The present application is directed to a method and apparatus for detecting overlapped substrates being moved past an optical sensor. In particular, the method and apparatus include a passage for transmitting single substrates past an optical sensor designed to detect the presence of overlapped substrates in such a series of single substrates.
In many document handling systems, documents such as banknotes, cheques, cards, vouchers and the like, are transported one by one along a transport path for analysis and processing. The document handling system includes sensors to identify information provided on the document and to supply this information to a processing means for determining how the document is to be processed.
An undesirable situation may occur when two or more documents are fed to the system at the same time. This situation is known as a double feed document condition and it is desirable to detect this condition and reject or reprocess the documents to eliminate the condition.
There are a number of known mechanical and optical systems for detecting the double feed document condition. One known mechanical technique effectively uses mechanical means to contact the substrates and determine a thickness or change in thickness thereof. Examples of these techniques are shown in U.S. Pat. No. 3,679,202; U.S. Pat. No. 4,550,252 and U.S. Pat. No. 5,704,246. Basically, the thickness of the documents in double feed document condition is greater than some predetermined standard and an alarm or stop signal is produced. This known technique is difficult to use for thin documents and/or for documents having a variable thickness as is often the case with used banknotes. For example, with used banknotes the banknotes May be creased or laminated with scotch tape for example, making the thickness determination more difficult. Furthermore, with these type of mechanical thickness based structures it is difficult to maintain the sensitivity of the measurement arrangement due to vibration, wear, dirt variation in banknote condition and other factors which will occur during prolonged use of the device.
Optical double detection systems such as disclosed in U.S. Pat. No. 5,341,408; U.S. Pat. No. 5,502,312 and U.S. Pat. No. 5,581,354 use at least one light emitter and a corresponding light detector positioned on the opposite side of the passage through which the documents are transported. The light emitter generates a beam of light which passes through the document in the passageway and the transmitted light is detected by the light detector. The light detector produces an output signal which is a function of the light absorption and light scattering of the document between the light emitter and the light detector. The output signal is calibrated by various means to a normal condition against which the actual received conditions are compared. When a double feed document condition occurs the double thickness of the document significantly reduces the received light and a sudden decreases in the signal is used to determine a double feed document condition.
These prior art double feed detection systems are sensitive to variations caused by different paper, varying surface color patterns and creases and folds in the substrate. Variation will also occur due to deterioration of the circuitry, voltage variation over time and substrate placement in the passageway. Due to these variations the systems require ongoing adjustment of the preset signals of the light emitter and the light detector. Unfortunately, these systems have low dynamic range. Basically the systems are measuring the amount of light which is transmitted through the document or substrate and the amount of light can significantly vary due to black marks or logos provided on the document, the number of folds or creases in the paper and/or the position of the document within the passageway. Furthermore, worn and dirty single documents may be more opaque than a double condition of two new documents.
U.S. Pat. No. 5,222,729 discloses a method and apparatus for detecting superimposed sheets of paper. This system utilizes cooperating upper and lower laser emitter and photo receiver pairs that are positioned above and below the sheet transport path. Voltages that are representative of the positions of the upper and lower surfaces of the sheet are compared to assigned values. If the actual values significantly exceed the assigned values, a superimposed sheet condition signal is produced and appropriate corrective action can be taken. This technique is complicated and requires substantial processing. It is difficult to use it for crumpled and blazed documents.
The simple detection of has been difficult to achieve particularly in a device which can be quickly calibrated without substantial and time consuming operator involvement. Also it has been difficult to achieve a detection arrangement which is reliable and accurately identifies double feed document conditions.
The present invention seeks to overcome a number of these deficiencies.
A method of detecting the occurrence of overlapped substrates in a succession of single substrates being moved past an optical sensor comprises exposing each substrate as it is moved past the optical senor to culminated coherent light where a portion of the light is transmitted through the substrate and received by a photo detector which produces an output signal where the output signal where the output signal has a low frequency component proportional to an average transmitted light through the substrate and a high frequency speckle flicker component produced by the rough surface and movement of the substrate past the optical sensor. The method includes monitoring the high frequency speckle flicker component for a sudden drop in the level thereof reflective of the reduced high frequency component created when overlapped substrates move past the optical sensor.
