This application claims the benefit of Korean Patent Application No. 10-2019-0104704 filed on Aug. 26, 2019. The contents of this application are hereby incorporated by reference in its entirety.
The present disclosure relates to an autonomous driving system and a method and apparatus for determining an error of a vehicle and controlling the same.
Vehicles may be classified into an internal combustion engine vehicle, an external composition engine vehicle, a gas turbine vehicle, an electric vehicle, etc. According to types of motors used therefor.
An autonomous vehicle refers to a self-driving vehicle that may travel without an operation of a driver or a passenger, and automated vehicle & highway systems refer to systems that monitor and control the autonomous vehicle such that the autonomous vehicle may perform self-driving.
The present disclosure provides a method and apparatus for determining an error of a vehicle in an autonomous driving system.
The present disclosure also provides an associated operation with an RSU or other vehicles in order to determine an error of a vehicle in an autonomous driving system.
The technical problems to be achieved by the present disclosure are not limited to the above-mentioned technical problems, and other technical problems that are not mentioned above will be clearly understood by a person skilled in the art to which the present disclosure pertains from the following detailed description.
In an aspect, a method for determining an error in an autonomous driving system includes: determining a location of a road side unit (RSU) on the basis of map information; determining, on the basis of the location of the RSU, that a vehicle enters an area in which it is possible to receive, from the RSU, a diagnostic message for determining whether a communication module of the vehicle operates normally; restarting, if the diagnostic message is not received, the communication module to resolve an error that the communication module fails to receive the diagnostic message; and receiving, from the RSU, a diagnostic message for determining whether the communication module operates normally.
The method may further include: generating a response message as a response to the diagnostic message and transmitting the response message to the RSU; and receiving a normal message indicating that the communication module operates normally on the basis of the response message from the RSU.
The method may further include: transmitting a V2X message including information of the vehicle to the RSU; wherein the RSU may transmit the information of the vehicle to a server in order to share the error of the vehicle with other vehicles.
The method may further include: displaying that the communication module has an error on a display when a driving mode of the vehicle is a normal driving mode, if the diagnostic message is not received after the communication module is restarted.
The method may further include: disabling a module which uses a V2X message when a driving mode of the vehicle is an autonomous driving mode, if the diagnostic message is not received after the communication module is restarted.
The method may further include: displaying on the display that it is impossible to drive using the V2X message.
The method may further include: switching to a driving mode using a sensor of the vehicle.
In another aspect, a method for determining an error in an autonomous driving system includes: receiving a diagnostic message indicating that there is an error in a V2X message transmitted by a vehicle; and restarting a module generating the V2X message to resolve the error; and transmitting the V2X message in a broadcast manner, wherein the V2X message includes state information of the vehicle and the error is based on external monitoring information related to the vehicle.
The restarting may be performed if the diagnostic message is generated from two or more vehicles or from a road side unit (RSU).
The diagnostic message may include a data item related to the state information of the vehicle different from the monitoring information of the V2X message.
The method may further include: stopping the operation of transmitting the V2X message, if the diagnostic message is received after the module generating the V2X message is restarted.
The method may further include: displaying the data item on a display.
The V2X message may include information of the vehicle, and if the diagnostic message is generated by the RSU, the RSU may transmit the information of the vehicle to a server in order to share the error of the vehicle with other vehicles.
In another aspect, a vehicle for determining an error in an autonomous driving system includes: a communication module; a display; a sensing unit; a memory; and a processor controlling the communication module, the display, the sensing unit, and the memory, wherein the processor determines a location of a road side unit (RSU) on the basis of map information obtained from the memory, determines, on the basis of the location of the RSU, that the vehicle enters an area in which it is possible to receive, from the RSU, a diagnostic message for determining whether a communication module of the vehicle operates normally, restarts, if the diagnostic message is not received, the communication module to resolve an error that the communication module fails to receive the diagnostic message, and receives, from the RSU, a diagnostic message for determining whether the communication module operates normally through the communication module.
Hereinafter, embodiments of the disclosure will be described in detail with reference to the attached drawings. The same or similar components are given the same reference numbers and redundant description thereof is omitted. The suffixes “module” and “unit” of elements herein are used for convenience of description and thus may be used interchangeably and do not have any distinguishable meanings or functions. Further, in the following description, if a detailed description of known techniques associated with the present disclosure would unnecessarily obscure the gist of the present disclosure, detailed description thereof will be omitted. In addition, the attached drawings are provided for easy understanding of embodiments of the disclosure and do not limit technical spirits of the disclosure, and the embodiments should be construed as including all modifications, equivalents, and alternatives falling within the spirit and scope of the embodiments.
While terms, such as “first”, “second”, etc., may be used to describe various components, such components must not be limited by the above terms. The above terms are used only to distinguish one component from another.
When an element is “coupled” or “connected” to another element, it should be understood that a third element may be present between the two elements although the element may be directly coupled or connected to the other element. When an element is “directly coupled” or “directly connected” to another element, it should be understood that no element is present between the two elements.
The singular forms are intended to include the plural forms as well, unless the context clearly indicates otherwise.
In addition, in the specification, it will be further understood that the terms “comprise” and “include” specify the presence of stated features, integers, steps, operations, elements, components, and/or combinations thereof, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or combinations.
A. Example of Block Diagram of UE and 5G Network
Referring to
A 5G network including another vehicle communicating with the autonomous device is defined as a second communication device (920 of
The 5G network may be represented as the first communication device and the autonomous device may be represented as the second communication device.
For example, the first communication device or the second communication device may be a base station, a network node, a transmission terminal, a reception terminal, a wireless device, a wireless communication device, an autonomous device, or the like.
For example, a terminal or user equipment (UE) may include a vehicle, a cellular phone, a smart phone, a laptop computer, a digital broadcast terminal, personal digital assistants (PDAs), a portable multimedia player (PMP), a navigation device, a slate PC, a tablet PC, an ultrabook, a wearable device (e.g., a smartwatch, a smart glass and a head mounted display (HMD)), etc. For example, the HMD may be a display device worn on the head of a user. For example, the HMD may be used to realize VR, AR or MR. Referring to
UL (communication from the second communication device to the first communication device) is processed in the first communication device 910 in a way similar to that described in association with a receiver function in the second communication device 920. Each Tx/Rx module 925 receives a signal through each antenna 926. Each Tx/Rx module provides RF carriers and information to the Rx processor 923. The processor 921 may be related to the memory 924 that stores program code and data. The memory may be referred to as a computer-readable medium.
B. Signal Transmission/Reception Method in Wireless Communication System
Referring to
Meanwhile, when the UE initially accesses the BS or has no radio resource for signal transmission, the UE may perform a random access procedure (RACH) for the BS (steps S203 to S206). To this end, the UE may transmit a specific sequence as a preamble through a physical random access channel (PRACH) (S203 and S205) and receive a random access response (RAR) message for the preamble through a PDCCH and a corresponding PDSCH (S204 and S206). In the case of a contention-based RACH, a contention resolution procedure may be additionally performed.
