The present invention relates to a nucleic acid information detection method and apparatus for kinetically detecting nucleic acid information.
In recent years, gene diagnosis techniques for analyzing information on gene mutation, predicting disease, diagnosing disease, typing viruses, or the like, have greatly progressed. For example, such method has been carried out wherein DNA probes which are respectively complementary to a nucleic acid having a normal gene sequence, or a nucleic acid including an already-known mutation in the gene sequence are previously prepared, then the respective types of probes are separately hybridized with a sample DNA, for which the presence/absence of a mutation is not known, in order to determine if a probe having a larger hybridization amount has higher complementarity with the sample DNA. That is, if the hybridization amount with a probe complementary with the normal DNA is larger, the sample DNA can be assumed to be normal. On the other hand, if the hybridization amount with a probe complementary with the mutant DNA is larger, the sample DNA can be assumed to be mutated.
For detecting hybridization, for example such method has been used wherein a sample DNA is labeled with a detectable marker in order to indirectly detect the DNA amount by detecting the marker. Generally, fluorescence, radioactive isotope (RI), chemoluminescence, or the like have been used for such marker.
A further advanced gene detection system based on the hybridization reaction using such DNA complementary, has started prevailing. It is called DNA microarray. In the system, hundreds to ten hundreds of DNA probes are arranged in the array on which solutions containing nucleic acid samples are hybridized in order to detect the information on a plurality of genes all together.
Using the DNA microarray, the information on a plurality of genes can be analyzed at the same time. It has been normally used for analyzing mRNA expressions in many cases, however, on the other hand some examples include a case where it has been also applied for analyzing gene mutation or single nucleotide polymorphisms (SNPs).
It is generally quite difficult to detect single base mutations sensitively at high speed. Therefore, for example, in Japanese Unexamined Patent Application, First Publication No. 2001-50931, a method has been proposed wherein an electrochemical reaction is jointly used in the DNA microarray in order to detect single base mutation sensitively at high speed. In this reference, electrodes are respectively applied to individual array elements on the DNA microarray to which the voltages are applied so that the reactions can be performed at high speed.
Moreover, as a method for carrying out the hybridization sensitively at high speed, examples include a method disclosed in Published Japanese translation No. 2000-515251 of PCT International Publication. In this method, a metallic oxide having a porous structure is used as a reaction carrier and a solution is driven from one surface to another surface in order to increase the diffusion velocity of the sample solution so that the reactions can be performed at high speed.
However, in the conventional methods, the hybridization reaction has been performed extremely slowly (normally from several hours to many hours), so that tips having complex construction have been required for high speed detection. Accordingly, apparatus or tips for detecting nucleic acid have been made in large sizes, resulting in high cost. Moreover, the reaction temperature must be increased in order to increase the specificity, which causes a delay in reaction time and a longer detection time for the hybrid. Such problems become remarkable particularly in the case where the presence/absence of single base mutation is to be accurately detected.
Specific examples for detecting single base mutation include a method disclosed in Published Japanese translation No. 2000-511434 of PCT International Publication. In this method, a probe corresponding to a base mutation is prepared to identify the mutation using the specificity. In order to reliably detect the difference of the single base mutation, probes including mismatched nucleotide are used. In this method a phenomenon is utilized such that a Tm value difference between the perfect matched hybrid and the hybrid with a probe having a single base mutation is larger than the Tm difference between the hybrid with the probe having a single base mutation and a hybrid with a probe having a double base mutation. In the method, however, since the absolute hybridization intensity is decreased, the reaction requires longer time and there have also been problems from the point of sensitivity.
Similarly to the case of detecting single base mutations, in the case where only a single base is mutated with respect to the whole length of the DNA, there is not so much difference in the degree of complementarity between probes and a target DNA, and hence there is no substantial difference in the degree of hybridization, making impossible to detect the mutation. That is, in order to detect single base mutations, preferably the base length is shorter so as to increase the proportion of the mutation with respect to the base length. On the other hand, however, in the case where a probe comprises a too short sequence, the reaction temperature must be decreased, resulting in an increase in the amount of non-specific hybridization with the target DNA. Therefore, the problem has been such that the highly accurate detection can not be performed. In this way, in conventional methods, it has been impossible to detect a single base mutation accurately as high speed.
Moreover, in a system for detecting a single base mutation accurately at high speed, due to the directionality for limiting the reaction conditions within suitable conditions for the sequence being detected (systemic optimization), in the case of detecting many types of target sequences, the measurement must be repeated for the number of the target sequences, causing a long experimental time as a whole. Accordingly, even if the detection time for each sequence is shortened, in the case where the experimental system is to detect a plurality of sequences, the total time taken becomes long.
Therefore, it is desirable to provide a detection method wherein mutations of a plurality of types of sequences in a target nucleic acid can be detected accurately at high speed even for a single base mutation, and a method wherein more types of mutations can be detected at one time.
The present inventors have considered and earnestly studied the various problems in the conventional techniques. Consequently, they have found that, by kinetically obtaining signal data, it becomes possible to obtain lots of more accurate and more reliable information on nucleic acid.
That is, the nucleic acid information detection method of the present invention is characterized in that, in a method wherein a target nucleic acid, and probes having a complementary sequence with at least a portion of the target nucleic acid sequence are contacted with each other in order to form hybrids between the target nucleic acid and the probes, and the amount of signal generated depending on the amount of hybrids is measured in order to detect the information on the target nucleic acid, the method includes kinetically obtaining data of the signal.
In the nucleic acid information detection method of the present invention, preferably obtaining the data of the signal is performed while changing a measurement condition or a detection condition of a reaction. More specifically while changing at least one of; a reaction temperature, a composition, a volume, and a type of reaction solution, particularly the reaction temperature.
The nucleic acid information detection method of the present invention is characterized in that in a method wherein a perfect matched probe having a perfect complementary sequence with respect to at least part of a target nucleic acid sequence, and one or more types of imperfectly matched probes having at least one part of the perfect matched probe mutated are contacted with the target nucleic acid in order to form hybrids between the target nucleic acid, and the perfect matched probe or the imperfect matched probes, so that the information on the target nucleic acid can be detected based on the difference in binding strength of the hybrids, said method includes kinetically obtaining data of the signal while changing continuously or stepwise the condition for measuring or detecting the signal from the hybrids.