According to an aspect of the invention the method includes using the optical sensor to determine a first adaptive threshold as a predetermined amount of the average signal from the photo detector when no document is present and using the first adaptive threshold as a reference to determine a change in signal indicative of a substrate being moved past the optical sensor.
In yet a further aspect of the invention the method includes setting a second adaptive threshold as a predetermined amount of the high frequency speckle flicker component during transport of a single substrate past the optical sensor.
In yet a further aspect of the invention the method includes automatic changeover from the first adaptive threshold to the second adaptive threshold for each substrate as it is moved past the optical sensor.
In yet a further aspect of the invention the method includes using a photo detector having a narrow aperture to produce the output signal.
In yet a further aspect of the invention the method includes amplifying the output signal prior to monitoring the high frequency speckle flicker component.
The above as well as other advantages and features of the present invention will be described in greater detail according to the preferred embodiments of the present invention in which;
The present invention recognizes that the high frequency speckle component from an optical sensor is greatly effected when two banknotes are placed between the optical sensor. Basically, a laser or other light source produces a collimated light exposing one side of a banknote as it is moved past the optical sensor. A photo detector is provided on the opposite side of the passageway and receives light which is transmitted through the document. The surface of the banknote or other substrates are relatively rough and produce constructive light interference and destructive light interference. This would be true of the light reflected from the banknote and it is also true of the light which is transmitted through the banknote. Basically the rough surface of the substrate produces this interference. Speckle flicker is produced due to the constructive interference and this constructive interference effectively appears to move due to the movement of the banknote. Analysis of the output signal received from the photo detector produces a low frequency component due to of the transmitted light as well as a high frequency speckle flicker component produced by the constructive interference with the surface of the banknote or other document. When two substrates are present as illustrated in
The banknote moving between the laser and the photo detector causes the output signal of the photo detector to have a steady component (proportional for average banknote transmission) and alternating component (proportional for speckle flicker). The upper frequency band (speckle flicker component) of said alternating component again is amplified by upper-frequency amplifier 14 and detected by linear detector 15. Typical the detector output speckle flicker signal lies in the range 0, 0.8 to 3 V depending on banknote type and condition. A predetermined fraction (typically ¼) of the signal (generally set by resistors R4, R5) is used as second adaptive threshold.
Changeover time from first threshold to second adaptive threshold is dependent on the characteristic time of R4C4. When detector 15 output signal strongly drops below the first or second threshold (it is typical for doubled banknote) comparator 17 produces inhibiting negative pulse. The delay circuit R6C5 and comparator 18 is used to inhibiting pulse time exceeding the transport mechanism stop and/or crash-back time. In order to eliminate error signals from banknote with wide opaque places (like blazed hologram on EURO and new 100CD) the increase of detector 15 integration time is provided by connection additional capacity C3 with key cell 16.
The present invention is described herein in the context of a double banknote checking application as for bill feeder, bill dispenser or other bills handling device, in a bank, postal facility, supermarket, casino or transportation facility. However, it is appreciated that the embodiment shown and described herein may also be useful for checking other doubled substrates, particularly flat, substrates such as cards, films, paper sheets and paintings. The checking device may be stationary or portable, battery powered or powered by connection to an electric outlet.
This arrangement is particularly suitable for banknote validators that include an inlet for receiving a stack of banknotes.
It is appreciated that various features of the invention, which are, for clarity, described in the context of single embodiment, may also be provided in combination in series or another embodiments. Conversely, various features of the invention which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable combination.
Although various preferred embodiments of the present invention have been described in detail, it will be appreciated by those skilled in the art that variations may be made without departing from the spirit of the invention or the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2,510,943 | Jun 2005 | CA | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CA2006/001054 | 6/28/2006 | WO | 00 | 11/12/2009 |