After the UE performs the above-described process, the UE may perform PDCCH/PDSCH reception (S207) and physical uplink shared channel (PUSCH)/physical uplink control channel (PUCCH) transmission (S208) as normal uplink/downlink signal transmission processes. Particularly, the UE receives downlink control information (DCI) through the PDCCH. The UE monitors a set of PDCCH candidates in monitoring occasions set for one or more control element sets (CORESET) on a serving cell according to corresponding search space configurations. A set of PDCCH candidates to be monitored by the UE is defined in terms of search space sets, and a search space set may be a common search space set or a UE-specific search space set. CORESET includes a set of (physical) resource blocks having a duration of one to three OFDM symbols. A network may configure the UE such that the UE has a plurality of CORESETs. The UE monitors
PDCCH candidates in one or more search space sets. Here, monitoring means attempting decoding of PDCCH candidate(s) in a search space. When the UE has successfully decoded one of PDCCH candidates in a search space, the UE determines that a PDCCH has been detected from the PDCCH candidate and performs PDSCH reception or PUSCH transmission on the basis of DCI in the detected PDCCH. The PDCCH may be used to schedule DL transmissions over a PDSCH and UL transmissions over a PUSCH. Here, the DCI in the PDCCH includes downlink assignment (i.e., downlink grant (DL grant)) related to a physical downlink shared channel and including at least a modulation and coding format and resource allocation information, or an uplink grant (UL grant) related to a physical uplink shared channel and including a modulation and coding format and resource allocation information.
An initial access (IA) procedure in a 5G communication system will be additionally described with reference to
The UE may perform cell search, system information acquisition, beam alignment for initial access, and DL measurement on the basis of an SSB. The SSB is interchangeably used with a synchronization signal/physical broadcast channel (SS/PBCH) block.
The SSB includes a PSS, an SSS and a PBCH. The SSB is configured in four consecutive OFDM symbols, and a PSS, a PBCH, an SSS/PBCH or a PBCH is transmitted for each OFDM symbol. Each of the PSS and the SSS includes one OFDM symbol and 127 subcarriers, and the PBCH includes 3 OFDM symbols and 576 subcarriers.
Cell search refers to a process in which a UE obtains time/frequency synchronization of a cell and detects a cell identifier (ID) (e.g., physical layer cell ID (PCI)) of the cell. The PSS is used to detect a cell ID in a cell ID group and the SSS is used to detect a cell ID group. The PBCH is used to detect an SSB (time) index and a half-frame.
There are 336 cell ID groups and there are 3 cell IDs per cell ID group. A total of 1008 cell IDs are present. Information on a cell ID group to which a cell ID of a cell belongs is provided/obtained through an SSS of the cell, and information on the cell ID among 336 cell ID groups is provided/obtained through a PSS.
The SSB is periodically transmitted in accordance with SSB periodicity. A default SSB periodicity assumed by a UE during initial cell search is defined as 20 ms. After cell access, the SSB periodicity may be set to one of {5 ms, 10 ms, 20 ms, 40 ms, 80 ms, 160 ms} by a network (e.g., a BS).
Next, acquisition of system information (SI) will be described.
SI is divided into a master information block (MIB) and a plurality of system information blocks (SIBs). SI other than the MIB may be referred to as remaining minimum system information. The MIB includes information/parameter for monitoring a PDCCH that schedules a PDSCH carrying SIB1 (SystemInformationBlock1) and is transmitted by a BS through a PBCH of an SSB. SIB1 includes information related to availability and scheduling (e.g., transmission periodicity and SI-window size) of the remaining SIBs (hereinafter, SIBx, x is an integer equal to or greater than 2). SiBx is included in an SI message and transmitted over a PDSCH. Each SI message is transmitted within a periodically generated time window (i.e., SI-window).
A random access (RA) procedure in a 5G communication system will be additionally described with reference to
A random access procedure is used for various purposes. For example, the random access procedure may be used for network initial access, handover, and UE-triggered UL data transmission. A UE may acquire UL synchronization and UL transmission resources through the random access procedure. The random access procedure is classified into a contention-based random access procedure and a contention-free random access procedure. A detailed procedure for the contention-based random access procedure is as follows.
A UE may transmit a random access preamble through a PRACH as Msg1 of a random access procedure in UL. Random access preamble sequences having different two lengths are supported. A long sequence length 839 is applied to subcarrier spacings of 1.25 kHz and 5 kHz and a short sequence length 139 is applied to subcarrier spacings of 15 kHz, 30 kHz, 60 kHz and 120 kHz.
When a BS receives the random access preamble from the UE, the BS transmits a random access response (RAR) message (Msg2) to the UE. A PDCCH that schedules a PDSCH carrying a RAR is CRC masked by a random access (RA) radio network temporary identifier (RNTI) (RA-RNTI) and transmitted. Upon detection of the PDCCH masked by the RA-RNTI, the UE may receive a RAR from the PDSCH scheduled by DCI carried by the PDCCH. The UE checks whether the RAR includes random access response information with respect to the preamble transmitted by the UE, that is, Msg1. Presence or absence of random access information with respect to Msg1 transmitted by the UE may be determined according to presence or absence of a random access preamble ID with respect to the preamble transmitted by the UE. If there is no response to Msg1, the UE may retransmit the RACH preamble less than a predetermined number of times while performing power ramping. The UE calculates PRACH transmission power for preamble retransmission on the basis of most recent pathloss and a power ramping counter.
The UE may perform UL transmission through Msg3 of the random access procedure over a physical uplink shared channel on the basis of the random access response information. Msg3 may include an RRC connection request and a UE ID. The network may transmit Msg4 as a response to Msg3, and Msg4 may be handled as a contention resolution message on DL. The UE may enter an RRC connected state by receiving Msg4.
C. Beam management (BM) procedure of 5G communication system
A BM procedure may be divided into (1) a DL MB procedure using an SSB or a CSI-RS and (2) a UL BM procedure using a sounding reference signal (SRS). In addition, each BM procedure may include Tx beam swiping for determining a Tx beam and Rx beam swiping for determining an Rx beam.
The DL BM procedure using an SSB will be described.
Configuration of a beam report using an SSB is performed when channel state information (CSI)/beam is configured in RRC_CONNECTED.
When a CSI-RS resource is configured in the same OFDM symbols as an SSB and ‘QCL-TypeD’ is applicable, the UE may assume that the CSI-RS and the SSB are quasi co-located (QCL) from the viewpoint of ‘QCL-TypeD’. Here, QCL-TypeD may mean that antenna ports are quasi co-located from the viewpoint of a spatial Rx parameter. When the UE receives signals of a plurality of DL antenna ports in a QCL-TypeD relationship, the same Rx beam may be applied.
Next, a DL BM procedure using a CSI-RS will be described.
An Rx beam determination (or refinement) procedure of a UE and a Tx beam swiping procedure of a BS using a CSI-RS will be sequentially described. A repetition parameter is set to ‘ON’ in the Rx beam determination procedure of a UE and set to ‘OFF’ in the Tx beam swiping procedure of a BS.
First, the Rx beam determination procedure of a UE will be described.
Next, the Tx beam determination procedure of a BS will be described.
Next, the UL BM procedure using an SRS will be described.
The UE determines Tx beamforming for SRS resources to be transmitted on the basis of SRS-SpatialRelation Info included in the SRS-Config IE. Here, SRS-SpatialRelation Info is set for each SRS resource and indicates whether the same beamforming as that used for an SSB, a CSI-RS or an SRS will be applied for each SRS resource.
Next, a beam failure recovery (BFR) procedure will be described.
In a beamformed system, radio link failure (RLF) may frequently occur due to rotation, movement or beamforming blockage of a UE. Accordingly, NR supports BFR in order to prevent frequent occurrence of RLF. BFR is similar to a radio link failure recovery procedure and may be supported when a UE knows new candidate beams. For beam failure detection, a BS configures beam failure detection reference signals for a UE, and the UE declares beam failure when the number of beam failure indications from the physical layer of the UE reaches a threshold set through RRC signaling within a period set through RRC signaling of the BS. After beam failure detection, the UE triggers beam failure recovery by initiating a random access procedure in a PCell and performs beam failure recovery by selecting a suitable beam. (When the BS provides dedicated random access resources for certain beams, these are prioritized by the UE). Completion of the aforementioned random access procedure is regarded as completion of beam failure recovery.