In the nucleic acid information detection method, it is preferable to obtain the data of the signal while changing at least one of a reaction temperature, a composition, a volume, and a type of reaction solution, particularly the reaction temperature.
The change of the reaction temperature in the nucleic acid information detection method is preferably to increase the temperature from a temperature lower than a Tm value of the hybrids to be detected to a temperature higher than the Tm value, or a temperature cycle of one or more times comprising increase and decrease between such temperatures.
If the change of the reaction condition is to increase the temperature, the maximum value of the signal intensity and/or the amount of change in the signal intensity may be measured during the period.
The nucleic acid information detection method of the present invention may involve, in any of the aspects described above, continuously or stepwise increasing the temperature at which a signal from the hybrid is measured, measuring the change in the signal intensity from the hybrid between respective temperatures and maintaining the temperature when the amount of change starts to decrease.
The nucleic acid information detection method of the present invention is further characterized in that, in any of the aspects described above, in an identical system where identical reaction conditions are applicable, a plurality of types of probes are used in order to detect the information on a plurality of types of nucleic acids at the same time. More specifically, DNA microarray may be used.
Furthermore, the nucleic acid sequence mutation detection method of the present invention is characterized in that said probes are a plurality of types of probes having a plurality of types of sequences and the probes have mutually overlapped sequences.
The nucleic acid sequence mutation detection method of the present invention is characterized in that, in the above nucleic acid sequence mutation detection method, the plurality of types of probes comprise overlapping probes of; a perfect matched probe having a perfect complementary sequence at least partially with the target nucleic acid sequence, one or more types of imperfect matched probes having at least one partial mutation in the perfect matched probe, and the perfect matched probe and the imperfect matched probe having an extended or shortened base sequence on both ends or one end.
The nucleic acid sequence mutation detection method of the present invention is characterized in that, in the above nucleic acid sequence mutation detection method, it further comprises a step of comparing an analysis result of a probe group having a lower Tm value among the overlapping probes with an analysis result of a probe group having a higher Tm value, thereby deciding the nucleic acid information.
For the probes having the above sequences, probes (SEQ ID NO: 56 to 69) comprising 20 mer base sequences for analyzing K-ras codon12 may be used.
For the probes having the above sequences, probes (SEQ ID NO: 70 to 83) comprising 17 mer base sequences for analyzing K-ras codon12 may be used.
For the probes having the above sequences, probes (SEQ ID NO: 56 to 69) comprising 17mer base sequences for analyzing K-ras codon12 and probes (SEQ ID NO: 70 to 83) comprising 20 mer base sequences for analyzing K-ras codon12 may be used.
The nucleic acid information detection method of the present invention is characterized in that, in any of the aspects described above, said hybrid formation is performed by making a liquid sample including a target nucleic acid contact with a probe fixed onto a porous body.
In the nucleic acid information detection method, it is preferable to include a process for making the liquid sample reciprocate once or a plurality of times in the porous body.
In the nucleic acid information detection method of the present invention, the signal may be detected based on detection of a fluorescent marker.
In the nucleic acid information detection method of the present invention, the target nucleic acid may be any one of an oncogene, an intracellular drug resistance gene, a cell cycle regulator gene, and an apoptosis related gene, or a combination of these.
A nucleic acid information detection apparatus of present invention is characterized in comprising: a sample storage container for containing a sample including a target nucleic acid; a nucleic acid reaction carrier including a porous structure which can fix the nucleic acid and connected to the container; a driving device for mobilizing the sample under control, between the container and the nucleic acid reaction carrier without leaking; a temperature control device for controlling a reaction temperature on the reaction carrier; and a device for detecting a signal from a hybrid between a target nucleic acid and probes formed on the porous structure.
In the nucleic acid information detection apparatus of the present invention, the apparatus may further comprise: one or more solution storage containers for storing solutions connected to said nucleic acid reaction carrier and to contain types of solutions different to the sample solution including the target nucleic acid; and a device which appropriately mixes the various solutions contained in the solution storage containers and sends these to said nucleic acid reaction carrier.
In the nucleic acid information detection apparatus of the present invention, the target nucleic acid may be any one of an oncogene, an intracellular drug resistance gene, a cell cycle regulator gene, and a apoptosis related gene, or a combination of these.
(Definitions)
In the present description, the following words are used in the meanings defined hereunder.
A “nucleic acid” means any one of DNA, RNA, DNA including artificial nucleotide, or RNA including artificial nucleotide.
A ‘probe” means a nucleic acid fragment for examining a nucleic acid in a specimen using the hybridization reaction based on the complementarity of nucleic acid.
“A plurality types of probes” mean, in the case where there is one target gene, probes having a base sequence partially replaced or inserted with other base sequences, or defected in base sequences, and a plurality of probes using different base portions as trapped portions of the gene. In the case where there are a plurality of target genes, it means a plurality of probes of complementary nucleic acid sequences with respect to the respective genes.
A “hybrid” means a double strand formed between any one of the abovementioned nucleic acid, within the same type, or across different types, including DNA-DNA, DNA-RNA, RNA-RNA or the like.
“Information on nucleic acid” or “nucleic acid information” includes a nucleic acid sequence itself, the presence/absence of mutation in the nucleic acid sequence, a physical property which varies depending on the nucleic acid sequence (for example, Tm), and the amount of the nucleic acid (for example, number of mRNA copies).
“Signal” is a signal suitably detectable and measurable by appropriate means, including fluorescence, radioactivity, chemiluminescence, and the like.
“Kinetically perform” means not only to obtain data at a determined time point, but also to measure continuously or at respective intermittent time points.
Hereunder is a description of the structure, the implementation method, and the effects according to the embodiments of the present invention.
In a first embodiment, the nucleic acid information detection method of the present invention is characterized in that in a method wherein a target nucleic acid, and probes having a complementary sequence with at least a portion of the target nucleic acid sequence are contacted with each other in order to form hybrids between the target nucleic acid and the probes, and the amount of signal generated depending on the amount of hybrids is measured in order to detect the information on the target nucleic acid, the method includes kinetically obtaining the data of the signal.
