.


The memory for storing instructions which, when executed by the one or more processors, may cause the one or more processors to temporarily disable the hypoglycemic alarm initialization based on the comparison.


The memory for storing instructions which, when executed by the one or more processors, may cause the one or more processors to disable the hypoglycemic alarm initialization when the directional change of the first and second physiological parameters are the same.


The memory for storing instructions which, when executed by the one or more processors, may cause the one or more processors to disable the hypoglycemic alarm initialization when the directional change of the monitored glucose level does not coincide with the directional change of either of the first and second physiological parameters.


Various other modifications and alterations in the structure and method of operation of this invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. It is intended that the following claims define the scope of the present invention and that structures and methods within the scope of these claims and their equivalents be covered thereby.

Claims
  • 1. A system, comprising: an analyte sensor positioned in fluid contact with interstitial fluid under a skin layer and configured to generate signals corresponding to a monitored analyte level in the interstitial fluid;sensor electronics electrically coupled to the analyte sensor and configured to generate analyte data based on the signals generated by the analyte sensor; anda data receiver configured to receive the generated analyte data from the sensor electronics, the data receiver configured to trigger a hold assertion function to temporarily prevent the assertion of a programmed notification after the programmed notification has initiated when a rate of change of the monitored analyte level determined from the generated analyte data exceeds a predetermined analyte threshold during a monitoring time period, and to assert the programmed notification when the rate of change of a monitored temperature exceeds a predetermined temperature threshold during the monitoring time period.
  • 2. The system of claim 1, wherein the predetermined analyte threshold includes a decreasing rate of the analyte level of approximately 2 mg/dL/minute.
  • 3. The system of claim 1, wherein the asserted programmed notification indicates a hypoglycemic condition.
  • 4. The system of claim 1, wherein the data receiver is configured to assert the programmed notification when a direction of the analyte level rate of change and a direction of the monitored temperature rate of change are the same.
  • 5. The system of claim 1, wherein the monitored analyte level includes one or more of glucose level or lactate level.
  • 6. The system of claim 1, wherein the data receiver is configured to receive monitored temperature information to determine the rate of change of the monitored temperature.
  • 7. The system of claim 1, wherein the predetermined temperature threshold includes a decreasing rate of a temperature level of approximately 2° C./15 minutes.
  • 8. The system of claim 1, wherein the analyte sensor includes a plurality of electrodes including a working electrode comprising an analyte-responsive enzyme bonded to a polymer disposed on the working electrode.
  • 9. The system of claim 8, wherein the analyte-responsive enzyme is chemically bonded to the polymer disposed on the working electrode.
  • 10. The system of claim 8, wherein the working electrode comprises a mediator bonded to the polymer disposed on the working electrode.
  • 11. The system of claim 10, wherein the mediator is crosslinked with the polymer disposed on the working electrode.
  • 12. The system of claim 1, wherein the analyte sensor includes a plurality of electrodes including a working electrode comprising a mediator bonded to a polymer disposed on the working electrode.
  • 13. A system, comprising sensor electronics configured to receive signals from an analyte sensor in fluid contact with interstitial fluid, and to generate analyte data corresponding to a monitored analyte level in interstitial fluid; anda data receiver configured to receive the generated analyte data from the sensor electronics, the data receiver configured to temporarily prevent the assertion of a programmed notification after the programmed notification has initiated when a rate of change of the monitored analyte level determined from the generated analyte data exceeds a predetermined analyte threshold during a monitoring time period, but to assert the programmed notification when a rate of change of a monitored temperature exceeds a predetermined temperature threshold during the monitoring time period.
  • 14. The system of claim 13, wherein the predetermined analyte threshold includes a decreasing rate of the analyte level of approximately 2 mg/dL/minute.
  • 15. The system of claim 13, wherein the predetermined temperature threshold includes a decreasing rate of a temperature level of approximately 2° C./15 minutes.
  • 16. The system of claim 13, wherein the data receiver is configured to assert the programmed notification when a direction of the analyte level rate of change and a direction of the temperature level rate of change are the same.
RELATED APPLICATION

The present application is a continuation of U.S. patent application Ser. No. 13/477,026 filed May 21, 2012, now U.S. Pat. No. 9,050,041, which is a divisional of U.S. patent application Ser. No. 12/916,481 filed Oct. 29, 2010, now U.S. Pat. No. 8,185,181, which claims the benefit of U.S. Provisional Application No. 61/256,920 filed Oct. 30, 2009, entitled “Method and Apparatus for Detecting False Hypoglycemic Conditions”, the disclosures of each of which are incorporated herein by reference for all purposes.

US Referenced Citations (955)
Number Name Date Kind
3581062 Aston May 1971 A
3926760 Allen et al. Dec 1975 A
3949388 Fuller Apr 1976 A
3960497 Acord et al. Jun 1976 A
3978856 Michel Sep 1976 A
4036749 Anderson Jul 1977 A
4055175 Clemens et al. Oct 1977 A
4129128 McFarlane Dec 1978 A
4245634 Albisser et al. Jan 1981 A
4327725 Cortese et al. May 1982 A
4344438 Schultz Aug 1982 A
4349728 Phillips et al. Sep 1982 A
4373527 Fischell Feb 1983 A
4392849 Petre et al. Jul 1983 A
4425920 Bourland et al. Jan 1984 A
4441968 Emmer et al. Apr 1984 A
4462048 Ross Jul 1984 A
4478976 Goertz et al. Oct 1984 A
4494950 Fischell Jan 1985 A
4509531 Ward Apr 1985 A
4527240 Kvitash Jul 1985 A