D. URLLC (Ultra-Reliable and Low Latency Communication)
URLLC transmission defined in NR may refer to (1) a relatively low traffic size, (2) a relatively low arrival rate, (3) extremely low latency requirements (e.g., 0.5 and 1 ms), (4) relatively short transmission duration (e.g., 2 OFDM symbols), (5) urgent services/messages, etc. In the case of UL, transmission of traffic of a specific type (e.g., URLLC) needs to be multiplexed with another transmission (e.g., eMBB) scheduled in advance in order to satisfy more stringent latency requirements. In this regard, a method of providing information indicating preemption of specific resources to a UE scheduled in advance and allowing a URLLC UE to use the resources for UL transmission is provided.
NR supports dynamic resource sharing between eMBB and URLLC. eMBB and URLLC services may be scheduled on non-overlapping time/frequency resources, and URLLC transmission may occur in resources scheduled for ongoing eMBB traffic. An eMBB UE may not ascertain whether PDSCH transmission of the corresponding UE has been partially punctured and the UE may not decode a PDSCH due to corrupted coded bits. In view of this, NR provides a preemption indication. The preemption indication may also be referred to as an interrupted transmission indication.
With regard to the preemption indication, a UE receives DownlinkPreemption IE through RRC signaling from a BS. When the UE is provided with DownlinkPreemption IE, the UE is configured with INT-RNTI provided by a parameter int-RNTI in DownlinkPreemption IE for monitoring of a PDCCH that conveys DCI format 2_1. The UE is additionally configured with a corresponding set of positions for fields in DCI format 2_1 according to a set of serving cells and positionInDCI by INT-ConfigurationPerServing Cell including a set of serving cell indexes provided by servingCellID, configured having an information payload size for DCI format 2_1 according to dci-Payloadsize, and configured with indication granularity of time-frequency resources according to timeFrequencySect.
The UE receives DCI format 2_1 from the BS on the basis of the DownlinkPreemption IE.
When the UE detects DCI format 2_1 for a serving cell in a configured set of serving cells, the UE may assume that there is no transmission to the UE in PRBs and symbols indicated by the DCI format 2_1 in a set of PRBs and a set of symbols in a last monitoring period before a monitoring period to which the DCI format 2_1 belongs. For example, the UE assumes that a signal in a time-frequency resource indicated according to preemption is not DL transmission scheduled therefor and decodes data on the basis of signals received in the remaining resource region.
E. mMTC (Massive MTC)
mMTC (massive Machine Type Communication) is one of 5G scenarios for supporting a hyper-connection service providing simultaneous communication with a large number of UEs. In this environment, a UE intermittently performs communication with a very low speed and mobility. Accordingly, a main goal of mMTC is operating a UE for a long time at a low cost. With respect to mMTC, 3GPP deals with MTC and NB (NarrowBand)-IoT.
mMTC has features such as repetitive transmission of a PDCCH, a PUCCH, a PDSCH (physical downlink shared channel), a PUSCH, etc., frequency hopping, retuning, and a guard period.
That is, a PUSCH (or a PUCCH (particularly, a long PUCCH) or a PRACH) including specific information and a PDSCH (or a PDCCH) including a response to the specific information are repeatedly transmitted. Repetitive transmission is performed through frequency hopping, and for repetitive transmission, (RF) retuning from a first frequency resource to a second frequency resource is performed in a guard period and the specific information and the response to the specific information may be transmitted/received through a narrowband (e.g., 6 resource blocks (RBs) or 1 RB).
F. Basic Operation Between Autonomous Vehicles Using 5G Communication
The autonomous vehicle transmits specific information to the 5G network (S1). The specific information may include autonomous driving related information.
In addition, the 5G network may determine whether to remotely control the vehicle (S2). Here, the 5G network may include a server or a module which performs remote control related to autonomous driving. In addition, the 5G network may transmit information (or signal) related to remote control to the autonomous vehicle (S3).
G. Applied Operations Between Autonomous Vehicle and 5G Network in 5G Communication System
Hereinafter, the operation of an autonomous vehicle using 5G communication will be described in more detail with reference to wireless communication technology (BM procedure, URLLC, mMTC, etc.) described in
First, a basic procedure of an applied operation to which a method proposed by the present disclosure which will be described later and eMBB of 5G communication are applied will be described.
As in steps S1 and S3 of
More specifically, the autonomous vehicle performs an initial access procedure with the 5G network on the basis of an SSB in order to acquire DL synchronization and system information. A beam management (BM) procedure and a beam failure recovery procedure may be added in the initial access procedure, and quasi-co-location (QCL) relation may be added in a process in which the autonomous vehicle receives a signal from the 5G network.
In addition, the autonomous vehicle performs a random access procedure with the 5G network for UL synchronization acquisition and/or UL transmission. The 5G network may transmit, to the autonomous vehicle, a UL grant for scheduling transmission of specific information. Accordingly, the autonomous vehicle transmits the specific information to the 5G network on the basis of the UL grant. In addition, the 5G network transmits, to the autonomous vehicle, a DL grant for scheduling transmission of 5G processing results with respect to the specific information. Accordingly, the 5G network may transmit, to the autonomous vehicle, information (or a signal) related to remote control on the basis of the DL grant.
Next, a basic procedure of an applied operation to which a method proposed by the present disclosure which will be described later and URLLC of 5G communication are applied will be described.
As described above, an autonomous vehicle may receive DownlinkPreemption IE from the 5G network after the autonomous vehicle performs an initial access procedure and/or a random access procedure with the 5G network. Then, the autonomous vehicle receives DCI format 2_1 including a preemption indication from the 5G network on the basis of DownlinkPreemption IE. The autonomous vehicle does not perform (or expect or assume) reception of eMBB data in resources (PRBs and/or OFDM symbols) indicated by the preemption indication. Thereafter, when the autonomous vehicle needs to transmit specific information, the autonomous vehicle may receive a UL grant from the 5G network.
Next, a basic procedure of an applied operation to which a method proposed by the present disclosure which will be described later and mMTC of 5G communication are applied will be described.
Description will focus on parts in the steps of
In step S1 of
H. Autonomous Driving Operation Between Vehicles Using 5G Communication
A first vehicle transmits specific information to a second vehicle (S61). The second vehicle transmits a response to the specific information to the first vehicle (S62).
Meanwhile, a configuration of an applied operation between vehicles may depend on whether the 5G network is directly (sidelink communication transmission mode 3) or indirectly (sidelink communication transmission mode 4) involved in resource allocation for the specific information and the response to the specific information.
Next, an applied operation between vehicles using 5G communication will be described.
First, a method in which a 5G network is directly involved in resource allocation for signal transmission/reception between vehicles will be described.
The 5G network may transmit DCI format 5A to the first vehicle for scheduling of mode-3 transmission (PSCCH and/or PSSCH transmission). Here, a physical sidelink control channel (PSCCH) is a 5G physical channel for scheduling of transmission of specific information a physical sidelink shared channel (PSSCH) is a 5G physical channel for transmission of specific information. In addition, the first vehicle transmits SCI format 1 for scheduling of specific information transmission to the second vehicle over a PSCCH. Then, the first vehicle transmits the specific information to the second vehicle over a PSSCH.