The target nucleic acid may vary from DNA from a genome, mRNA extracted from cells, DNA amplified by PCR, plasmid DNA, and the like. It is not specifically limited unless it contains impurities which negatively affect the hybridization with the probes. However, in order to conduct a highly accurate experiment, it is preferable to use a sample highly purified by various already-known refining techniques in the technical field. Moreover, it is preferable that the sequence of the target nucleic acid being hybridized has been already known at least partially so as to compose the probes. The target nucleic acid can be labeled with a marker by mRNA reverse transcription or PCR.
The target nucleic acid and the probes can be contacted with each other by contacting solutions containing the target nucleic acid with probes immobilized on a carrier. The carrier can be one which immobilizes the nucleic acid so as not to inhibit a double strand formation with other nucleic acids.
Hybrids between the target nucleic acid and the probes may be formed under a condition determined based on the difference in binding strength depending on the sequence information of the portion being hybridized. However, for example, in the case where the condition being changed for measuring the signal is to change the temperature, the hybrids may be formed at the temperature determined based on the difference in Tm. At a temperature lower than Tm but close to Tm, although a specific double strand between the target nucleic acid and the probe is easily formed and non-specific double strand is not easily formed, it takes time for the hybrid formation. On the other hand, at a temperature further lower than the temperature at which such a specific double strand is easily formed, the reaction time for the double strand formation is shortened, however, the amount of the non-specific binding between the target nucleic acid and probes is increased. Therefore, the temperature setting for the hybridization reaction is determined in the balance between the required experimental accuracy and the required reaction time. Moreover, other reaction conditions are determined similarly considering the above.
The amount of the signal generated depending on the amount of hybrid is normally measured by using a marker previously labeled into a nucleic acid being the sample. However, for example, a sample nucleic acid labeled with fluorescence, a sample nucleic acid composed from dNTP containing a radioisotope, or the like may be used. Various nucleic acid labeling techniques (either already-known or newly developed) may be used for labeling. Furthermore, it is also possible to add a reagent which binds to the hybrid double strands, after the hybrid formation, and then detect the reagent in order to detect the hybrid.
Examples for detecting hybrids by fluorescence include, a method for using primers previously labeled with fluorescent marker when composing a sample nucleic acid by PCR, and a method for using chemical reaction or enzyme to label a sample nucleic acid with fluorescent markers. A generally-used labeling method may be used for labeling with fluorescent markers.
The signal data is not obtained at a fixed time point but is obtained kinetically. More specifically, the time for kinetically obtaining the data differs depending on the reaction conditions of the hybridization reaction. However, generally it ranges from several minutes to several hours in total after starting the hybridization reaction. It is of course also possible to obtain data for total times outside of this range if the reaction conditions suit.
As described above, the embodiment of the present invention is characterized in that the data is kinetically obtained, differing from the conventional method for statically obtaining data based on the fixed time point observation. Therefore, in the present invention, it becomes possible to chase the temporal change in the hybrid formation between a target nucleic acid and the probes. By chasing this temporal change, it becomes possible to obtain lots of more accurate and more consistent information on the target nucleic acid. That is, if the data is kinetically obtained, it becomes possible to monitor the process of the reacting state, and it becomes possible to precisely detect the progress of the reaction. Then, it becomes possible to obtain more accurate nucleic acid information from the whole process of the reaction.
In the above embodiment, it is also possible to obtain the data of the signal while changing the measurement condition or the detection condition of the reaction. More specifically while changing at least one of; the reaction temperature, the composition, the volume, and the type of reaction solution, more preferably the reaction temperature. For example, if the signal data is obtained while linking with the change of the reaction temperature, it becomes possible to obtain additional information such as the amount of reaction change of the hybridization reaction, the starting of the reaction, and the response state in the reaction system with respect to the reaction condition, which is more beneficial.
Here, “change the reaction temperature” means to change the temperature in a system for hybridizing between a target nucleic acid and probes. “Change the composition of the reaction solution” means to change the composition or pH of salt, additives, or the like in the reaction solution. “Change the volume of the reaction solution” means to change the volume by adding or taking out the reaction solution from the reaction system. “Change the type of reaction solution” means to change the type of solution such as aqueous solution, alcohol solution, or the like.
The hybrid formation between a target nucleic acid and the probes is performed under optimum conditions assumed based on the sequence information. Consequently, usually it is not known whether the assumed conditions are really the optimum condition. Therefore, in a conventional nucleic acid information detection method for measuring statically, if the data is obtained under non optimum conditions, there have been problems of the reliability of the data being insufficient, and irregularities in the data, and so on.
However, similarly to the embodiment of the present invention, by changing the reaction conditions linking with kinetically obtaining the data, it becomes possible to progress the hybridization reaction under a plurality of reaction conditions and measure this with the passage of time. Therefore, in this embodiment, the conventional problems of data reliability described above are solved.
In a case where hybridization formation is progressed under a certain condition, the hybridization reaction may be monitored by kinetically obtaining data. Accordingly, it becomes possible to detect the progress of the hybridization reaction more precisely. Therefore, in the present invention wherein signal data is kinetically obtained in this manner, it becomes possible to measure the rate of the reaction change at the initial stage of the reaction so as to predict the time point when the reaction terminates. This serves to shorten the reaction time for detecting nucleic acids. Furthermore, if it is expansively utilized, it is also possible to determine the optimum reaction conditions in hybridization formation by kinetically obtaining data so as to shift the reaction condition to be more optimum, or to make use of chasing the hybridization reaction in a broad range of reaction conditions.
Examples of the embodiment of the present invention include ones to compare the transcription amount or the number of copies of a specific gene in a sample, to detect a specific sequence (normal type or mutant type) in a nucleic acid sequence, to detect a gene polymorphism represented by SNPs, to type virus or bacteria, and the like.