4538616 Rogoff Sep 1985 A
4545382 Higgins et al. Oct 1985 A
4619793 Lee Oct 1986 A
4671288 Gough Jun 1987 A
4703756 Gough et al. Nov 1987 A
4711245 Higgins et al. Dec 1987 A
4731051 Fischell Mar 1988 A
4731726 Allen, III Mar 1988 A
4749985 Corsberg Jun 1988 A
4757022 Shults et al. Jul 1988 A
4759366 Callaghan Jul 1988 A
4777953 Ash et al. Oct 1988 A
4779618 Mund et al. Oct 1988 A
4854322 Ash et al. Aug 1989 A
4871351 Feingold Oct 1989 A
4890620 Gough Jan 1990 A
4925268 Iyer et al. May 1990 A
4947845 Davis Aug 1990 A
4953552 DeMarzo Sep 1990 A
4986271 Wilkins Jan 1991 A
4995402 Smith et al. Feb 1991 A
5000180 Kuypers et al. Mar 1991 A
5002054 Ash et al. Mar 1991 A
5019974 Beckers May 1991 A
5050612 Matsumura Sep 1991 A
5055171 Peck Oct 1991 A
5068536 Rosenthal Nov 1991 A
5077476 Rosenthal Dec 1991 A
5082550 Rishpon et al. Jan 1992 A
5106365 Hernandez Apr 1992 A
5113869 Nappholz et al. May 1992 A
5122925 Inpyn Jun 1992 A
5135004 Adams et al. Aug 1992 A
5148812 Verrier et al. Sep 1992 A
5165407 Wilson et al. Nov 1992 A
5199428 Obel et al. Apr 1993 A
5202261 Musho et al. Apr 1993 A
5203326 Collins Apr 1993 A
5204264 Kaminer et al. Apr 1993 A
5210778 Massart May 1993 A
5231988 Wernicke et al. Aug 1993 A
5246867 Lakowicz et al. Sep 1993 A
5262035 Gregg et al. Nov 1993 A
5262305 Heller et al. Nov 1993 A
5264104 Gregg et al. Nov 1993 A
5264105 Gregg et al. Nov 1993 A
5279294 Anderson et al. Jan 1994 A
5285792 Sjoquist et al. Feb 1994 A
5293877 O'Hara et al. Mar 1994 A
5299571 Mastrototaro Apr 1994 A
5313953 Yomtov et al. May 1994 A
5320715 Berg Jun 1994 A
5320725 Gregg et al. Jun 1994 A
5322063 Allen et al. Jun 1994 A
5328460 Lord et al. Jul 1994 A
5330634 Wong et al. Jul 1994 A
5340722 Wolfbeis et al. Aug 1994 A
5342789 Chick et al. Aug 1994 A
5356786 Heller et al. Oct 1994 A
5360404 Novacek et al. Nov 1994 A
5365426 Siegel et al. Nov 1994 A
5372427 Padovani et al. Dec 1994 A
5376070 Purvis et al. Dec 1994 A
5379238 Stark Jan 1995 A
5384547 Lynk et al. Jan 1995 A
5390671 Lord et al. Feb 1995 A
5391250 Cheney, II et al. Feb 1995 A
5400795 Murphy et al. Mar 1995 A
5408999 Singh et al. Apr 1995 A
5411647 Johnson et al. May 1995 A
5425749 Adams Jun 1995 A
5425868 Pedersen Jun 1995 A
5431160 Wilkins Jul 1995 A
5431921 Thombre Jul 1995 A
5438983 Falcone Aug 1995 A
5462645 Albery et al. Oct 1995 A
5472317 Field et al. Dec 1995 A
5489414 Schreiber et al. Feb 1996 A
5497772 Schulman et al. Mar 1996 A
5505828 Wong et al. Apr 1996 A
5507288 Bocker et al. Apr 1996 A
5509410 Hill et al. Apr 1996 A
5514718 Lewis et al. May 1996 A
5520191 Karlsson et al. May 1996 A
5531878 Vadgama et al. Jul 1996 A
5543326 Heller et al. Aug 1996 A
5552997 Massart Sep 1996 A
5568400 Stark et al. Oct 1996 A
5568806 Cheney, II et al. Oct 1996 A
5569186 Lord et al. Oct 1996 A
5582184 Erickson et al. Dec 1996 A
5586553 Halili et al. Dec 1996 A
5593852 Heller et al. Jan 1997 A
5601435 Quy Feb 1997 A
5609575 Larson et al. Mar 1997 A
5628310 Rao et al. May 1997 A
5628890 Nigel et al. May 1997 A
5640954 Pfeiffer et al. Jun 1997 A
5653239 Pompei et al. Aug 1997 A
5660163 Schulman et al. Aug 1997 A
5665222 Heller et al. Sep 1997 A
5711001 Bussan et al. Jan 1998 A
5711861 Ward et al. Jan 1998 A
5720295 Greenhut et al. Feb 1998 A
5733259 Valcke et al. Mar 1998 A
5735285 Albert et al. Apr 1998 A
5741211 Renirie et al. Apr 1998 A
5772586 Heinonen et al. Jun 1998 A
5785660 van Lake et al. Jul 1998 A
5791344 Schulman et al. Aug 1998 A
5792065 Xue et al. Aug 1998 A
5820551 Hill et al. Oct 1998 A
5822715 Worthington et al. Oct 1998 A
5891047 Lander et al. Apr 1999 A
5899855 Brown May 1999 A
5914026 Blubaugh, Jr. et al. Jun 1999 A
5918603 Brown Jul 1999 A
5925021 Castellano et al. Jul 1999 A
5935224 Svancarek et al. Aug 1999 A
5942979 Luppino Aug 1999 A
5957854 Besson et al. Sep 1999 A
5960797 Kramer et al. Oct 1999 A
5961451 Reber et al. Oct 1999 A
5964993 Blubaugh, Jr. et al. Oct 1999 A
5965380 Heller et al. Oct 1999 A
5971922 Arita et al. Oct 1999 A
5995860 Sun et al. Nov 1999 A
6001067 Shults et al. Dec 1999 A
6016443 Ekwall et al. Jan 2000 A
6021350 Mathson Feb 2000 A
6024699 Surwit et al. Feb 2000 A
6038469 Karlsson et al. Mar 2000 A
6049727 Crothall Apr 2000 A
6071391 Gotoh et al. Jun 2000 A
6073031 Helstab et al. Jun 2000 A
6083710 Heller et al. Jul 2000 A
6088608 Schulman et al. Jul 2000 A
6091976 Pfeiffer et al. Jul 2000 A
6093172 Funderburk et al. Jul 2000 A
6103033 Say et al. Aug 2000 A
6108577 Benser Aug 2000 A
6112116 Fischell Aug 2000 A
6115622 Minoz Sep 2000 A
6115628 Stadler et al. Sep 2000 A
6117290 Say et al. Sep 2000 A
6119028 Schulman et al. Sep 2000 A
6120676 Heller et al. Sep 2000 A
6121009 Heller et al. Sep 2000 A
6121611 Lindsay et al. Sep 2000 A
6122351 Schlueter, Jr. et al. Sep 2000 A
6128526 Stadler et al. Oct 2000 A
6134461 Say et al. Oct 2000 A
6143164 Heller et al. Nov 2000 A
6144837 Quy Nov 2000 A
6159147 Lichter et al. Dec 2000 A
6161095 Brown Dec 2000 A
6162611 Heller et al. Dec 2000 A
6175752 Say et al. Jan 2001 B1
6200265 Walsh et al. Mar 2001 B1
6212416 Ward et al. Apr 2001 B1
6219574 Cormier et al. Apr 2001 B1
6223283 Chaiken et al. Apr 2001 B1
6233471 Berner et al. May 2001 B1
6233486 Ekwall et al. May 2001 B1
6248067 Causey, III et al. Jun 2001 B1
6249705 Snell Jun 2001 B1
6254586 Mann et al. Jul 2001 B1
6256538 Ekwall Jul 2001 B1
6264606 Ekwall et al. Jul 2001 B1
6270455 Brown Aug 2001 B1
6272379 Fischell et al. Aug 2001 B1
6275717 Gross et al. Aug 2001 B1
6283761 Joao Sep 2001 B1
6284478 Heller et al. Sep 2001 B1
6293925 Safabash et al. Sep 2001 B1
6295506 Heinonen et al. Sep 2001 B1
6299757 Feldman et al. Oct 2001 B1
6306104 Cunningham et al. Oct 2001 B1
6309884 Cooper et al. Oct 2001 B1
6329161 Heller et al. Dec 2001 B1
6338790 Feldman et al. Jan 2002 B1
6348640 Navot et al. Feb 2002 B1
6359444 Grimes Mar 2002 B1
6360888 McIvor et al. Mar 2002 B1
6361503 Starobin et al. Mar 2002 B1
6366794 Moussy et al. Apr 2002 B1
6377828 Chaiken et al. Apr 2002 B1
6377852 Bornzin et al. Apr 2002 B1
6377894 Deweese et al. Apr 2002 B1
6379301 Worthington et al. Apr 2002 B1
6381493 Stadler et al. Apr 2002 B1
6387048 Schulman et al. May 2002 B1
6405066 Essenpreis et al. Jun 2002 B1
6413393 Van Antwerp et al. Jul 2002 B1
6424847 Mastrototaro et al. Jul 2002 B1
6427088 Bowman, IV et al. Jul 2002 B1
6440068 Brown et al. Aug 2002 B1
6461496 Feldman et al. Oct 2002 B1
6471689 Joseph et al. Oct 2002 B1
6478736 Mault Nov 2002 B1
6484046 Say et al. Nov 2002 B1
6501983 Natarajan et al. Dec 2002 B1
6503381 Gotoh et al. Jan 2003 B1
6514460 Fendrock Feb 2003 B1