Next, a method in which a 5G network is indirectly involved in resource allocation for signal transmission/reception will be described.
The first vehicle senses resources for mode-4 transmission in a first window. Then, the first vehicle selects resources for mode-4 transmission in a second window on the basis of the sensing result. Here, the first window refers to a sensing window and the second window refers to a selection window. The first vehicle transmits SCI format 1 for scheduling of transmission of specific information to the second vehicle over a PSCCH on the basis of the selected resources. Then, the first vehicle transmits the specific information to the second vehicle over a PSSCH.
The above-described 5G communication technology may be combined with methods proposed in the present disclosure which will be described later and applied or may complement the methods proposed in the present disclosure to make technical features of the methods concrete and clear.
Driving
(1) Exterior of Vehicle
Referring to
(2) Components of Vehicle
Referring to
1) User Interface Device
The user interface device 200 is a device for communication between the vehicle 10 and a user. The user interface device 200 may receive user input and provide information generated in the vehicle 10 to the user. The vehicle 10 may realize a user interface (UI) or user experience (UX) through the user interface device 200. The user interface device 200 may include an input device, an output device and a user monitoring device.
2) Object Detection Device
The object detection device 210 may generate information about objects outside the vehicle 10. Information about an object may include at least one of information on presence or absence of the object, positional information of the object, information on a distance between the vehicle 10 and the object, and information on a relative speed of the vehicle 10 with respect to the object. The object detection device 210 may detect objects outside the vehicle 10. The object detection device 210 may include at least one sensor which may detect objects outside the vehicle 10. The object detection device 210 may include at least one of a camera, a radar, a lidar, an ultrasonic sensor and an infrared sensor. The object detection device 210 may provide data about an object generated on the basis of a sensing signal generated from a sensor to at least one electronic device included in the vehicle.
2.1) Camera
The camera may generate information about objects outside the vehicle 10 using images. The camera may include at least one lens, at least one image sensor, and at least one processor which is electrically connected to the image sensor, processes received signals and generates data about objects on the basis of the processed signals.
The camera may be at least one of a mono camera, a stereo camera and an around view monitoring (AVM) camera. The camera may acquire positional information of objects, information on distances to objects, or information on relative speeds with respect to objects using various image processing algorithms. For example, the camera may acquire information on a distance to an object and information on a relative speed with respect to the object from an obtained image on the basis of change in the size of the object over time. For example, the camera may acquire information on a distance to an object and information on a relative speed with respect to the object through a pin-hole model, road profiling, or the like. For example, the camera may acquire information on a distance to an object and information on a relative speed with respect to the object from a stereo image obtained from a stereo camera on the basis of disparity information.
The camera may be attached at a portion of the vehicle at which FOV (field of view) may be secured in order to photograph the outside of the vehicle. The camera may be disposed in proximity to the front windshield inside the vehicle in order to acquire front view images of the vehicle. The camera may be disposed near a front bumper or a radiator grill. The camera may be disposed in proximity to a rear glass inside the vehicle in order to acquire rear view images of the vehicle. The camera may be disposed near a rear bumper, a trunk or a tail gate. The camera may be disposed in proximity to at least one of side windows inside the vehicle in order to acquire side view images of the vehicle. Alternatively, the camera may be disposed near a side mirror, a fender or a door.
2.2) Radar
The radar may generate information about an object outside the vehicle using electromagnetic waves. The radar may include an electromagnetic wave transmitter, an electromagnetic wave receiver, and at least one processor which is electrically connected to the electromagnetic wave transmitter and the electromagnetic wave receiver, processes received signals and generates data about an object on the basis of the processed signals. The radar may be realized as a pulse radar or a continuous wave radar in terms of electromagnetic wave emission. The continuous wave radar may be realized as a frequency modulated continuous wave (FMCW) radar or a frequency shift keying (FSK) radar according to signal waveform. The radar may detect an object through electromagnetic waves on the basis of TOF (Time of Flight) or phase shift and detect the position of the detected object, a distance to the detected object and a relative speed with respect to the detected object. The radar may be disposed at an appropriate position outside the vehicle in order to detect objects positioned in front of, behind or on the side of the vehicle.
2.3 Lidar
The lidar may generate information about an object outside the vehicle 10 using a laser beam. The lidar may include a light transmitter, a light receiver, and at least one processor which is electrically connected to the light transmitter and the light receiver, processes received signals and generates data about an object on the basis of the processed signal. The lidar may be realized according to TOF or phase shift. The lidar may be realized as a driven type or a non-driven type. A driven type lidar may be rotated by a motor and detect an object around the vehicle 10. A non-driven type lidar may detect an object positioned within a predetermined range from the vehicle according to light steering. The vehicle 10 may include a plurality of non-drive type lidars. The lidar may detect an object through a laser beam on the basis of TOF (Time of Flight) or phase shift and detect the position of the detected object, a distance to the detected object and a relative speed with respect to the detected object. The lidar may be disposed at an appropriate position outside the vehicle in order to detect objects positioned in front of, behind or on the side of the vehicle.
3) Communication Device
The communication device 220 may exchange signals with devices disposed outside the vehicle 10. The communication device 220 may exchange signals with at least one of infrastructure (e.g., a server and a broadcast station), another vehicle and a terminal. The communication device 220 may include a transmission antenna, a reception antenna, and at least one of a radio frequency (RF) circuit and an RF element which may implement various communication protocols in order to perform communication.
For example, the communication device may exchange signals with external devices on the basis of C-V2X (Cellular V2X). For example, C-V2X may include sidelink communication on the basis of LTE and/or sidelink communication on the basis of NR. Details related to C-V2X will be described later.
For example, the communication device may exchange signals with external devices on the basis of DSRC (Dedicated Short Range Communications) or WAVE (Wireless Access in Vehicular Environment) standards on the basis of IEEE 802.11p PHY/MAC layer technology and IEEE 1609 Network/Transport layer technology. DSRC (or WAVE standards) is communication specifications for providing an intelligent transport system (ITS) service through short-range dedicated communication between vehicle-mounted devices or between a roadside device and a vehicle-mounted device. DSRC may be a communication scheme that may use a frequency of 5.9 GHz and have a data transfer rate in the range of 3 Mbps to 27 Mbps. IEEE 802.11p may be combined with IEEE 1609 to support DSRC (or WAVE standards).
The communication device of the present disclosure may exchange signals with external devices using only one of C-V2X and DSRC. Alternatively, the communication device of the present disclosure may exchange signals with external devices using a hybrid of C-V2X and DSRC.
4) Driving Operation Device
The driving operation device 230 is a device for receiving user input for driving. In a manual mode, the vehicle 10 may be driven on the basis of a signal provided by the driving operation device 230. The driving operation device 230 may include a steering input device (e.g., a steering wheel), an acceleration input device (e.g., an acceleration pedal) and a brake input device (e.g., a brake pedal).
5) Main ECU
The main ECU 240 may control the overall operation of at least one electronic device included in the vehicle 10.
6) Driving Control Device
The driving control device 250 is a device for electrically controlling various vehicle driving devices included in the vehicle 10. The driving control device 250 may include a power train driving control device, a chassis driving control device, a door/window driving control device, a safety device driving control device, a lamp driving control device, and an air-conditioner driving control device. The power train driving control device may include a power source driving control device and a transmission driving control device. The chassis driving control device may include a steering driving control device, a brake driving control device and a suspension driving control device. Meanwhile, the safety device driving control device may include a seat belt driving control device for seat belt control.