In another embodiment, the nucleic acid information detection method of the present invention is characterized in that,
In this embodiment, it becomes possible to extremely accurately detect the progress of the hybridization reaction. For example, if the signal data is obtained while changing the reaction temperature continuously or stepwise, it also becomes possible to detect a single base mutation in a nucleic acid sequence only having a difference in one basepoint.
More specifically, for example, a target nucleic acid such as a PCR product is prepared, and then a perfect matched probe having a perfect complementary sequence with at least part of the natural sequence, and three different probes having different single base mutations at a same base point, are prepared. These four types of probes have respectively any one of A, T, G, C nucleotides at the same base point, and with other parts perfectly identical. Using these four types of probes, the hybridization with the target nucleic acid is measured while changing the reaction temperature. At a temperature near Tm of a hybrid of the target nucleic acid and the perfect matched probe, the rest of the hybrids of the target nucleic acid and the imperfect matched probes are unstable. Therefore, it is considered that the equilibrium is inclined to a state where the target nucleic acid and the probe are released. Consequently, at a temperature near Tm, the hybrid between the target nucleic acid and the perfect matched probe should generate the strongest signal. On the other hand, even if the hybrids between the target nucleic acid and the imperfect matched probes are present, the amount is extremely low, and hence the signal intensity is low. From such difference in the signal intensity, or presence/absence of the signal, it becomes possible to identify which base A, T, C, and G should be in the base point suspected to be mutated in the target nucleic acid, based on the signal intensity. In a conventional method, since the reaction temperature of hybridization is a fixed point, in the case where the reaction temperature is not optimum for the hybridization, it has been also considered that the imperfect matched probes might generate rather stronger signals. However, in the embodiment of the present invention, since the reaction conditions such as reaction temperature may be flexibly changed, it becomes possible to effectively avoid such false result.
In a conventional method, in order to detect and discriminate a target nucleic acid mutated only at a single base point in this manner, the reaction temperature must be increased to a temperature near Tm. Therefore a long reaction time has been required. However, in the method of the embodiment of the present invention, since the temperature can be controlled more flexibly, for example, the hybrid formation may be started at a temperature lower than Tm, and after obtaining enough hybrid amount, the reaction temperature may be increased continuously or stepwise. As a result, the hybrid reaction time can be shortened. Furthermore, by delicately controlling the temperature within a temperature range near Tm to exclude non specific hybrid formation, it becomes possible to measure more accurately.
In this embodiment of the present invention, if probes including mutations at a plurality of base points are appropriately prepared and used, it becomes possible to detect not only a single base mutation but also a plurality of base mutations at the same time.
In this manner, the abovementioned effects may be obtained by changing the reaction temperature linking with obtaining the signal data. However, similar effects may be obtained by changing, for example, the composition, the volume, or the type of reaction solution. More specifically, it is also possible to change the conditions of the hybridization reaction by changing the type of salt or the concentration of reaction solution in the hybridization reaction, or through pH gradient formation by using different buffer solutions. Such changes of the reaction solution composition affect the hybrid formation as well as the change of reaction temperature.
In the embodiment of the present invention, from the viewpoint of shortening the reaction time, the change of reaction temperature is preferably to increase the temperature. If the temperature is increased, particularly in the case where the temperature is increased starting from a temperature lower than the assumed Tm of the hybrid, even though non specific bindings are generated, the hybrid formation between a target nucleic acid and the probes is promoted. Moreover the non specific bindings may be eliminated by increasing the subsequent temperature, and hence it is considered to be more preferable. Therefore, if the temperature is increased, it becomes possible to obtain the effects such that not only the reaction time is shortened, but also the accuracy of the hybrid reaction is increased.
The change of the reaction temperature is preferably to increase the temperature from between a temperature lower than the Tm value to a temperature higher than Tm value. However, this may be further developed by making one or more temperature cycles comprising a temperature increase and a temperature decrease, from between a temperature lower than the Tm value to a temperature higher than Tm value, to thereby obtain a profile of the hybridization reaction. Accordingly it becomes possible to obtain further reliable data.
If increasing the reaction temperature, by measuring the maximum value of the increasing signal intensity, it becomes possible to qualitatively or quantitatively determine the Tm value of the hybrid. If increasing the temperature stepwise, an approximate Tm value may be determined. Therefore, if increasing the temperature in smaller steps (for example, at intervals of 1° C. or less) or continuously, a more accurate Tm value may be determined. The difference in the Tm value reflects the presence/absence or the difference of mutants in the respective nucleic acid sequences so that it becomes possible to detect mutants more precisely according to the embodiment of the present invention.
Moreover, in this embodiment, if not only detecting the signal from hybrids but also measuring the amount of signal change, it becomes possible to further increase the accuracy in determination.
In another preferred embodiment, the nucleic acid information detection method of the present invention is characterized in comprising the steps of continuously or stepwise increasing the temperature at which a signal from the hybrid is measured, measuring the change of the signal intensity from the hybrid, and maintaining the temperature when the amount of change starts to decrease.
According to this embodiment, it becomes possible to detect an unknown mutation more accurately. That is, if the change in the signal intensity is detected while the reaction temperature is being changed continuously or stepwise, so as to maintain the temperature when the amount of change in the signal intensity starts to decrease, it can be considered that, while the signal intensity from the hybrid having the higher Tm value is maintained or further increased, on the other hand the signal intensity from the hybrid having the same or lower Tm value is gradually decreased. Therefore, by using the difference in the Tm value, it becomes possible to more accurately discriminate the perfect matched hybrid and the imperfect matched hybrid, so that an unknown mutation may be identified based on the sequence of the perfect matched probe.
In another embodiment, the nucleic acid information detection method of the present invention is characterized in that, in an identical system where identical reaction conditions are applicable, a plurality of types of probes are used in order to detect the information on a plurality of types of nucleic acids at the same time. More specifically, DNA microarray is used.
At this time, hybrids between the target nucleic acid and the probes may be formed near the condition depending on the sequence of the portion being hybridized in the target nucleic acid. However, for example, in the case where the condition being changed for measuring the signal is to change the temperature, the hybrids may be formed kinetically in a temperature range determined based on the Tm of the sequence on the portion being hybridized in the target nucleic acid. That is, the signal may be kinetically measured in a temperature range from a temperature lower than the lowest Tm value among a plurality of types of probes, to a temperature higher than the highest Tm value among a plurality of types of probes. Hereunder is a description of the change in the hybridization state between the target nucleic acid and of probes when kinetically changing the temperature, with reference to drawings.