6514718 Heller et al. Feb 2003 B2
6520326 McIvor et al. Feb 2003 B2
6540891 Stewart et al. Apr 2003 B1
6544212 Galley et al. Apr 2003 B2
6551494 Heller et al. Apr 2003 B1
6558320 Causey, III et al. May 2003 B1
6558321 Burd et al. May 2003 B1
6558351 Steil et al. May 2003 B1
6560471 Heller et al. May 2003 B1
6561978 Conn et al. May 2003 B1
6562001 Lebel et al. May 2003 B2
6564105 Starkweather et al. May 2003 B2
6565509 Say et al. May 2003 B1
6571128 Lebel et al. May 2003 B2
6572542 Houben et al. Jun 2003 B1
6574490 Abbink et al. Jun 2003 B2
6576101 Heller et al. Jun 2003 B1
6577899 Lebel et al. Jun 2003 B2
6579690 Bonnecaze et al. Jun 2003 B1
6585644 Lebel et al. Jul 2003 B2
6591125 Buse et al. Jul 2003 B1
6592745 Feldman et al. Jul 2003 B1
6595919 Berner et al. Jul 2003 B2
6600997 Deweese et al. Jul 2003 B2
6605200 Mao et al. Aug 2003 B1
6605201 Mao et al. Aug 2003 B1
6607509 Bobroff et al. Aug 2003 B2
6610012 Mault Aug 2003 B2
6616819 Liamos et al. Sep 2003 B1
6618934 Feldman et al. Sep 2003 B1
6622045 Snell et al. Sep 2003 B2
6633772 Ford et al. Oct 2003 B2
6635014 Starkweather et al. Oct 2003 B2
6641533 Causey, III et al. Nov 2003 B2
6648821 Lebel et al. Nov 2003 B2
6650471 Doi Nov 2003 B2
6654625 Say et al. Nov 2003 B1
6656114 Poulson et al. Dec 2003 B1
6658396 Tang et al. Dec 2003 B1
6659948 Lebel et al. Dec 2003 B2
6668196 Villegas et al. Dec 2003 B1
6675030 Ciuczak et al. Jan 2004 B2
6676816 Mao et al. Jan 2004 B2
6687546 Lebel et al. Feb 2004 B2
6689056 Kilcoyne et al. Feb 2004 B1
6694191 Starkweather et al. Feb 2004 B2
6695860 Ward et al. Feb 2004 B1
6698269 Baber et al. Mar 2004 B2
6702857 Brauker et al. Mar 2004 B2
6721582 Trepagnier et al. Apr 2004 B2
6730200 Stewart et al. May 2004 B1
6731985 Poore et al. May 2004 B2
6733446 Lebel et al. May 2004 B2
6736957 Forrow et al. May 2004 B1
6740075 Lebel et al. May 2004 B2
6741877 Shults et al. May 2004 B1
6746582 Heller et al. Jun 2004 B2
6749740 Liamos et al. Jun 2004 B2
6758810 Lebel et al. Jul 2004 B2
6764581 Forrow et al. Jul 2004 B1
6770030 Schaupp et al. Aug 2004 B1
6773671 Lewis et al. Aug 2004 B1
6790178 Mault et al. Sep 2004 B1
6809653 Mann et al. Oct 2004 B1
6810290 Lebel et al. Oct 2004 B2
6811533 Lebel et al. Nov 2004 B2
6811534 Bowman, IV et al. Nov 2004 B2
6813519 Lebel et al. Nov 2004 B2
6850790 Berner et al. Feb 2005 B2
6862465 Shults et al. Mar 2005 B2
6865407 Kimball et al. Mar 2005 B2
6873268 Lebel et al. Mar 2005 B2
6881551 Heller et al. Apr 2005 B2
6882940 Potts et al. Apr 2005 B2
6892085 McIvor et al. May 2005 B2
6893545 Gotoh et al. May 2005 B2
6895263 Shin et al. May 2005 B2
6895265 Silver May 2005 B2
6912413 Rantala et al. Jun 2005 B2
6923763 Kovatchev et al. Aug 2005 B1
6931327 Goode, Jr. et al. Aug 2005 B2
6932892 Chen et al. Aug 2005 B2
6932894 Mao et al. Aug 2005 B2
6936006 Sabra Aug 2005 B2
6942518 Liamos et al. Sep 2005 B2
6950708 Bowman, IV et al. Sep 2005 B2
6954662 Freger et al. Oct 2005 B2
6958705 Lebel et al. Oct 2005 B2
6968294 Gutta et al. Nov 2005 B2
6971274 Olin Dec 2005 B2
6974437 Lebel et al. Dec 2005 B2
6990366 Say et al. Jan 2006 B2
6997907 Safabash et al. Feb 2006 B2
6998247 Monfre et al. Feb 2006 B2
7003336 Holker et al. Feb 2006 B2
7003340 Say et al. Feb 2006 B2
7003341 Say et al. Feb 2006 B2
7010345 Hill et al. Mar 2006 B2
7011630 Desai et al. Mar 2006 B2
7016713 Gardner et al. Mar 2006 B2
7016720 Kroll Mar 2006 B2
7022072 Fox et al. Apr 2006 B2
7022219 Mansouri et al. Apr 2006 B2
7024245 Lebel et al. Apr 2006 B2
7025425 Kovatchev et al. Apr 2006 B2
7029443 Kroll Apr 2006 B2
7029444 Shin et al. Apr 2006 B2
7041068 Freeman et al. May 2006 B2
7041468 Drucker et al. May 2006 B2
7043287 Khalil et al. May 2006 B1
7052472 Miller May 2006 B1
7052483 Wojcik May 2006 B2
7056302 Douglas Jun 2006 B2
7074307 Simpson et al. Jul 2006 B2
7076300 Kroll et al. Jul 2006 B1
7081195 Simpson et al. Jul 2006 B2
7092891 Maus et al. Aug 2006 B2
7096064 Deno et al. Aug 2006 B2
7098803 Mann et al. Aug 2006 B2
7103412 Kroll Sep 2006 B1
7108778 Simpson et al. Sep 2006 B2
7110803 Shults et al. Sep 2006 B2
7113821 Sun et al. Sep 2006 B1
7118667 Lee Oct 2006 B2
7123950 Mannheimer Oct 2006 B2
7134999 Brauker et al. Nov 2006 B2
7136689 Shults et al. Nov 2006 B2
7142911 Boileau et al. Nov 2006 B2
7153265 Vachon Dec 2006 B2
7167818 Brown Jan 2007 B2
7171274 Starkweather et al. Jan 2007 B2
7183102 Monfre et al. Feb 2007 B2
7190988 Say et al. Mar 2007 B2
7192450 Brauker et al. Mar 2007 B2
7198606 Boecker et al. Apr 2007 B2
7225535 Feldman et al. Jun 2007 B2
7226978 Tapsak et al. Jun 2007 B2
7258673 Racchini et al. Aug 2007 B2
7267665 Steil et al. Sep 2007 B2
7272436 Gill et al. Sep 2007 B2
7276029 Goode, Jr. et al. Oct 2007 B2
7278983 Ireland et al. Oct 2007 B2
7295867 Berner et al. Nov 2007 B2
7297114 Gill et al. Nov 2007 B2
7299082 Feldman et al. Nov 2007 B2
7310544 Brister et al. Dec 2007 B2
7317938 Lorenz et al. Jan 2008 B2
7335294 Heller et al. Feb 2008 B2
7354420 Steil et al. Apr 2008 B2
7364592 Carr-Brendel et al. Apr 2008 B2
7366556 Brister et al. Apr 2008 B2
7379765 Petisce et al. May 2008 B2
7402153 Steil et al. Jul 2008 B2
7404796 Ginsberg Jul 2008 B2
7424318 Brister et al. Sep 2008 B2
7460898 Brister et al. Dec 2008 B2
7467003 Brister et al. Dec 2008 B2
7468125 Kraft et al. Dec 2008 B2
7471972 Rhodes et al. Dec 2008 B2
7474992 Ariyur Jan 2009 B2
7494465 Brister et al. Feb 2009 B2
7497827 Brister et al. Mar 2009 B2
7499002 Blasko et al. Mar 2009 B2
7502644 Gill et al. Mar 2009 B2
7519408 Rasdal et al. Apr 2009 B2
7519478 Bartkowiak et al. Apr 2009 B2
7523004 Bartkowiak et al. Apr 2009 B2
7524287 Bharmi Apr 2009 B2
7547281 Hayes et al. Jun 2009 B2
7569030 Lebel et al. Aug 2009 B2
7583990 Goode, Jr. et al. Sep 2009 B2
7591801 Brauker et al. Sep 2009 B2
7599726 Goode, Jr. et al. Oct 2009 B2
7613491 Boock et al. Nov 2009 B2
7615007 Shults et al. Nov 2009 B2
7618369 Hayter et al. Nov 2009 B2
7620438 He Nov 2009 B2
7630748 Budiman Dec 2009 B2
7632228 Brauker et al. Dec 2009 B2
7635594 Holmes et al. Dec 2009 B2
7637868 Saint et al. Dec 2009 B2
7640048 Dobbles et al. Dec 2009 B2
7699775 Desai et al. Apr 2010 B2
7699964 Feldman et al. Apr 2010 B2
7711493 Bartkowiak et al. May 2010 B2
7736310 Taub et al. Jun 2010 B2
7751864 Buck, Jr. Jul 2010 B2
7766829 Sloan et al. Aug 2010 B2
7771352 Shults et al. Aug 2010 B2
7774145 Bruaker et al. Aug 2010 B2
7778680 Goode, Jr. et al. Aug 2010 B2
7826981 Goode, Jr. et al. Nov 2010 B2
7857760 Brister et al. Dec 2010 B2
7866026 Wang et al. Jan 2011 B1
7885697 Brister et al. Feb 2011 B2
7889069 Fifolt et al. Feb 2011 B2