The driving control device 250 includes at least one electronic control device (e.g., a control ECU (Electronic Control Unit)).
The driving control device 250 may control vehicle driving devices on the basis of signals received by the autonomous device 260. For example, the driving control device 250 may control a power train, a steering device and a brake device on the basis of signals received by the autonomous device 260.
7) Autonomous Device
The autonomous device 260 may generate a route for self-driving on the basis of obtained data. The autonomous device 260 may generate a driving plan for traveling along the generated route. The autonomous device 260 may generate a signal for controlling movement of the vehicle according to the driving plan. The autonomous device 260 may provide the signal to the driving control device 250.
The autonomous device 260 may implement at least one ADAS (Advanced Driver Assistance System) function. The ADAS may implement at least one of ACC (Adaptive Cruise Control), AEB (Autonomous Emergency Braking), FCW (Forward Collision Warning), LKA (Lane Keeping Assist), LCA (Lane Change Assist), TFA (Target Following Assist), BSD (Blind Spot Detection), HBA (High Beam Assist), APS (Auto Parking System), a PD collision warning system, TSR (Traffic Sign Recognition), TSA (Traffic Sign Assist), NV (Night Vision), DSM (Driver Status Monitoring) and TJA (Traffic Jam Assist).
The autonomous device 260 may perform switching from a self-driving mode to a manual driving mode or switching from the manual driving mode to the self-driving mode. For example, the autonomous device 260 may switch the mode of the vehicle 10 from the self-driving mode to the manual driving mode or from the manual driving mode to the self-driving mode on the basis of a signal received from the user interface device 200.
8) Sensing Unit
The sensing unit 270 may detect a state of the vehicle. The sensing unit 270 may include at least one of an internal measurement unit (IMU) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight sensor, a heading sensor, a position module, a vehicle forward/backward movement sensor, a battery sensor, a fuel sensor, a tire sensor, a steering sensor, a temperature sensor, a humidity sensor, an ultrasonic sensor, an illumination sensor, and a pedal position sensor. Further, the IMU sensor may include one or more of an acceleration sensor, a gyro sensor and a magnetic sensor.
The sensing unit 270 may generate vehicle state data on the basis of a signal generated from at least one sensor. Vehicle state data may be information generated on the basis of data detected by various sensors included in the vehicle. The sensing unit 270 may generate vehicle attitude data, vehicle motion data, vehicle yaw data, vehicle roll data, vehicle pitch data, vehicle collision data, vehicle orientation data, vehicle angle data, vehicle speed data, vehicle acceleration data, vehicle tilt data, vehicle forward/backward movement data, vehicle weight data, battery data, fuel data, tire pressure data, vehicle internal temperature data, vehicle internal humidity data, steering wheel rotation angle data, vehicle external illumination data, data of a pressure applied to an acceleration pedal, data of a pressure applied to a brake panel, etc.
9) Position Data Generation Device
The position data generation device 280 may generate position data of the vehicle 10. The position data generation device 280 may include at least one of a global positioning system (GPS) and a differential global positioning system (DGPS). The position data generation device 280 may generate position data of the vehicle 10 on the basis of a signal generated from at least one of the GPS and the DGPS. According to an embodiment, the position data generation device 280 may correct position data on the basis of at least one of the inertial measurement unit (IMU) sensor of the sensing unit 270 and the camera of the object detection device 210. The position data generation device 280 may also be called a global navigation satellite system (GNSS).
The vehicle 10 may include an internal communication system 50. The plurality of electronic devices included in the vehicle 10 may exchange signals through the internal communication system 50. The signals may include data. The internal communication system 50 may use at least one communication protocol (e.g., CAN, LIN, FlexRay, MOST or Ethernet).
(3) Components of Autonomous Device
Referring to
The memory 140 is electrically connected to the processor 170. The memory 140 may store basic data with respect to units, control data for operation control of units, and input/output data. The memory 140 may store data processed in the processor 170. Hardware-wise, the memory 140 may be configured as at least one of a ROM, a RAM, an EPROM, a flash drive and a hard drive. The memory 140 may store various types of data for overall operation of the autonomous device 260, such as a program for processing or control of the processor 170. The memory 140 may be integrated with the processor 170. According to an embodiment, the memory 140 may be categorized as a subcomponent of the processor 170.
The interface 180 may exchange signals with at least one electronic device included in the vehicle 10 in a wired or wireless manner. The interface 180 may exchange signals with at least one of the object detection device 210, the communication device 220, the driving operation device 230, the main ECU 240, the driving control device 250, the sensing unit 270 and the position data generation device 280 in a wired or wireless manner. The interface 180 may be configured using at least one of a communication module, a terminal, a pin, a cable, a port, a circuit, an element and a device.
The power supply 190 may provide power to the autonomous device 260. The power supply 190 may be provided with power from a power source (e.g., a battery) included in the vehicle 10 and supply the power to each unit of the autonomous device 260. The power supply 190 may operate according to a control signal supplied from the main ECU 240. The power supply 190 may include a switched-mode power supply (SMPS).
The processor 170 may be electrically connected to the memory 140, the interface 180 and the power supply 190 and exchange signals with these components. The processor 170 may be realized using at least one of application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, micro-controllers, microprocessors, and electronic units for executing other functions.
The processor 170 may be operated by power supplied from the power supply 190. The processor 170 may receive data, process the data, generate a signal and provide the signal while power is supplied thereto.
The processor 170 may receive information from other electronic devices included in the vehicle 10 through the interface 180. The processor 170 may provide control signals to other electronic devices in the vehicle 10 through the interface 180.
The autonomous device 260 may include at least one printed circuit board (PCB). The memory 140, the interface 180, the power supply 190 and the processor 170 may be electrically connected to the PCB.
(4) Operation of Autonomous Device
1) Reception Operation
Referring to
2) Processing/Determination Operation
The processor 170 may perform a processing/determination operation. The processor 170 may perform the processing/determination operation on the basis of traveling situation information. The processor 170 may perform the processing/determination operation on the basis of at least one of object data, HD map data, vehicle state data and position data.
2.1) Driving Plan Data Generation Operation
The processor 170 may generate driving plan data. For example, the processor 170 may generate electronic horizon data. The electronic horizon data may be understood as driving plan data in a range from a position at which the vehicle 10 is located to a horizon. The horizon may be understood as a point a predetermined distance before the position at which the vehicle 10 is located on the basis of a predetermined traveling route. The horizon may refer to a point at which the vehicle may arrive after a predetermined time from the position at which the vehicle 10 is located along a predetermined traveling route.
The electronic horizon data may include horizon map data and horizon path data.
2.1.1) Horizon Map Data
The horizon map data may include at least one of topology data, road data, HD map data and dynamic data. According to an embodiment, the horizon map data may include a plurality of layers. For example, the horizon map data may include a first layer that matches the topology data, a second layer that matches the road data, a third layer that matches the HD map data, and a fourth layer that matches the dynamic data. The horizon map data may further include static object data.
The topology data may be explained as a map created by connecting road centers. The topology data is suitable for approximate display of a location of a vehicle and may have a data form used for navigation for drivers. The topology data may be understood as data about road information other than information on driveways. The topology data may be generated on the basis of data received from an external server through the communication device 220. The topology data may be on the basis of data stored in at least one memory included in the vehicle 10.
The road data may include at least one of road slope data, road curvature data and road speed limit data. The road data may further include no-passing zone data. The road data may be on the basis of data received from an external server through the communication device 220. The road data may be on the basis of data generated in the object detection device 210.