Next,
The signal data was not obtained at a fixed time point, but kinetically obtained as in the example shown in
The hybridization between a target nucleic acid and the probes is generally performed under the optimum condition assumed based on the sequence information. Consequently, usually it is not known whether the assumed conditions are really the optimum conditions. Therefore, in a conventional nucleic acid information detection method for measuring statically (non-kinetically) or at a fixed point, if the data is obtained under non optimum conditions, there have been problems of the reliability of the data being insufficient, and irregularities in the data, and so on.
However, in the present invention, by changing the reaction conditions linking with kinetically obtaining the data, it becomes possible to progress the hybridization reaction under a plurality of reaction conditions and measure this with the passage of time. Therefore, for example, even in a case of using a plurality of types of probes having different characteristic values peculiar to the sequence such as the Tm value, if the experiment is performed considering the range of the characteristic values when kinetically obtaining data, it becomes possible to detect a plurality of sequences in a same nucleic acid and a plurality of types of target nucleic acids in a same system approximately at the same time.
In this manner, in the embodiment of the present invention, data may be kinetically obtained, which is different from the conventional method for statically obtaining data based on the fixed time point observation, and a plurality of probes may be used. As a result, it becomes possible to detect a plurality of sequences having different Tm values in the same system accurately at high speed.
An embodiment of the nucleic acid sequence mutation detection method of the present invention is characterized in that the probes are a plurality of types of probes having a plurality of types of sequences and the probes have mutually overlapped sequences.
In the method of this embodiment, identical sequences in a target nucleic acid are detected by a plurality of types of probes. All of these plurality of types of probes share the recognition sequence in the target nucleic acid. That is, they are overlapping in the recognition sequence and are respectively hybridized with bases which mutually differ at least at one base point.
By using such a plurality of types of probes with respect to identical target nucleic acids, it becomes possible to detect the mutation more accurately. In some cases, a probe may have a higher-order structure depending on, the sequence, its length, or the usage condition, causing a fault in the hybridization with the target nucleic acid. If such a probe is only used to detect the target nucleic acid, there may be problems of false positive or false negative. However, if a plurality of types of probes are used, the probability of normal hybridization between at least one type of probe and the target nucleic acid can be expected to be higher. Therefore, it becomes possible to increase the reliability of the detection results.
More specifically, for said probes having a plurality of types of sequences, if using the overlapping probes such as; a perfect matched probe having a perfect complementary sequence at least partially with the target nucleic acid sequence, one or more types of imperfect matched probes having at least one partial mutation in the perfect matched probe, and the perfect matched probe or the imperfect matched probe having an extended or shortened base sequence on both ends or one end, more accurate measurement (determination of mutation) becomes possible.
Preferably, the difference in the Tm values between the short probes and the long probes is arranged in a range from 5° C. to 10° C. The measurement is kinetically performed using these probes in the same system. The reason is that, if the difference in the Tm value between the probes is from 5° C. to 10° C., the signal from the perfect matched spot with the shorter probe may be expected even at a temperature near the Tm of the longer probe.
A DNA microarray used in the nucleic acid information detection method of the present invention is not specifically limited, and a normal microarray may be used. Examples of usable microarray include a plurality of microarrays provided on a slide tip, that is a plurality of probe spots in respective microarrays. Here, probe spot denotes a minimum unit for fixing a probe.
The size of the slide tip is normally in a range of 0.5 to 20.0 cm×0.5 to 20.0 cm×0.01 to 1.0 cm. The size of the microarray is normally in a range of 3.0 mm2 to 16 cm2. Furthermore, the probe spot may be approximately circular, approximately rectangular, or polygonal, and the diameter or one side length is normally about several hundreds μm. The number of probe spots in one microarray is normally in a range from 10 to 1000. It is of course possible to use a DNA microarray outside of the range defined above according to experimental conditions.
If using the DNA microarray, it is possible to apply the same conditions to all the probe spots. If using a plurality of probes, it is possible to detect the information of a plurality of nucleic acids at the same time.
Due to the first characteristic of the present invention wherein a signal may be kinetically obtained, it is also of course possible in this embodiment using the DNA microarray, to solve the problem of longer reaction time of the hybridization, which has been a problem in conventional static measurements which do not measure with the passage of time. That is, as described above, the hybridization reaction time may be shortened by starting the hybridization at a temperature lower than the Tm and then serially increasing the reaction temperature.
In a preferred embodiment, the nucleic acid information detection method of the present invention is characterized in that the hybridization between a target nucleic acid and the probes is performed by making a liquid sample including a target nucleic acid contact with a probe fixed onto a porous body.
In this embodiment, the probe is fixed onto a carrier having a porous structure, which is different from a conventional substrate surface. Therefore, the surface area being fixed with the nucleic acid is rapidly increased, causing an increase in the speed and the sensitivity for detecting the nucleic acid information. The porous body used here means any porous body appropriate for fixing the nucleic acid, and is not specifically limited. However, examples includes aluminum oxide film manufactured by anodization, for example, Anodisc (trade name) made by Whatman Co. Ltd.
In another preferable embodiment of the present invention, it is preferable to include performing a process for making a liquid sample including a target nucleic acid, reciprocate once or a plurality of times in said porous body with the respective signal measurement conditions being changed. In this manner, by making the liquid sample including the target nucleic acid reciprocate in the porous body, the probes fixed onto the porous body and the target nucleic acid are mutually contacted more frequently, contributing to further progressing of the reaction and a further increase the sensitivity. Here, the reaction conditions such as reaction temperature are preferably changed linked with the reciprocation process inside the porous body of the sample.
In order to make the sample reciprocate once or a plurality of times in the porous body in this manner, it is necessary to provide a device for forcibly controlling the sample mobilization in and out of the porous part in a reaction carrier for performing the hybridization reaction. However, if the sample is made to reciprocate under a fixed time control using this device, it becomes possible to control the temperature in the reaction system more accurately, causing an advantage of increasing the detection accuracy and obtaining more sensitive data.