7899511 Shults et al. Mar 2011 B2
7905833 Brister et al. Mar 2011 B2
7914450 Goode, Jr. et al. Mar 2011 B2
7938797 Estes May 2011 B2
7946984 Brister et al. May 2011 B2
7974672 Shults et al. Jul 2011 B2
8060173 Goode, Jr. et al. Nov 2011 B2
8116837 Huang Feb 2012 B2
8140312 Hayter et al. Mar 2012 B2
8160900 Taub et al. Apr 2012 B2
8170803 Kamath et al. May 2012 B2
8211016 Budiman Jul 2012 B2
8216137 Budiman Jul 2012 B2
8216138 McGarraugh et al. Jul 2012 B1
8239166 Hayter et al. Aug 2012 B2
8255026 Al-Ali Aug 2012 B1
8282549 Brauker et al. Oct 2012 B2
8376945 Hayter et al. Feb 2013 B2
8444560 Hayter et al. May 2013 B2
8457703 Al-Ali Jun 2013 B2
8484005 Hayter et al. Jul 2013 B2
8532935 Budiman Sep 2013 B2
8543354 Luo et al. Sep 2013 B2
8571808 Hayter Oct 2013 B2
8612163 Hayter et al. Dec 2013 B2
8657746 Roy Feb 2014 B2
8682615 Hayter et al. Mar 2014 B2
9060719 Hayter et al. Jun 2015 B2
9113828 Budiman Aug 2015 B2
9398872 Hayter et al. Jul 2016 B2
9408566 Hayter et al. Aug 2016 B2
9483608 Hayter et al. Nov 2016 B2
9558325 Hayter et al. Jan 2017 B2
20010041831 Starkweather et al. Nov 2001 A1
20020016534 Trepagnier et al. Feb 2002 A1
20020019022 Dunn et al. Feb 2002 A1
20020042090 Heller et al. Apr 2002 A1
20020065454 Lebel et al. May 2002 A1
20020068860 Clark Jun 2002 A1
20020103499 Perez et al. Aug 2002 A1
20020106709 Potts Aug 2002 A1
20020120186 Keimel Aug 2002 A1
20020128594 Das et al. Sep 2002 A1
20020143266 Bock Oct 2002 A1
20020143372 Snell et al. Oct 2002 A1
20020161288 Shin et al. Oct 2002 A1
20020169635 Shillingburg Nov 2002 A1
20020193679 Malave et al. Dec 2002 A1
20030004403 Drinan et al. Jan 2003 A1
20030023317 Brauker et al. Jan 2003 A1
20030023461 Quintanilla et al. Jan 2003 A1
20030032867 Crothall et al. Feb 2003 A1
20030032874 Rhodes et al. Feb 2003 A1
20030042137 Mao et al. Mar 2003 A1
20030050546 Desai et al. Mar 2003 A1
20030054428 Monfre et al. Mar 2003 A1
20030065308 Lebel et al. Apr 2003 A1
20030100821 Heller et al. May 2003 A1
20030125612 Fox et al. Jul 2003 A1
20030130616 Steil et al. Jul 2003 A1
20030134347 Heller et al. Jul 2003 A1
20030168338 Gao et al. Sep 2003 A1
20030176933 Lebel et al. Sep 2003 A1
20030187338 Say et al. Oct 2003 A1
20030191377 Robinson et al. Oct 2003 A1
20030199744 Buse et al. Oct 2003 A1
20030199790 Boecker et al. Oct 2003 A1
20030208113 Mault et al. Nov 2003 A1
20030212317 Kovatchev et al. Nov 2003 A1
20030212379 Bylund et al. Nov 2003 A1
20030216630 Jersey-Willuhn et al. Nov 2003 A1
20030217966 Tapsak et al. Nov 2003 A1
20030235817 Bartkowiak et al. Dec 2003 A1
20040010186 Kimball et al. Jan 2004 A1
20040010207 Flaherty et al. Jan 2004 A1
20040011671 Shults et al. Jan 2004 A1
20040024553 Monfre et al. Feb 2004 A1
20040039298 Abreu Feb 2004 A1
20040040840 Mao et al. Mar 2004 A1
20040045879 Shults et al. Mar 2004 A1
20040054263 Moerman et al. Mar 2004 A1
20040064068 DeNuzzio et al. Apr 2004 A1
20040077962 Kroll Apr 2004 A1
20040078065 Kroll Apr 2004 A1
20040093167 Braig et al. May 2004 A1
20040099529 Mao et al. May 2004 A1
20040106858 Say et al. Jun 2004 A1
20040122353 Shahmirian et al. Jun 2004 A1
20040133164 Funderburk et al. Jul 2004 A1
20040135684 Steinthal et al. Jul 2004 A1
20040138588 Saikley et al. Jul 2004 A1
20040138716 Kon et al. Jul 2004 A1
20040142403 Hetzel et al. Jul 2004 A1
20040146909 Duong et al. Jul 2004 A1
20040152622 Keith et al. Aug 2004 A1
20040162678 Hetzel et al. Aug 2004 A1
20040167801 Say et al. Aug 2004 A1
20040171921 Say et al. Sep 2004 A1
20040172307 Gruber Sep 2004 A1
20040176672 Silver et al. Sep 2004 A1
20040186362 Brauker et al. Sep 2004 A1
20040186365 Jin et al. Sep 2004 A1
20040193025 Steil et al. Sep 2004 A1
20040193090 Lebel et al. Sep 2004 A1
20040197846 Hockersmith et al. Oct 2004 A1
20040199059 Brauker et al. Oct 2004 A1
20040204687 Mogensen et al. Oct 2004 A1
20040208780 Faries, Jr. et al. Oct 2004 A1
20040225338 Lebel et al. Nov 2004 A1
20040236200 Say et al. Nov 2004 A1
20040249253 Racchini et al. Dec 2004 A1
20040249420 Olson et al. Dec 2004 A1
20040254433 Bandis et al. Dec 2004 A1
20040254434 Goodnow et al. Dec 2004 A1
20040260478 Schwamm Dec 2004 A1
20040263354 Mann et al. Dec 2004 A1
20040267300 Mace Dec 2004 A1
20050003470 Nelson et al. Jan 2005 A1
20050004439 Shin et al. Jan 2005 A1
20050004494 Perez et al. Jan 2005 A1
20050010087 Banet et al. Jan 2005 A1
20050010269 Lebel et al. Jan 2005 A1
20050016276 Guan et al. Jan 2005 A1
20050027177 Shin et al. Feb 2005 A1
20050027180 Goode et al. Feb 2005 A1
20050027181 Goode et al. Feb 2005 A1
20050027462 Goode et al. Feb 2005 A1
20050027463 Goode et al. Feb 2005 A1
20050031689 Shults et al. Feb 2005 A1
20050038332 Saidara et al. Feb 2005 A1
20050043598 Goode, Jr. et al. Feb 2005 A1
20050049179 Davidson et al. Mar 2005 A1
20050049473 Desai et al. Mar 2005 A1
20050070774 Addison et al. Mar 2005 A1
20050090607 Tapsak et al. Apr 2005 A1
20050096511 Fox et al. May 2005 A1
20050096512 Fox et al. May 2005 A1
20050112169 Brauker et al. May 2005 A1
20050113653 Fox et al. May 2005 A1
20050114068 Chey et al. May 2005 A1
20050115832 Simpson et al. Jun 2005 A1
20050121322 Say et al. Jun 2005 A1
20050131346 Douglas Jun 2005 A1
20050143635 Kamath et al. Jun 2005 A1
20050154271 Rasdal et al. Jul 2005 A1
20050176136 Burd et al. Aug 2005 A1
20050177398 Watanabe et al. Aug 2005 A1
20050182306 Sloan Aug 2005 A1
20050187720 Goode, Jr. et al. Aug 2005 A1
20050192494 Ginsberg Sep 2005 A1
20050192557 Brauker Sep 2005 A1
20050195930 Spital et al. Sep 2005 A1
20050196821 Monfre et al. Sep 2005 A1
20050199494 Say et al. Sep 2005 A1
20050203360 Brauker et al. Sep 2005 A1
20050214892 Kovatchev et al. Sep 2005 A1
20050239154 Feldman et al. Oct 2005 A1
20050239156 Drucker et al. Oct 2005 A1
20050241957 Mao et al. Nov 2005 A1
20050245795 Goode, Jr. et al. Nov 2005 A1
20050245799 Brauker et al. Nov 2005 A1
20050245839 Stivoric et al. Nov 2005 A1
20050245904 Estes et al. Nov 2005 A1
20050277164 Drucker et al. Dec 2005 A1
20050277912 John Dec 2005 A1
20050287620 Heller et al. Dec 2005 A1
20050288725 Hettrick et al. Dec 2005 A1
20060001538 Kraft et al. Jan 2006 A1
20060004270 Bedard et al. Jan 2006 A1
20060010098 Goodnow et al. Jan 2006 A1
20060015020 Neale et al. Jan 2006 A1
20060015024 Brister et al. Jan 2006 A1
20060016700 Brister et al. Jan 2006 A1
20060017923 Ruchti et al. Jan 2006 A1
20060019327 Brister et al. Jan 2006 A1
20060020186 Brister et al. Jan 2006 A1
20060020187 Brister et al. Jan 2006 A1
20060020188 Kamath et al. Jan 2006 A1
20060020189 Brister et al. Jan 2006 A1