The HD map data may include detailed topology information in units of lanes of roads, connection information of each lane, and feature information for vehicle localization (e.g., traffic signs, lane marking/attribute, road furniture, etc.). The HD map data may be on the basis of data received from an external server through the communication device 220.
The dynamic data may include various types of dynamic information which may be generated on roads. For example, the dynamic data may include construction information, variable speed road information, road condition information, traffic information, moving object information, etc. The dynamic data may be on the basis of data received from an external server through the communication device 220. The dynamic data may be on the basis of data generated in the object detection device 210.
The processor 170 may provide map data in a range from a position at which the vehicle 10 is located to the horizon.
2.1.2) Horizon Path Data
The horizon path data may be explained as a trajectory through which the vehicle 10 may travel in a range from a position at which the vehicle 10 is located to the horizon. The horizon path data may include data indicating a relative probability of selecting a road at a decision point (e.g., a fork, a junction, a crossroad, or the like). The relative probability may be calculated on the basis of a time taken to arrive at a final destination. For example, if a time taken to arrive at a final destination is shorter when a first road is selected at a decision point than that when a second road is selected, a probability of selecting the first road may be calculated to be higher than a probability of selecting the second road.
The horizon path data may include a main path and a sub-path. The main path may be understood as a trajectory obtained by connecting roads having a high relative probability of being selected. The sub-path may be branched from at least one decision point on the main path. The sub-path may be understood as a trajectory obtained by connecting at least one road having a low relative probability of being selected at at least one decision point on the main path.
3) Control Signal Generation Operation
The processor 170 may perform a control signal generation operation. The processor 170 may generate a control signal on the basis of the electronic horizon data. For example, the processor 170 may generate at least one of a power train control signal, a brake device control signal and a steering device control signal on the basis of the electronic horizon data.
The processor 170 may transmit the generated control signal to the driving control device 250 through the interface 180. The driving control device 250 may transmit the control signal to at least one of a power train 251, a brake device 252 and a steering device 254.
Cabin
(1) Components of Cabin
Referring to
1) Main Controller
The main controller 370 may be electrically connected to the input device 310, the communication device 330, the display system 350, the cargo system 355, the seat system 360 and the payment system 365 and exchange signals with these components. The main controller 370 may control the input device 310, the communication device 330, the display system 350, the cargo system 355, the seat system 360 and the payment system 365. The main controller 370 may be realized using at least one of application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, micro-controllers, microprocessors, and electronic units for executing other functions.
The main controller 370 may be configured as at least one sub-controller. The main controller 370 may include a plurality of sub-controllers according to an embodiment. The plurality of sub-controllers may individually control the devices and systems included in the cabin system 300. The devices and systems included in the cabin system 300 may be grouped by function or grouped on the basis of seats on which a user may sit.
The main controller 370 may include at least one processor 371. Although
The processor 371 may receive signals, information or data from a user terminal through the communication device 330. The user terminal may transmit signals, information or data to the cabin system 300.
The processor 371 may identify a user on the basis of image data received from at least one of an internal camera and an external camera included in the imaging device. The processor 371 may identify a user by applying an image processing algorithm to the image data. For example, the processor 371 may identify a user by comparing information received from the user terminal with the image data. For example, the information may include at least one of route information, body information, fellow passenger information, baggage information, position information, preferred content information, preferred food information, disability information and use history information of a user.
The main controller 370 may include an artificial intelligence (AI) agent 372. The AI agent 372 may perform machine learning on the basis of data obtained through the input device 310. The AI agent 371 may control at least one of the display system 350, the cargo system 355, the seat system 360 and the payment system 365 on the basis of machine learning results.
2) Essential Components
The memory 340 is electrically connected to the main controller 370. The memory 340 may store basic data about units, control data for operation control of units, and input/output data. The memory 340 may store data processed in the main controller 370. Hardware-wise, the memory 340 may be configured using at least one of a ROM, a RAM, an EPROM, a flash drive and a hard drive. The memory 340 may store various types of data for the overall operation of the cabin system 300, such as a program for processing or control of the main controller 370. The memory 340 may be integrated with the main controller 370.
The interface 380 may exchange signals with at least one electronic device included in the vehicle 10 in a wired or wireless manner. The interface 380 may be configured using at least one of a communication module, a terminal, a pin, a cable, a port, a circuit, an element and a device.
The power supply 390 may provide power to the cabin system 300. The power supply 390 may be provided with power from a power source (e.g., a battery) included in the vehicle 10 and supply the power to each unit of the cabin system 300. The power supply 390 may operate according to a control signal supplied from the main controller 370. For example, the power supply 390 may be implemented as a switched-mode power supply (SMPS).
The cabin system 300 may include at least one printed circuit board (PCB). The main controller 370, the memory 340, the interface 380 and the power supply 390 may be mounted on at least one PCB.
3) Input Device
The input device 310 may receive a user input. The input device 310 may convert the user input into an electrical signal. The electrical signal converted by the input device 310 may be converted into a control signal and provided to at least one of the display system 350, the cargo system 355, the seat system 360 and the payment system 365. The main controller 370 or at least one processor included in the cabin system 300 may generate a control signal on the basis of an electrical signal received from the input device 310.
The input device 310 may include at least one of a touch input unit, a gesture input unit, a mechanical input unit and a voice input unit. The touch input unit may convert a user's touch input into an electrical signal. The touch input unit may include at least one touch sensor for detecting a user's touch input. According to an embodiment, the touch input unit may realize a touch screen by integrating with at least one display included in the display system 350. Such a touch screen may provide both an input interface and an output interface between the cabin system 300 and a user. The gesture input unit may convert a user's gesture input into an electrical signal. The gesture input unit may include at least one of an infrared sensor and an image sensor for detecting a user's gesture input. According to an embodiment, the gesture input unit may detect a user's three-dimensional gesture input. To this end, the gesture input unit may include a plurality of light output units for outputting infrared light or a plurality of image sensors. The gesture input unit may detect a user's three-dimensional gesture input using TOF (Time of Flight), structured light or disparity. The mechanical input unit may convert a user's physical input (e.g., press or rotation) through a mechanical device into an electrical signal. The mechanical input unit may include at least one of a button, a dome switch, a jog wheel and a jog switch. Meanwhile, the gesture input unit and the mechanical input unit may be integrated. For example, the input device 310 may include a jog dial device that includes a gesture sensor and is formed such that it may be inserted/ejected into/from a part of a surrounding structure (e.g., at least one of a seat, an armrest and a door). When the jog dial device is parallel to the surrounding structure, the jog dial device may serve as a gesture input unit. When the jog dial device is protruded from the surrounding structure, the jog dial device may serve as a mechanical input unit. The voice input unit may convert a user's voice input into an electrical signal. The voice input unit may include at least one microphone. The voice input unit may include a beam forming MIC.
4) Imaging Device
The imaging device 320 may include at least one camera. The imaging device 320 may include at least one of an internal camera and an external camera. The internal camera may capture an image of the inside of the cabin. The external camera may capture an image of the outside of the vehicle. The internal camera may acquire an image of the inside of the cabin. The imaging device 320 may include at least one internal camera. It is desirable that the imaging device 320 include as many cameras as the number of passengers who may ride in the vehicle. The imaging device 320 may provide an image obtained by the internal camera. The main controller 370 or at least one processor included in the cabin system 300 may detect a motion of a user on the basis of an image obtained by the internal camera, generate a signal on the basis of the detected motion and provide the signal to at least one of the display system 350, the cargo system 355, the seat system 360 and the payment system 365. The external camera may acquire an image of the outside of the vehicle. The imaging device 320 may include at least one external camera. It is desirable that the imaging device 320 include as many cameras as the number of doors through which passengers ride in the vehicle. The imaging device 320 may provide an image obtained by the external camera. The main controller 370 or at least one processor included in the cabin system 300 may acquire user information on the basis of the image obtained by the external camera. The main controller 370 or at least one processor included in the cabin system 300 may authenticate a user or acquire body information (e.g., height information, weight information, etc.), fellow passenger information and baggage information of a user on the basis of the user information.