In all of the embodiments of the nucleic acid information detection method of the present invention, it is possible to detect the hybrid based on the fluorescent marker. The type of the fluorescent marker used includes FITC, rhodamine, Cy3, Cy5, Texas Red, or the like. However, other types may be used.
The target nucleic acids detectable by the nucleic acid information detection method of the present invention are not specifically limited. However, non-specific examples include the oncogene, the intracellular drug resistance gene, the cell cycle regulator gene, the apoptosis related gene, and the like.
The present invention provides a nucleic acid information analyzer which can be used particularly in the abovementioned nucleic acid information detection method. The analyzer of the present invention is characterized in including: a sample storage vessel for containing a sample including a target nucleic acid; a nucleic acid reaction carrier including a porous structure which can fix the nucleic acid and connected to the vessel; a driving device for mobilizing the sample under control between the vessel and the nucleic acid reaction carrier without leaking; a device for controlling the reaction temperature on the reaction carrier; and a device for detecting a signal from the hybrid between the target nucleic acid and probes formed on the porous structure. The scheme of an embodiment of this device is as shown in
Here, the sample storage vessel (not shown in
In one aspect of the nucleic acid information analyzer of the present invention, the apparatus preferably further includes one or more solution storage vessels connected to said nucleic acid reaction carrier for storing different types of solutions from the sample solution including the target nucleic acid, and a device which appropriately mixes the various solutions contained in the solution storage vessel and sends these to said nucleic acid reaction carrier.
In this device, by providing one or more solution storage vessels connected to the nucleic acid reaction carrier for storing different types of solutions from the sample solution including the target nucleic acid, it becomes possible to progress the hybridization reaction while changing the reaction conditions rather than the reaction temperature, such as the composition or pH of salt, additives, or the like in the reaction solution. Moreover, if there is a device which mixes the plurality of solutions contained in the solution storage vessel and sends these to said nucleic acid reaction carrier, it is possible to provide a gradient of the salt concentration or pH in order to change the reaction conditions.
The type of nucleic acid which can be analyzed in the nucleic acid information analyzer of the present invention, is not specifically limited. However, examples of nonrestrictive target nucleic acid include the oncogen, the intracellular drug resistance gene, the cell cycle regulator gene, the apoptosis related gene, and the like.
Method
Four types of oligo DNA represented by SEQ ID NO:1 to NO:4 were prepared for the probes and solid-phased onto an aluminum oxide substrate manufactured by anodization. For verifying the reaction, the hybridization reaction was performed using an oligo DNA represented by SEQ ID NO:5 as a sample. The 3′ terminus of this oligo DNA was labeled with FITC. The oligo DNA (SEQ ID NO:5) was complementary to the probe (SEQ ID NO:1). The probes (SEQ ID NO:2 to NO:4) had single base mutations on the middle base with respect to the complementary strand of the oligo DNA (SEQ ID NO:5).
The oligo DNA sample was diluted with a 1×SSPE buffer solution to make a 10 nM concentration, and then hybridization reactions were performed with the respective probes on the substrate. The temperature of the nucleic acid reaction carrier was controlled linked with the mobilization of the solutions to the substrate being a nucleic acid reaction carrier. The specific conditions were as follows.
Cycle Frequency Temperature
The respective cycle took 1 minute for reciprocating the solution between the sample storage vessel and the nucleic acid reaction carrier.
Results
The results are shown in
Method
An experiment was performed to detect a mutation in the p53 gene derived from a cell line. The cell line from the human lymphoblastic glomus tumor WTK1 was used for the sample. It has been confirmed that this cell line has a mutation from ATG to ATA at the codon 273 on the exon 7 of the p53 gene. The 98 bp including this mutation portion was amplified by PCR. In the PCR, 5′ terminus of the primer was labeled with FITC in order to label the amplified product with fluorescence. The amplified DNA was dissolved in water and denatured by heat at 95° C. for 10 min. It was quickly cooled after 10 min, and dissolved in a buffer solution for hybridization in order to make single strand DNA. The amplified sequence was represented by SEQ ID NO:6, and the detected sequence was represented by SEQ ID NO:7.
On the other hand, for detecting the mutation, a plurality of probes having the assumed mutation portion in the middle were prepared and solid-phased on a substrate having a porous structure. The solid-phased probes are represented by SEQ ID NO:8 to NO:11. Here the probe (SEQ ID NO:10) is complementary to SEQ ID NO:7. The hybridization reaction using these samples was performed linked with changing the temperature, and the sample solutions were further put into and taken out from the nucleic acid reaction carrier having the porous structure (drive control). Among these reactions, the results for the signal information derived from the hybrids formed by probes (SEQ ID NO:10 and NO:11) are shown in
Results
The difference in the signal intensity ratio between the perfect matched probe and the imperfect matched probe including the single base mismatch with the perfect match, was increased as the temperature was increased. Therefore, it was confirmed that a single base mutation undetectable at room temperature, could be identified by controlling the temperature.
Method
A method for determining the presence/absence of mutation in the neighborhood of Codon12 in K-Ras oncogene is shown. On a microarray, seven types of K-Ras oncogene probes having mutations inserted in the Codon12 (SEQ ID NO:15-21) were spotted in the arrangement shown in
1) Preparation of Fluorescence Labeled Samples:
The target gene set was amplified and labeled with fluorescence. The samples used at this time are not specifically limited as long as they are a part of the human body. However, a tissue section sampled from cancerous tissue, a cellular section obtained from a microdissection method, a cultured cell, or the like are mainly used. In the present embodiment, the human K-Ras gene template set (Cat#7242) available from Takara Shuzo Co., Ltd. was used. With respect to seven types of templates, the genes were amplified using the PCR kit (Cat#7112) which can amplify the K-Ras gene Codon12 in the same manner. At this time, anti-sense primers having 5′ terminus labeled with FITC fluorescent marker as represented by SEQ ID NO:12 and NO:13 were used. After the PCR, electrophoresis was performed using an agarose gel formed from 3% NuSieve(FMC) to confirm the amplified products. The amplified samples obtained were repeatedly treated with the Asymetrix PCR method in order to enhance the fluorescent labeling. In the Asymetrix PCR method, the composition and the temperature cycle from the first PCR method was used, with the sense strand primer removed. 3M ammonium acetate (Wako) was added to the PCR products for making 10% (V/V), and ethanol was further added for making 70% concentration. The PCR products were ventilated the whole day and night at 20° C., and then precipitated by centrifugation at 12,000 rpm×2 min. The precipitation was washed with 70% ethanol twice, and then dehydrated by a SpeedVac (Savant Co. Ltd,.)