20060020190 Kamath et al. Jan 2006 A1
20060020191 Brister et al. Jan 2006 A1
20060020192 Brister et al. Jan 2006 A1
20060025662 Buse et al. Feb 2006 A1
20060025663 Talbot et al. Feb 2006 A1
20060029177 Cranford, Jr. et al. Feb 2006 A1
20060031094 Cohen et al. Feb 2006 A1
20060036139 Brister et al. Feb 2006 A1
20060036140 Brister et al. Feb 2006 A1
20060036141 Kamath et al. Feb 2006 A1
20060036142 Brister et al. Feb 2006 A1
20060036143 Brister et al. Feb 2006 A1
20060036144 Brister et al. Feb 2006 A1
20060036145 Brister et al. Feb 2006 A1
20060091006 Wang et al. May 2006 A1
20060142651 Brister et al. Jun 2006 A1
20060155180 Brister et al. Jul 2006 A1
20060166629 Reggiardo Jul 2006 A1
20060167365 Bharmi Jul 2006 A1
20060167517 Gill et al. Jul 2006 A1
20060167518 Gill et al. Jul 2006 A1
20060167519 Gill et al. Jul 2006 A1
20060173260 Gaoni et al. Aug 2006 A1
20060173406 Hayes et al. Aug 2006 A1
20060173444 Choy et al. Aug 2006 A1
20060183984 Dobbles et al. Aug 2006 A1
20060183985 Brister et al. Aug 2006 A1
20060189851 Tvig et al. Aug 2006 A1
20060189863 Peyser et al. Aug 2006 A1
20060193375 Lee Aug 2006 A1
20060222566 Brauker et al. Oct 2006 A1
20060224109 Steil et al. Oct 2006 A1
20060226985 Goodnow et al. Oct 2006 A1
20060229512 Petisce et al. Oct 2006 A1
20060247508 Fennell Nov 2006 A1
20060247685 Bharmi Nov 2006 A1
20060247985 Liamos et al. Nov 2006 A1
20060258929 Goode et al. Nov 2006 A1
20060264785 Dring et al. Nov 2006 A1
20060272652 Stocker et al. Dec 2006 A1
20060281985 Ward et al. Dec 2006 A1
20070016381 Kamath et al. Jan 2007 A1
20070027381 Stafford Feb 2007 A1
20070032706 Kamath et al. Feb 2007 A1
20070033074 Nitzan et al. Feb 2007 A1
20070056858 Chen et al. Mar 2007 A1
20070060803 Liljeryd et al. Mar 2007 A1
20070060814 Stafford Mar 2007 A1
20070066873 Kamath et al. Mar 2007 A1
20070068807 Feldman et al. Mar 2007 A1
20070071681 Gadkar et al. Mar 2007 A1
20070073129 Shah et al. Mar 2007 A1
20070078320 Stafford Apr 2007 A1
20070078321 Mazza et al. Apr 2007 A1
20070078322 Stafford Apr 2007 A1
20070078323 Reggiardo et al. Apr 2007 A1
20070095661 Wang et al. May 2007 A1
20070106135 Sloan et al. May 2007 A1
20070108048 Wang et al. May 2007 A1
20070118030 Bruce et al. May 2007 A1
20070118405 Campbell et al. May 2007 A1
20070124002 Estes et al. May 2007 A1
20070129621 Kellogg et al. Jun 2007 A1
20070149875 Ouyang et al. Jun 2007 A1
20070156033 Causey, III et al. Jul 2007 A1
20070163880 Woo et al. Jul 2007 A1
20070168224 Letzt et al. Jul 2007 A1
20070173706 Neinast et al. Jul 2007 A1
20070173709 Petisce et al. Jul 2007 A1
20070173710 Petisce et al. Jul 2007 A1
20070173761 Kanderian et al. Jul 2007 A1
20070179349 Hoyme et al. Aug 2007 A1
20070179352 Randlov et al. Aug 2007 A1
20070179434 Weinert et al. Aug 2007 A1
20070191701 Feldman et al. Aug 2007 A1
20070199818 Petyt et al. Aug 2007 A1
20070202562 Curry et al. Aug 2007 A1
20070203407 Hoss et al. Aug 2007 A1
20070203966 Brauker et al. Aug 2007 A1
20070213657 Jennewine et al. Sep 2007 A1
20070227911 Wang et al. Oct 2007 A1
20070232877 He Oct 2007 A1
20070232878 Kovatchev et al. Oct 2007 A1
20070232880 Siddiqui et al. Oct 2007 A1
20070233013 Schoenberg et al. Oct 2007 A1
20070235331 Simpson et al. Oct 2007 A1
20070249922 Peyser et al. Oct 2007 A1
20070255321 Gerber et al. Nov 2007 A1
20070282299 Hellwig Dec 2007 A1
20070299617 Willis Dec 2007 A1
20080004515 Jennewine et al. Jan 2008 A1
20080004601 Jennewine et al. Jan 2008 A1
20080009692 Stafford Jan 2008 A1
20080012701 Kass et al. Jan 2008 A1
20080017522 Heller et al. Jan 2008 A1
20080021666 Goode, Jr. et al. Jan 2008 A1
20080021972 Huelskamp et al. Jan 2008 A1
20080029391 Mao et al. Feb 2008 A1
20080033254 Kamath et al. Feb 2008 A1
20080039702 Hayter et al. Feb 2008 A1
20080045824 Tapsak et al. Feb 2008 A1
20080058625 McGarraugh et al. Mar 2008 A1
20080064937 McGarraugh et al. Mar 2008 A1
20080066305 Wang et al. Mar 2008 A1
20080071156 Brister et al. Mar 2008 A1
20080071157 McGarraugh et al. Mar 2008 A1
20080071158 McGarraugh et al. Mar 2008 A1
20080081977 Hayter et al. Apr 2008 A1
20080083617 Simpson et al. Apr 2008 A1
20080086042 Brister et al. Apr 2008 A1
20080086044 Brister et al. Apr 2008 A1
20080086273 Shults et al. Apr 2008 A1
20080097289 Steil et al. Apr 2008 A1
20080102441 Chen et al. May 2008 A1
20080108942 Brister et al. May 2008 A1
20080119703 Brister et al. May 2008 A1
20080119708 Budiman May 2008 A1
20080139910 Mastrototaro et al. Jun 2008 A1
20080148873 Wang Jun 2008 A1
20080154513 Kovatchev et al. Jun 2008 A1
20080161666 Feldman et al. Jul 2008 A1
20080167543 Say et al. Jul 2008 A1
20080172205 Breton et al. Jul 2008 A1
20080177149 Weinert et al. Jul 2008 A1
20080177165 Blomquist et al. Jul 2008 A1
20080183060 Steil et al. Jul 2008 A1
20080183061 Goode et al. Jul 2008 A1
20080183399 Goode et al. Jul 2008 A1
20080188731 Brister et al. Aug 2008 A1
20080188796 Steil et al. Aug 2008 A1
20080189051 Goode et al. Aug 2008 A1
20080194934 Ray et al. Aug 2008 A1
20080194935 Brister et al. Aug 2008 A1
20080194936 Goode et al. Aug 2008 A1
20080194937 Goode et al. Aug 2008 A1
20080194938 Brister et al. Aug 2008 A1
20080195232 Carr-Brendel et al. Aug 2008 A1
20080195967 Goode et al. Aug 2008 A1
20080197024 Simpson et al. Aug 2008 A1
20080200788 Brister et al. Aug 2008 A1
20080200789 Brister et al. Aug 2008 A1
20080200791 Simpson et al. Aug 2008 A1
20080201325 Doniger et al. Aug 2008 A1
20080208025 Shults et al. Aug 2008 A1
20080208113 Damiano et al. Aug 2008 A1
20080214910 Buck Sep 2008 A1
20080214915 Brister et al. Sep 2008 A1
20080214918 Brister et al. Sep 2008 A1
20080228051 Shults et al. Sep 2008 A1
20080228054 Shults et al. Sep 2008 A1
20080234943 Ray et al. Sep 2008 A1
20080242961 Brister et al. Oct 2008 A1
20080242963 Essenpreis et al. Oct 2008 A1
20080255434 Hayter et al. Oct 2008 A1
20080255437 Hayter Oct 2008 A1
20080255438 Saidara Oct 2008 A1
20080255808 Hayter Oct 2008 A1
20080256048 Hayter Oct 2008 A1
20080262469 Brister et al. Oct 2008 A1
20080267823 Wang et al. Oct 2008 A1
20080275313 Brister et al. Nov 2008 A1
20080278332 Fennel et al. Nov 2008 A1
20080287761 Hayter Nov 2008 A1
20080287762 Hayter Nov 2008 A1
20080287763 Hayter Nov 2008 A1
20080287764 Rasdal et al. Nov 2008 A1
20080287765 Rasdal et al. Nov 2008 A1
20080287766 Rasdal et al. Nov 2008 A1
20080288180 Hayter Nov 2008 A1
20080288204 Hayter et al. Nov 2008 A1
20080296155 Shults et al. Dec 2008 A1
20080300572 Rankers et al. Dec 2008 A1
20080306368 Goode et al. Dec 2008 A1
20080306434 Dobbles et al. Dec 2008 A1
20080306435 Kamath et al. Dec 2008 A1