5) Communication Device
The communication device 330 may exchange signals with external devices in a wireless manner. The communication device 330 may exchange signals with external devices through a network or directly exchange signals with external devices. External devices may include at least one of a server, a mobile terminal and another vehicle. The communication device 330 may exchange signals with at least one user terminal. The communication device 330 may include an antenna and at least one of an RF circuit and an RF element which may implement at least one communication protocol in order to perform communication. According to an embodiment, the communication device 330 may use a plurality of communication protocols. The communication device 330 may switch communication protocols according to a distance to a mobile terminal.
For example, the communication device may exchange signals with external devices on the basis of C-V2X (Cellular V2X). For example, C-V2X may include sidelink communication on the basis of LTE and/or sidelink communication on the basis of NR. Details related to C-V2X will be described later.
For example, the communication device may exchange signals with external devices on the basis of DSRC (Dedicated Short Range Communications) or WAVE (Wireless Access in Vehicular Environment) standards on the basis of IEEE 802.11p PHY/MAC layer technology and IEEE 1609 Network/Transport layer technology. DSRC (or WAVE standards) is communication specifications for providing an intelligent transport system (ITS) service through short-range dedicated communication between vehicle-mounted devices or between a roadside device and a vehicle-mounted device. DSRC may be a communication scheme that may use a frequency of 5.9 GHz and have a data transfer rate in the range of 3 Mbps to 27 Mbps. IEEE 802.11p may be combined with IEEE 1609 to support DSRC (or WAVE standards).
The communication device of the present disclosure may exchange signals with external devices using only one of C-V2X and DSRC. Alternatively, the communication device of the present disclosure may exchange signals with external devices using a hybrid of C-V2X and DSRC.
6) Display System
The display system 350 may display graphic objects. The display system 350 may include at least one display device. For example, the display system 350 may include a first display device 410 for common use and a second display device 420 for individual use.
6.1) Common Display Device
The first display device 410 may include at least one display 411 which outputs visual content. The display 411 included in the first display device 410 may be realized by at least one of a flat panel display, a curved display, a rollable display and a flexible display. For example, the first display device 410 may include a first display 411 which is positioned behind a seat and formed to be inserted/ejected into/from the cabin, and a first mechanism for moving the first display 411. The first display 411 may be disposed such that it may be inserted/ejected into/from a slot formed in a seat main frame. According to an embodiment, the first display device 410 may further include a flexible area control mechanism. The first display may be formed to be flexible and a flexible area of the first display may be controlled according to user position. For example, the first display device 410 may be disposed on the ceiling inside the cabin and include a second display formed to be rollable and a second mechanism for rolling or unrolling the second display. The second display may be formed such that images may be displayed on both sides thereof. For example, the first display device 410 may be disposed on the ceiling inside the cabin and include a third display formed to be flexible and a third mechanism for bending or unbending the third display. According to an embodiment, the display system 350 may further include at least one processor which provides a control signal to at least one of the first display device 410 and the second display device 420. The processor included in the display system 350 may generate a control signal on the basis of a signal received from at last one of the main controller 370, the input device 310, the imaging device 320 and the communication device 330.
A display area of a display included in the first display device 410 may be divided into a first area 411a and a second area 411b. The first area 411a may be defined as a content display area. For example, the first area 411 may display at least one of graphic objects corresponding to may display entertainment content (e.g., movies, sports, shopping, food, etc.), video conferences, food menu and augmented reality screens. The first area 411a may display graphic objects corresponding to traveling situation information of the vehicle 10. The traveling situation information may include at least one of object information outside the vehicle, navigation information and vehicle state information. The object information outside the vehicle may include information on presence or absence of an object, positional information of an object, information on a distance between the vehicle and an object, and information on a relative speed of the vehicle with respect to an object. The navigation information may include at least one of map information, information on a set destination, route information according to setting of the destination, information on various objects on a route, lane information and information on the current position of the vehicle. The vehicle state information may include vehicle attitude information, vehicle speed information, vehicle tilt information, vehicle weight information, vehicle orientation information, vehicle battery information, vehicle fuel information, vehicle tire pressure information, vehicle steering information, vehicle indoor temperature information, vehicle indoor humidity information, pedal position information, vehicle engine temperature information, etc. The second area 411b may be defined as a user interface area. For example, the second area 411b may display an AI agent screen. The second area 411b may be located in an area defined by a seat frame according to an embodiment. In this case, a user may view content displayed in the second area 411b between seats. The first display device 410 may provide hologram content according to an embodiment. For example, the first display device 410 may provide hologram content for each of a plurality of users such that only a user who requests the content may view the content.
6.2) Display Device for Individual Use
The second display device 420 may include at least one display 421. The second display device 420 may provide the display 421 at a position at which only an individual passenger may view display content. For example, the display 421 may be disposed on an armrest of a seat. The second display device 420 may display graphic objects corresponding to personal information of a user. The second display device 420 may include as many displays 421 as the number of passengers who may ride in the vehicle. The second display device 420 may realize a touch screen by forming a layered structure along with a touch sensor or being integrated with the touch sensor. The second display device 420 may display graphic objects for receiving a user input for seat adjustment or indoor temperature adjustment.
7) Cargo System
The cargo system 355 may provide items to a user at the request of the user. The cargo system 355 may operate on the basis of an electrical signal generated by the input device 310 or the communication device 330. The cargo system 355 may include a cargo box. The cargo box may be hidden in a part under a seat. When an electrical signal on the basis of user input is received, the cargo box may be exposed to the cabin. The user may select a necessary item from articles loaded in the cargo box. The cargo system 355 may include a sliding moving mechanism and an item pop-up mechanism in order to expose the cargo box according to user input. The cargo system 355 may include a plurality of cargo boxes in order to provide various types of items. A weight sensor for determining whether each item is provided may be embedded in the cargo box.
8) Seat System
The seat system 360 may provide a user customized seat to a user. The seat system 360 may operate on the basis of an electrical signal generated by the input device 310 or the communication device 330. The seat system 360 may adjust at least one element of a seat on the basis of obtained user body data. The seat system 360 may include a user detection sensor (e.g., a pressure sensor) for determining whether a user sits on a seat. The seat system 360 may include a plurality of seats on which a plurality of users may sit. One of the plurality of seats may be disposed to face at least another seat. At least two users may set facing each other inside the cabin.
9) Payment System
The payment system 365 may provide a payment service to a user. The payment system 365 may operate on the basis of an electrical signal generated by the input device 310 or the communication device 330. The payment system 365 may calculate a price for at least one service used by the user and request the user to pay the calculated price.
(2) Autonomous Vehicle Usage Scenarios
1) Destination Prediction Scenario
A first scenario S111 is a scenario for prediction of a destination of a user. An application which may operate in connection with the cabin system 300 may be installed in a user terminal. The user terminal may predict a destination of a user on the basis of user's contextual information through the application. The user terminal may provide information on unoccupied seats in the cabin through the application.