2) Preparation of Microarray:
Regarding the base sequence of K-Ras gene, referring to a database such as the GenBank, probes (SEQ ID NO:15 to 21) were solid-phased onto the microarray. In order to make the layout shown in
3) Real Time Hybridization Monitoring:
Pure water was added to the dehydrated ethanol precipitate so that it dissolved well. in order to make the fluorescence labeled samples. For the solutions for hybridization, the samples were suspended in a 3×SSPE (sodium phosphate buffer solution, refer to a technical data: “DNA Microarray and the Latest PCR Method”, Cell Technology additional volume Genome Science Series 1, published by Shujun-Sha), and 10% (V/V) ExpressHyb (Clontech Co. Ltd.,) in order to make a 10% solution. The hybridization was analyzed by an experimental system where the BX-51TFR made by Olympus Co. Ltd., was connected with a cooled CCD camera. This experimental system was designed to enable automation of driving the solution around the reaction filter, controlling the temperature, and recording the image of the fluorescent spots. A 50 μL of reaction solution was added to the reaction part in the exclusive chamber installed with the microarray of 6 mm diameter, and then the solution was driven, the temperature changed, and the fluorescent image taken.
The experimental results obtained by using fluorescence labeled samples derived from the template are shown. A PCR product having a normal K-Ras gene sequence was used as the control sample.
4) Analysis:
The obtained images were analyzed using an analysis software which was programmed for detecting mutations. Based on the information on the fluorescent images obtained as the experimental results, the Tm value and the degree of affinity between the target nucleic acid and the probes can be determined. As a result, from the 3) experiment, it was found that the degree of hybridization between the probe of the sample K-Ras codon 12 and the target nucleic acid varies depending on environmental factors, and the mismatched probes may have rather higher affinity than the perfect matched probe in some temperature conditions. Moreover, it can be intuitively understood from the images that the affinity between the probes and the sample differs depending on the mismatched base sequence. In this manner, it was shown that the real time affinity analysis and the hybridization monitoring between a sample and a plurality of probes may be performed in one reaction array. Using this experimental system, it can be expected to determine the actual Tm value and to obtain new findings on the stability of DNA double strands. Actually, by analyzing the affinity to probes having various mutations, or by measuring the transcription efficiency of the promoter part, it may be utilized for analyzing the hybridization mechanism more accurately.
An experimental step performed based on the invention for examining the p53 tumor suppresser gene and the K-Ras oncogene at the same time is described hereunder. The experimental step comprises four steps of 1) preparation of fluorescence labeled samples, 2) preparation of the microarray, 3) hybridization with respect to the DNA tip, 4) data analysis.
1) Preparation of Fluorescence Labeled Samples:
The target gene set was amplified and labeled with fluorescence. The samples used at this time are not specifically limited as long as they are a part of the human body. However, a tissue section sampled from cancerous tissue, a cellular section obtained from a microdissection method, a cultured cell, or the like are mainly used. In the example, squamous cells collected from a normal human intraoral were used. The cell fragment suspension was obtained by gargling with saline solution dissolved with 1M NaCl several times, and then gargling with PBS one more time. The cell suspension was precipitated by centrifugation at 2,000 rpm×10 min, and suspended a cell lysate into PBS adjusted to 0.2 μg/mL Protease K(Wako) and 0.1% SDS (sodium dodecyl sulfate). The sample contained cell lysate was reacted for 30 min at 37° C., and then heat-treated for 30 min at 95° C. so as to deactivate the Protease K. The reacted sample was moved into a 1.5 mL Eppendorf tube, and centrifugal separation at 12,000×2 min was carried out so as to precipitate the non-dissolved cell fragment. This centrifugal supernatant was used as the nucleic acid extract. The nucleic acid extract obtained was suspended into a PCR master mix, and 50 cycles of PCR reaction were carried out. The master mix was formulated using the PCR Core kit 1 of Takara Shuzo Co., Ltd. and the primer pairs shown in SEQ ID NO:22 to 23 and SEQ ID NO:24 to 25 according to the instructions of the kit After the PCR, electrophoresis was performed using an agarose gel formed from 3% NuSieve(FMC) to confirm the amplified products. The amplified samples obtained were repeatedly treated with an Asymetrix PCR method in order to enhance the fluorescent labeling of the nucleic acid. The Asymetrix PCR method comprises the composition and the temperature cycle from the first PCR method with the sense strand primer removed. 10% 3M ammonium acetate (Wako) was added to the sample treated with Asymetrix PCR, and ethanol was further added for making 70% concentration. The PCR products were ventilated the whole day and night at 20° C., and then precipitated by centrifugation at 12,000 rpm×2 min. The precipitation was washed with 70% ethanol twice, and then dehydrated by a SpeedVac (Savant Co. Ltd,).
2) Preparation of Microarray:
For the base sequences of the probes used for the detection tips of the P53 gene and K-Ras gene a database such as the GenBank was referenced. In order to make the layout shown in
3) Hybridization:
50 μl of pure water was added to the dehydrated ethanol precipitate so that it dissolved well in order to make the fluorescence labeled samples. For the solutions for hybridization, the samples were suspended in a 3×SSPE (sodium phosphate buffer solution, refer to technical data: “DNA Microarray and the Latest PCR Method”, Cell Technology additional volume Genome Science Series 1, published by Shujun-Sha), and 10% (V/V) ExpressHyb (Clontech Co. Ltd.,) in order to make a 10% solution. The hybridization was analyzed by an experimental system where the BX-51TFR made by Olympus Co. Ltd., was connected with a cooled CCD camera. This experimental system was designed to enable the automation of driving the solution around the reaction filter, controlling the temperature, and recording the image of the fluorescent spots.