20080306444 Brister et al. Dec 2008 A1
20080312841 Hayter Dec 2008 A1
20080312842 Hayter Dec 2008 A1
20080312844 Hayter et al. Dec 2008 A1
20080312845 Hayter et al. Dec 2008 A1
20080314395 Kovatchev et al. Dec 2008 A1
20080319279 Ramsay et al. Dec 2008 A1
20080319295 Bernstein et al. Dec 2008 A1
20080319296 Bernstein et al. Dec 2008 A1
20090005665 Hayter et al. Jan 2009 A1
20090005666 Shin et al. Jan 2009 A1
20090006034 Hayter et al. Jan 2009 A1
20090006061 Thukral et al. Jan 2009 A1
20090006133 Weinert et al. Jan 2009 A1
20090012376 Agus Jan 2009 A1
20090012379 Goode et al. Jan 2009 A1
20090018424 Kamath et al. Jan 2009 A1
20090018425 Ouyang et al. Jan 2009 A1
20090030293 Cooper et al. Jan 2009 A1
20090030294 Petisce et al. Jan 2009 A1
20090033482 Hayter et al. Feb 2009 A1
20090036747 Hayter et al. Feb 2009 A1
20090036758 Brauker et al. Feb 2009 A1
20090036760 Hayter Feb 2009 A1
20090036763 Brauker et al. Feb 2009 A1
20090043181 Brauker et al. Feb 2009 A1
20090043182 Brauker et al. Feb 2009 A1
20090043525 Brauker et al. Feb 2009 A1
20090043541 Brauker et al. Feb 2009 A1
20090043542 Brauker et al. Feb 2009 A1
20090045055 Rhodes et al. Feb 2009 A1
20090048503 Dalal et al. Feb 2009 A1
20090054745 Jennewine et al. Feb 2009 A1
20090054748 Feldman et al. Feb 2009 A1
20090054749 He Feb 2009 A1
20090054753 Robinson et al. Feb 2009 A1
20090055149 Hayter et al. Feb 2009 A1
20090062633 Brauker et al. Mar 2009 A1
20090062635 Brauker et al. Mar 2009 A1
20090062767 VanAntwerp et al. Mar 2009 A1
20090063402 Hayter Mar 2009 A1
20090069649 Budiman Mar 2009 A1
20090076356 Simpson et al. Mar 2009 A1
20090076360 Brister et al. Mar 2009 A1
20090076361 Kamath et al. Mar 2009 A1
20090082693 Stafford Mar 2009 A1
20090085768 Patel et al. Apr 2009 A1
20090099436 Brister et al. Apr 2009 A1
20090105560 Solomon Apr 2009 A1
20090105570 Sloan et al. Apr 2009 A1
20090105636 Hayter et al. Apr 2009 A1
20090112478 Mueller, Jr. et al. Apr 2009 A1
20090112626 Talbot et al. Apr 2009 A1
20090118589 Ueshima et al. May 2009 A1
20090124877 Goode, Jr. et al. May 2009 A1
20090124878 Goode et al. May 2009 A1
20090124879 Brister et al. May 2009 A1
20090124964 Leach et al. May 2009 A1
20090131768 Simpson et al. May 2009 A1
20090131769 Leach et al. May 2009 A1
20090131776 Simpson et al. May 2009 A1
20090131777 Simpson et al. May 2009 A1
20090137886 Shariati et al. May 2009 A1
20090137887 Shariati et al. May 2009 A1
20090143659 Li et al. Jun 2009 A1
20090143660 Brister et al. Jun 2009 A1
20090143725 Peyser et al. Jun 2009 A1
20090149728 Van Antwerp et al. Jun 2009 A1
20090156919 Brister et al. Jun 2009 A1
20090156924 Shariati et al. Jun 2009 A1
20090163790 Brister et al. Jun 2009 A1
20090163791 Brister et al. Jun 2009 A1
20090163855 Shin et al. Jun 2009 A1
20090164190 Hayter Jun 2009 A1
20090164239 Hayter et al. Jun 2009 A1
20090164251 Hayter Jun 2009 A1
20090178459 Li et al. Jul 2009 A1
20090182217 Li et al. Jul 2009 A1
20090182517 Gandhi et al. Jul 2009 A1
20090192366 Mensinger et al. Jul 2009 A1
20090192380 Shariati et al. Jul 2009 A1
20090192722 Shariati et al. Jul 2009 A1
20090192724 Brauker et al. Jul 2009 A1
20090192745 Kamath et al. Jul 2009 A1
20090192751 Kamath et al. Jul 2009 A1
20090198118 Hayter et al. Aug 2009 A1
20090203981 Brauker et al. Aug 2009 A1
20090204341 Brauker et al. Aug 2009 A1
20090216103 Brister et al. Aug 2009 A1
20090240120 Mensinger et al. Sep 2009 A1
20090240128 Mensinger et al. Sep 2009 A1
20090240193 Mensinger et al. Sep 2009 A1
20090242399 Kamath et al. Oct 2009 A1
20090242425 Kamath et al. Oct 2009 A1
20090247855 Boock et al. Oct 2009 A1
20090247856 Boock et al. Oct 2009 A1
20090247857 Harper et al. Oct 2009 A1
20090253973 Bashan et al. Oct 2009 A1
20090257911 Thomas et al. Oct 2009 A1
20090281407 Budiman Nov 2009 A1
20090287073 Boock et al. Nov 2009 A1
20090287074 Shults et al. Nov 2009 A1
20090294277 Thomas et al. Dec 2009 A1
20090299155 Yang et al. Dec 2009 A1
20090299156 Simpson et al. Dec 2009 A1
20090299162 Brauker et al. Dec 2009 A1
20090299276 Brauker et al. Dec 2009 A1
20100010324 Brauker et al. Jan 2010 A1
20100010331 Brauker et al. Jan 2010 A1
20100010332 Brauker et al. Jan 2010 A1
20100057040 Hayter Mar 2010 A1
20100057041 Hayter Mar 2010 A1
20100057042 Hayter Mar 2010 A1
20100057044 Hayter Mar 2010 A1
20100057057 Hayter et al. Mar 2010 A1
20100063372 Potts et al. Mar 2010 A1
20100064764 Hayter et al. Mar 2010 A1
20100081909 Budiman et al. Apr 2010 A1
20100081953 Syeda-Mahmood et al. Apr 2010 A1
20100121167 McGarraugh et al. May 2010 A1
20100141656 Krieftewirth Jun 2010 A1
20100152561 Goodnow et al. Jun 2010 A1
20100160759 Celentano et al. Jun 2010 A1
20100168538 Keenan et al. Jul 2010 A1
20100168546 Kamath et al. Jul 2010 A1
20100174266 Estes Jul 2010 A1
20100191085 Budiman Jul 2010 A1
20100198034 Thomas et al. Aug 2010 A1
20100198142 Sloan et al. Aug 2010 A1
20100204557 Kiaie et al. Aug 2010 A1
20100213057 Feldman et al. Aug 2010 A1
20100234710 Budiman et al. Sep 2010 A1
20100261987 Kamath et al. Oct 2010 A1
20100280441 Willinska et al. Nov 2010 A1
20100312176 Lauer et al. Dec 2010 A1
20100313105 Nekoomaram et al. Dec 2010 A1
20100317952 Budiman et al. Dec 2010 A1
20100324392 Yee et al. Dec 2010 A1
20100326842 Mazza et al. Dec 2010 A1
20110021889 Hoss et al. Jan 2011 A1
20110024043 Boock et al. Feb 2011 A1
20110024307 Simpson et al. Feb 2011 A1
20110027127 Simpson et al. Feb 2011 A1
20110027453 Boock et al. Feb 2011 A1
20110027458 Boock et al. Feb 2011 A1
20110028815 Simpson et al. Feb 2011 A1
20110028816 Simpson et al. Feb 2011 A1
20110029247 Kalathil Feb 2011 A1
20110040163 Telson et al. Feb 2011 A1
20110060530 Fennell Mar 2011 A1
20110077490 Simpson et al. Mar 2011 A1
20110077494 Doniger et al. Mar 2011 A1
20110082484 Saravia et al. Apr 2011 A1
20110106126 Love et al. May 2011 A1
20110112696 Yodfat et al. May 2011 A1
20110148905 Simmons et al. Jun 2011 A1
20110208027 Wagner et al. Aug 2011 A1
20110208155 Palerm et al. Aug 2011 A1
20110257895 Brauker et al. Oct 2011 A1
20110263958 Brauker et al. Oct 2011 A1
20110320130 Valdes et al. Dec 2011 A1
20120078071 Bohm et al. Mar 2012 A1
20120108934 Valdes et al. May 2012 A1
20120165626 Irina et al. Jun 2012 A1
20120165640 Galley et al. Jun 2012 A1
20120173200 Breton et al. Jul 2012 A1
20120209099 Ljuhs et al. Aug 2012 A1
20120215462 Goode et al. Aug 2012 A1
20120277565 Budiman Nov 2012 A1
20130035575 Mayou et al. Feb 2013 A1
20130231541 Hayter et al. Sep 2013 A1
20130324823 Koski et al. Dec 2013 A1
20140005499 Catt et al. Jan 2014 A1
20140046160 Terashima et al. Feb 2014 A1