Analysis Results
The experimental results obtained by using samples from a normal human are partly shown. The time-varying fluorescent spots of the DNA tips obtained by the experimental equipment are shown in
4) Analysis:
The obtained images were analyzed using an analysis software which was programmed for detecting mutations. Based on the base sequence of the probe spotted on the microarray used and the information on the images obtained as the experimental results, the analysis software can automatically determine the base sequence of the samples. By analyzing the images obtained from the results of the 3) experiment, it became clear that the base sequence of P53exon7 of the sample was as represented by SEQ ID NO:54. Moreover, it became clear that the base sequence including K-RasCodon12 was as represented by SEQ ID NO:55. From this it was seen that the base sequences of both P53 and K-Ras samples were normal. In this manner, it was shown that the sequences of two genes can be promptly analyzed in one reaction array.
Next is an example of a case where the method of the present invention was applied for analyzing the gene expression. The mRNA respectively extracted from a normal tissue and a pathological tissue were labeled with fluorescent marker by reverse transcription reaction to compose single strand cDNAs. The microarray of the samples was set in the apparatus shown in
In order to verify the system of the present invention, hereunder is an outline of the method using a plurality of types of probes having different Tm values made by changing the length of the sequences, in order to determine the presence/absence of mutations in K-ras oncogene Codon12.
On a microarray, sense strands of seven types of 20mer K-ras oncogene probes having mutations inserted in the K-ras Codon12 sequence (SEQ ID NO:56 to 62), and anti-sense strands thereof (SEQ ID NO: 63 to 69), and sense strands of seven types of 17 mer K-ras oncogene probes such that single or dibasic were deleted at both terminuses in the above K-ras oncogene probes (SEQ ID NO:70 to 76), and anti-sense strands (SEQ ID NO:77-83) were spotted in an arrangement shown in
The Tm value of the 20 mer probe group was from 56° C. to 58° C., while the Tm value of the 17 mer probe group was from 47° C. to 49° C., being lower than that of the 20 mer probes. The respective probes on this microarray and the fluorescence labeled K-ras oncogene (amplified by PCR using primers which amplify the K-ras Codon12) were hybridized. The fluorescent intensity from the hybrid was measured in an experimental system where the BX-52TRF made by Olympus Co. Ltd., was connected with a cooled CCD camera.
The experiment shown in outline above comprises four main steps of 1) preparation of fluorescence labeled samples, 2) preparation of the microarray, 3) hybridization of the samples with respect to the microarray, and 4) data analysis. Hereunder is a description of the details of the respective steps.
1) Preparation of Fluorescence Labeled Samples:
The target gene set was amplified and labeled with fluorescence. Examples of the target sample sources include for example a part of human body. However, these more specifically include a tissue section sampled from cancerous tissue, a cellular section obtained from a microdissection method, a cultured cell, or the like. In the present embodiment, the human K-ras gene template set (made by Takara Shuzo Co., Ltd., Cat#7242) was used. With respect to seven types of templates, the genes were amplified using the PCR kit (made by Takara Shuzo Co., Ltd., Cat#7112) which can amplify the K-ras gene Codon12 in the same manner. For the amplification, primers having 5′ terminuses labeled with FITC fluorescent marker were used. After the PCR, electrophoresis was performed using an agarose gel formed from 3% NuSieve(FMC) to confirm the amplified products.
2) Preparation of Microarray:
For the base sequence of K-ras oncogene, a database such as the GenBank was referenced, and probes (SEQ ID NO:56 to 62, 63 to 69, 70 to 76, 77 to 83) were solid-phased onto the microarray. In order to make the layout shown in
3) Hybridization:
For the solutions for hybridization, 40 μl of samples after the PCR were suspended into 10 μl of 1.25×SSPE (sodium phosphate buffer solution, refer to technical data: “DNA Microarray and the Latest PCR Method”, Cell Technology additional volume Genome Science Series 1, published by Shujun-Sha), in order to make hybridization samples. The hybridization was analyzed by an experimental system where the BX-52TRF made by Olympus Co. Ltd., was connected with a cooled CCD camera. This experimental system was designed to enable the automation of driving the solution around the reaction filter, controlling the temperature, and recording the image of the fluorescent spots. A 50 μL of reaction solution was added to the reaction part in the exclusive chamber installed with the microarray of 6 mm diameter, and then the solution was driven, the temperature changed, and the fluorescent image taken.
The experimental results obtained by using fluorescence labeled samples derived from the template are shown. A PCR product having a normal K-ras oncogene sequence was used as the control sample.
4) Data Analysis:
The obtained images were analyzed using an analysis software which was programmed for detecting mutations. Based on the information on the fluorescent images obtained as the experimental results, the Tm value and the degree of affinity between the target nucleic acid and the probes can be determined. As a result, from the 3) experiment, it was found that the degree of hybridization between the probe of the sample K-ras Codon 12 and the target nucleic acid varies depending on environmental factors, and the mismatched probes may have rather higher affinity than the perfect matched probe in some temperature conditions. Moreover, it can be intuitively understood from the images that the affinity between the probes and the sample differs depending on the mismatched base sequence. In this manner, it was shown that the real time affinity analysis and the hybridization monitoring between a sample and a plurality of probes may be performed in one reaction array. Using this experimental system, it can be expected to determine the actual Tm value and to obtain new findings on the stability of DNA double strands. Actually, by analyzing the affinity to probes having various mutations, or by measuring the translation efficiency of the promoter part, it can be utilized for analyzing the hybridization mechanism more accurately.
If the method and the apparatus of the present invention is used, it becomes possible to obtain lots of more accurate and more reliable information on nucleic acid. Furthermore, it becomes possible to detect a plurality of different sequences in the same system accurately at high speed.
Number | Date | Country | Kind |
---|---|---|---|
2002-17272 | Jan 2002 | JP | national |
2002-247023 | Aug 2002 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP03/00668 | 1/24/2003 | WO |