20140121488 Budiman May 2014 A1
20140221966 Buckingham et al. Aug 2014 A1
20150216456 Budiman Aug 2015 A1
20150241407 Ou et al. Aug 2015 A1
20150366510 Budiman Dec 2015 A1
20160022221 Ou et al. Jan 2016 A1
Foreign Referenced Citations (43)
Number Date Country
4401400 Jul 1995 DE
0098592 Jan 1984 EP
0127958 Dec 1984 EP
0320109 Jun 1989 EP
0353328 Feb 1990 EP
0390390 Oct 1990 EP
0396788 Nov 1990 EP
0472411 Feb 1992 EP
0286118 Jan 1995 EP
0867146 Sep 1998 EP
1048264 Nov 2000 EP
1419731 May 2004 EP
0939602 Sep 2004 EP
1850909 Apr 2010 EP
1677668 Jul 2010 EP
2004-358261 Dec 2004 JP
WO-1996025089 Aug 1996 WO
WO-1996035370 Nov 1996 WO
WO-1997015227 May 1997 WO
WO-1998035053 Aug 1998 WO
WO-1999056613 Nov 1999 WO
WO-2000049940 Aug 2000 WO
WO-2000059370 Oct 2000 WO
WO-2000074753 Dec 2000 WO
WO-2000078992 Dec 2000 WO
WO-2001052935 Jul 2001 WO
WO-2001054753 Aug 2001 WO
WO-2002016905 Feb 2002 WO
WO-2002058537 Aug 2002 WO
WO-2003076893 Sep 2003 WO
WO-2003082091 Oct 2003 WO
WO-2003085372 Oct 2003 WO
WO-2004060455 Jul 2004 WO
WO-2004061420 Jul 2004 WO
WO-2005041766 May 2005 WO
WO-2005065542 Jul 2005 WO
WO-2005089103 Sep 2005 WO
WO-2006024671 Mar 2006 WO
WO-2006079114 Jul 2006 WO
WO-2006081336 Aug 2006 WO
WO-2006086423 Aug 2006 WO
WO-2006118947 Nov 2006 WO
WO-2008086541 Jul 2008 WO
Non-Patent Literature Citations (77)
Entry
Armour, J. C., et al., “Application of Chronic Intravascular Blood Glucose Sensor in Dogs”, Diabetes, vol. 39, 1990, pp. 1519-1526.
Bennion, N., et al., “Alternate Site Glucose Testing: A Crossover Design”, Diabetes Technology & Therapeutics, vol. 4, No. 1, 2002, pp. 25-33.
Blendea, M. C., et al, “Heart Disease in Diabetic Patients”, Current Diabetes Reports, vol. 3, 2003, pp. 223-229.
Brooks, S. L., et al., “Development of an On-Line Glucose Sensor for Fermentation Monitoring”, Biosensors, vol. 3, 1987/88, pp. 45-56.
Cass, A. E., et al., “Ferrocene-Medicated Enzyme Electrode for Amperometric Determination of Glucose”, Analytical Chemistry, vol. 56, No. 4, 1984, 667-671.
Csoregi, E., et al., “Design and Optimization of a Selective Subcutaneously Implantable Glucose Electrode Based on ‘Wired’ Glucose Oxidase”, Analytical Chemistry, vol. 67, No. 7, 1995, pp. 1240-1244.
Diabetes Control and Complications Trial Research Group, “The Effect of Intensive Treatment of Diabetes on the Development and Progression of Long-Term Complications in Insulin-Dependent Diabetes Mellitus,” New England J. Med. vol. 329, 1993, pp. 977-986.
Eckert, B. et al. “Hypoglycaemia Leads to an Increased QT Interval in Normal Men,” Clinical Physiology, vol. 18, No. 6, 1998, pp. 570-575.
Feldman, B., et al., “A Continuous Glucose Sensor Based on Wired Enzyme™ Technology—Results from a 3-Day Trial in Patients with Type 1 Diabetes”, Diabetes Technology & Therapeuticsvol. 5, No. 5, 2003, pp. 769-779.
Feldman, B., et al., “Correlation of Glucose Concentrations in Interstitial Fluid and Venous Blood During Periods of Rapid Glucose Change”, Abbott Diabetes Care, Inc. Freestyle Navigator Continuous Glucose Monitor Pamphlet, 2004.
Georgescu, B., et al., “Real-Time Multimodel Tracking of Myocardium in Echocardiography Using Robust Information Fusion”, Medical Image Computing and Computer-Assisted Intervention, 2004, pp. 777-785.
Goldman, J. M., et al., “Masimo Signal Extraction Pulse Oximetry”, Journal of Clinical Monitoring and Computing, vol. 16, No. 7, 2000, pp. 475-483.
Harris, N.D., et al., “Can Changes in QT Interval be Used to Predict the Onset of Hypoglycemia in Type 1 Diabetes?”, Computers in Cardiology, vol. 27, 2000, pp. 375-378.
Heller, S. R., “Abnormalities of the Electrocardiogram During Hypoglycemia: The Cause of the Dead in Bed Syndrome?” International Journal of Clinical Practice, Suppl. No. 129, 2002, pp. 27-32.
Isermann, R., “Supervision, Fault-Detection and Fault-Diagnosis Methods—An Introduction”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 639-652.
Isermann, R., et al., “Trends in the Application of Model-Based Fault Detection and Diagnosis of Technical Processes”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 709-719.
Johnson, P. C., “Peripheral Circulation”, John Wiley & Sons, 1978, pp. 198.
Jones, T. W., et al., “Mild Hypoglycemia and Impairment of Brain Stem and Cortical Evoked Potentials in Healthy Subjects,” Diabetes vol. 39, 1990, 1550-1555.
Jungheim, K., et al., “How Rapid Does Glucose Concentration Change in Daily Life of Patients with Type 1 Diabetes?”, 2002, pp. 250.
Jungheim, K., et al., “Risky Delay of Hypoglycemia Detection by Glucose Monitoring at the Arm”, Diabetes Care, vol. 24, No. 7, 2001, pp. 1303-1304.
Kaplan, S. M., “Wiley Electrical and Electronics Engineering Dictionary”, IEEE Press, 2004, pp. 141, 142, 548, 549.
Landstedt-Hallin, L., et al., “Increased QT Dispersion During Hypoglycaemia in Patients with Type 2 Diabetes Mellitus,” Journal of Internal Medicine, vol. 246, 1999, 299-307.
Lortz, J., et al., “What is Bluetooth? We Explain the Newest Short-Range Connectivity Technology”, Smart Computing Learning Series, Wireless Computing, vol. 8, Issue 5, 2002, pp. 72-74.
Maher, “A Method for Extrapolation of Missing Digital Audio Data”, Preprints of Papers Presented at the AES Convention, 1993, pp. 1-19.
Maher, “Audio Enhancement using Nonlinear Time-Frequency Filtering”, AES 26th International Conference, 2005, pp. 1-9.
Malin, S. F., et al., “Noninvasive Prediction of Glucose by Near-Infrared Diffuse Reflectance Spectoscopy”, Clinical Chemistry, vol. 45, No. 9, 1999, pp. 1651-1658.
Malmberg, K., “Prospective Randomised Study of Intensive Insulin Treatment on Long-Term Survival After Acute Myocardial Infarction in Patients with Diabetes Mellitus”, British Medical Journal, vol. 314, 1997, pp. 1512-1515.
Markel, A. et al, “Hypoglycaemia-Induced Ischaemic ECG Changes”, Presse Medicale, vol. 23, No. 2, 1994, pp. 78-79.
McGarraugh, G., et al., “Glucose Measurements Using Blood Extracted from the Forearm and the Finger”, TheraSense, Inc., 2001, 16 Pages.
McGarraugh, G., et al., “Physiological Influences on Off-Finger Glucose Testing”, Diabetes Technology & Therapeutics, vol. 3, No. 3, 2001, pp. 367-376.
McKean, B. D., et al., “A Telemetry-Instrumentation System for Chronically Implanted Glucose and Oxygen Sensors”, IEEE Transactions on Biomedical Engineering, vol. 35, No. 7, 1988, pp. 526-532.
Morbiducci, U, et al., “Improved Usability of the Minimal Model of Insulin Sensitivity Based on an Automated Approach and Genetic Algorithms for Parameter Estimation”, Clinical Science, vol. 112, 2007, pp. 257-263.
Okin, P. M., et al, “Electrocardiographic Repolarization Complexity and Abnormality Predict All-Cause and Cardiovascular Mortality in Diabetes,” Diabetes, vol. 53, 2004, pp. 434-440.
Peterson, K., et al., “Regulation of Serum Potassium During Insulin-Induced Hypoglycemia,” Diabetes, vol. 31, 1982, pp. 615-617.
Pickup, J., et al., “Implantable Glucose Sensors: Choosing the Appropriate Sensing Strategy”, Biosensors, vol. 3, 1987/88, pp. 335-346.
Pickup, J., et al., “In Vivo Molecular Sensing in Diabetes Mellitus: An Implantable Glucose Sensor with Direct Electron Transfer”, Diabetologia, vol. 32, 1989, pp. 213-217.
Pishko, M. V., et al., “Amperometric Glucose Microelectrodes Prepared Through Immobilization of Glucose Oxidase in Redox Hydrogels”, Analytical Chemistry, vol. 63, No. 20, 1991, pp. 2268-2272.
Quinn, C. P., et al., “Kinetics of Glucose Delivery to Subcutaneous Tissue in Rats Measured with 0.3-mm Amperometric Microsensors”, The American Physiological Society, 1995, E155-E161.
Rana, B. S., et al., “Relation of QT Interval Dispersion to the Number of Different Cardiac Abnormalities in Diabetes Mellitus”, The American Journal of Cardiology, vol. 90, 2002, pp. 483-487.
Robinson, R. T. C. E., et al. “Changes in Cardiac Repolarization During Clinical Episodes of Nocturnal Hypoglycaemia in Adults with Type 1 Diabetes,” Diabetologia, vol. 47, 2004, pp. 312-315.
Roe, J. N., et al., “Bloodless Glucose Measurements”, Critical Review in Therapeutic Drug Carrier Systems, vol. 15, Issue 3, 1998, pp. 199-241.
Sakakida, M., et al., “Development of Ferrocene-Mediated Needle-Type Glucose Sensor as a Measure of True Subcutaneous Tissue Glucose Concentrations”, Artificial Organs Today, vol. 2, No. 2, 1992, pp. 145-158.
Sakakida, M., et al., “Ferrocene-Mediated Needle-Type Glucose Sensor Covered with Newly Designed Biocompatible Membrane”, Sensors and Actuators B, vol. 13-14, 1993, pp. 319-322.
Salehi, C., et al., “A Telemetry-Instrumentation System for Long-Term Implantable Glucose and Oxygen Sensors”, Analytical Letters, vol. 29, No. 13, 1996, pp. 2289-2308.
Schmidtke, D. W., et al., “Measurement and Modeling of the Transient Difference Between Blood and Subcutaneous Glucose Concentrations in the Rat After Injection of Insulin”, Proceedings of the National Academy of Sciences, vol. 95, 1998, pp. 294-299.
Shaw, G. W., et al., “In Vitro Testing of a Simply Constructed, Highly Stable Glucose Sensor Suitable for Implantation in Diabetic Patients”, Biosensors & Bioelectronics, vol. 6, 1991, pp. 401-406.
Shichiri, M., et al., “Glycaemic Control in Pancreatectomized Dogs with a Wearable Artificial Endocrine Pancreas”, Diabetologia, vol. 24, 1983, pp. 179-184.
Shichiri, M., et al., “In Vivo Characteristics of Needle-Type Glucose Sensor—Measurements of Subcutaneous Glucose Concentrations in Human Volunteers”, Hormone and Metabolic Research Supplement Series, vol. 20, 1988, pp. 17-20.
Shichiri, M., et al., “Membrane Design for Extending the Long-Life of an Implantable Glucose Sensor”, Diabetes Nutrition and Metabolism, vol. 2, 1989, pp. 309-313.
Shichiri, M., et al., “Needle-type Glucose Sensor for Wearable Artificial Endocrine Pancreas”, Implantable Sensors for Closed-Loop Prosthetic Systems, Chapter 15, 1985, pp. 197-210.
Shichiri, M., et al., “Telemetry Glucose Monitoring Device With Needle-Type Glucose Sensor: A Useful Tool for Blood Glucose Monitoring in Diabetic Individuals”, Diabetes Care, vol. 9, No. 3, 1986, pp. 298-301.
Shichiri, M., et al., “Wearable Artificial Endocrine Pancreas With Needle-Type Glucose Sensor”, The Lancet, 1982, pp. 1129-1131.
Shults, M. C., et al., “A Telemetry-Instrumentation System for Monitoring Multiple Subcutaneously Implanted Glucose Sensors”, IEEE Transactions on Biomedical Engineering, vol. 41, No. 10, 1994, pp. 937-942.
Steinhaus, B. M., et al., “The Information Content of the Cardiac Electrogram at the Stimulus Site,” Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 12, No. 2, 1990, 0607-0609.
Sternberg, R., et al., “Study and Development of Multilayer Needle-Type Enzyme-Based Glucose Microsensors”, Biosensors, vol. 4, 1988, pp. 27-40.
Thompson, M., et al., “In Vivo Probes: Problems and Perspectives”, Clinical Biochemistry, vol. 19, 1986, pp. 255-261.
Turner, A., et al., “Diabetes Mellitus: Biosensors for Research and Management”, Biosensors, vol. 1, 1985, pp. 85-115.
Updike, S. J., et al., “Principles of Long-Term Fully Implanted Sensors with Emphasis on Radiotelemetric Monitoring of Blood Glucose from Inside a Subcutaneous Foreign Body Capsule (FBC)”, Biosensors in the Body: Continuous in vivo Monitoring, Chapter 4, 1997, pp. 117-137.
Velho, G., et al., “Strategies for Calibrating a Subcutaneous Glucose Sensor”, Biomedica Biochimica Acta, vol. 48, 1989, pp. 957-964.
Whipple, G., “Low Residual Noise Speech Enhancement Utilizing Time-Frequency”, Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, vol. 19, 1994, pp. I5-I8.
Wilson, G. S., et al., “Progress Toward the Development of an Implantable Sensor for Glucose”, Clinical Chemistry, vol. 38, No. 9, 1992, pp. 1613-1617.
Wolfe, P. J., et al., “Interpolation of Missing Data Values for Audio Signal Restoration Using a Gabor Regression Model”, 2005 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 5, 2005, pp. 517-520.
PCT Application No. PCT/US2010/054879, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated May 10, 2012.
PCT Application No. PCT/US2010/054879, International Search Report and Written Opinion of the International Searching Authority dated Dec. 27, 2010.
U.S. Appl. No. 12/916,481, Notice of Allowance dated Mar. 7, 2012.
U.S. Appl. No. 12/916,481, Office Action dated Dec. 19, 2011.
U.S. Appl. No. 13/477,026, Office Action dated Aug. 20, 2014.
U.S. Appl. No. 13/477,026, Office Action dated Dec. 3, 2014.
U.S. Appl. No. 13/477,026, Advisory Action dated Mar. 18, 2015.
U.S. Appl. No. 13/477,026, Notice of Allowance dated Apr. 15, 2015.
Dassau, E., et al., “Detection of a Meal Using Continuous Glucose Monitoring”, Emerging Treatments and Technologies, vol. 31, No. 2, Feb. 2008, pp. 295-300.
Hovorka, R., et al., “Nonlinear Model Predictive Control of Glucose Concentration in Subjects with Type 1 Diabetes”, Physiological Measurement, vol. 55, Jul. 2004, pp. 905-920.
Hyunjin, L., et al., “A Closed-Loop Artificial Pancreas Using Model Predictive Control and a Sliding Meal Size Estimator”, Journal of Diabetes Science and Technology, vol. 3, Issue 5, Sep. 2009, pp. 1082-1090.
Kovatchev, B. P., et al., “Graphical and Numerical Evaluation of Continuous Glucose Sensing Time Lag”, Diabetes Technology & Therapeutics, vol. 11, No. 3, Feb. 2009, pp. 139-143.
Steil, G. M., et al., “Closed-Loop Insulin Delivery—the Path of Physiological Glucose Control”, Advanced Drug Delivery Reviews, vol. 56, 2004, pp. 125-144.
Steil, G. M., et al., “Determination of Plasma Glucose During Rapid Glucose Excursions with a Subcutaneous Glucose Sensor”, Diabetes Technology & Therapeutics, vol. 5, No. 1, 2003, pp. 27-31.
European Patent Application No. 10827587.6, Examination Report dated Jul. 20, 2018.
Related Publications (1)
Number Date Country
20150265192 A1 Sep 2015 US
Provisional Applications (1)
Number Date Country
61256920 Oct 2009 US
Divisions (1)
Number Date Country
Parent 12916481 Oct 2010 US
Child 13477026 US
Continuations (1)
Number Date Country
Parent 13477026 May 2012 US
Child 14730077 US