2) Cabin Interior Layout Preparation Scenario
A second scenario S112 is a cabin interior layout preparation scenario. The cabin system 300 may further include a scanning device for acquiring data about a user located outside the vehicle. The scanning device may scan a user to acquire body data and baggage data of the user. The body data and baggage data of the user may be used to set a layout. The body data of the user may be used for user authentication. The scanning device may include at least one image sensor. The image sensor may acquire a user image using light of the visible band or infrared band.
The seat system 360 may set a cabin interior layout on the basis of at least one of the body data and baggage data of the user. For example, the seat system 360 may provide a baggage compartment or a car seat installation space.
3) User Welcome Scenario
A third scenario S113 is a user welcome scenario. The cabin system 300 may further include at least one guide light. The guide light may be disposed on the floor of the cabin. When a user riding in the vehicle is detected, the cabin system 300 may turn on the guide light such that the user sits on a predetermined seat among a plurality of seats. For example, the main controller 370 may realize a moving light by sequentially turning on a plurality of light sources over time from an open door to a predetermined user seat.
4) Seat Adjustment Service Scenario
A fourth scenario S114 is a seat adjustment service scenario. The seat system 360 may adjust at least one element of a seat that matches a user on the basis of obtained body information.
5) Personal Content Provision Scenario
A fifth scenario S115 is a personal content provision scenario. The display system 350 may receive user personal data through the input device 310 or the communication device 330. The display system 350 may provide content corresponding to the user personal data.
6) Item Provision Scenario
A sixth scenario S116 is an item provision scenario. The cargo system 355 may receive user data through the input device 310 or the communication device 330. The user data may include user preference data, user destination data, etc. The cargo system 355 may provide items on the basis of the user data.
7) Payment Scenario
A seventh scenario S117 is a payment scenario. The payment system 365 may receive data for price calculation from at least one of the input device 310, the communication device 330 and the cargo system 355. The payment system 365 may calculate a price for use of the vehicle by the user on the basis of the received data. The payment system 365 may request payment of the calculated price from the user (e.g., a mobile terminal of the user).
8) Display System Control Scenario of User
An eighth scenario S118 is a display system control scenario of a user. The input device 310 may receive a user input having at least one form and convert the user input into an electrical signal. The display system 350 may control displayed content on the basis of the electrical signal.
9) AI Agent Scenario
A ninth scenario S119 is a multi-channel artificial intelligence (AI) agent scenario for a plurality of users. The AI agent 372 may discriminate user inputs from a plurality of users. The AI agent 372 may control at least one of the display system 350, the cargo system 355, the seat system 360 and the payment system 365 on the basis of electrical signals obtained by converting user inputs from a plurality of users.
10) Multimedia Content Provision Scenario for Multiple Users
A tenth scenario S120 is a multimedia content provision scenario for a plurality of users. The display system 350 may provide content that may be viewed by all users together. In this case, the display system 350 may individually provide the same sound to a plurality of users through speakers provided for respective seats. The display system 350 may provide content that may be individually viewed by a plurality of users. In this case, the display system 350 may provide individual sound through a speaker provided for each seat.
11) User Safety Secure Scenario
An eleventh scenario S121 is a user safety secure scenario. When information on an object around the vehicle which threatens a user is obtained, the main controller 370 may control an alarm with respect to the object around the vehicle to be output through the display system 350.
12) Personal Belongings Loss Prevention Scenario
A twelfth scenario S122 is a user's belongings loss prevention scenario. The main controller 370 may acquire data about user's belongings through the input device 310. The main controller 370 may acquire user motion data through the input device 310. The main controller 370 may determine whether the user exits the vehicle leaving the belongings in the vehicle on the basis of the data about the belongings and the motion data. The main controller 370 may control an alarm with respect to the belongings to be output through the display system 350.
13) Alighting Report Scenario
A thirteenth scenario S123 is an alighting report scenario. The main controller 370 may receive alighting data of a user through the input device 310. After the user exits the vehicle, the main controller 370 may provide report data according to alighting to a mobile terminal of the user through the communication device 330. The report data may include data about a total charge for using the vehicle 10.
V2X (Vehicle-to-Everything)
V2X communication refers to communication between a vehicle and all entities such as vehicle-to-Vehicle (V2V) designating communication between vehicles, vehicle-to-infrastructure (V21) designating communication between a vehicle and an eNB or a road side unit (RSU), communication between a vehicle and an individual (pedestrian, bicyclist, driver, or passenger), vehicle-to-network (V2N), and the like.
The V2X communication may have the same meaning as or broader meaning than a V2X sidelink or the NR V2X.
V2X communication may be applicable to various services such as forward collision warning, automatic parking system, cooperative adaptive cruise control (CACC), control loss warning, traffic matrix warning, traffic vulnerable safety warning, emergency vehicle warning, speed warning on curved road, and traffic flow control and the like.
V2X communication may be provided via a PC5 interface and/or a Uu interface. In this case, in a wireless communication system supporting V2X communication, specific network entities for supporting communication between a vehicle and all entities. For example, the network entities may include a BS (eNB), a road side unit (RSU), a UE, an application server (e.g., a traffic safety server), and the like.
In addition, a UE performing V2X communication may be a vehicle UE (V-UE), a pedestrian UE, and a BS type (eNB type) RSU, a UE type RSU, a robot having a communication module, or the like, as well as a general handheld UE.
V2X communication may be performed directly between UEs or may be performed through the network entity(s). A V2X driving mode may be classified according to a method of performing V2X communication.
V2X communication V2X communication is required to support pseudonymity and privacy of a UE at the time of using the V2X application so that an operator or a third party cannot track a UE identifier within an area where the V2X is supported.
Terms frequently used in V2X communication are defined as follows.
The V2X application, called vehicle-to-everything (V2X), includes four types of (1) vehicle-to-vehicle (V2V), (2) vehicle-to-infrastructure (V21), (3) vehicle-to-network (V2N), and (4) vehicle-to-pedestrian (V2P).
In a sidelink, different physical sidelink control channels (PSCCHs) may be allocated to be spaced apart from each other in a frequency domain and different physical sidelink shared channels (PSSCHs) may be allocated to be spaced apart from each other. Alternatively, different PSCCHs may be allocated in succession in the frequency domain and PSSCHs may also be allocated in succession in the frequency domain.
NR V2X
Support for V2V and V2X services in LTE was introduced to extend the 3GPP platform to the automotive industry during 3GPP releases 14 and 15.
Requirements for supporting enhanced V2X use cases are largely classified into four use case groups.
(1) Vehicle platooning enables a platoon in which vehicles move together to be dynamically formed. All the vehicles of the platoon obtain information from a lead vehicle to manage the platoon. The information allows the vehicles to drive more harmoniously in a normal direction and go in the same direction and drive together.
(2) Extended sensors allow row data or processed data collected via local sensors or live video images to be exchanged in vehicles, road site units, pedestrian devices, and V2X application servers. Vehicles may raise environmental awareness beyond what their sensors may detect, and more extensively and generally recognize a local situation. A high data rate is one of main features.
(3) Advanced driving enables semi-automatic or fully-automatic driving. It allows each vehicle and/or RSU shares self-awareness data obtained from local sensors with nearby vehicles and allow each vehicle to synchronize and coordinate trajectory or manoeuvre. Each vehicle shares a driving intent with a vehicle which drives nearby.
(4) Remote driving allows a remote driver or V2X application to drive a remote vehicle for passengers who are unable to drive on their own or in a remote vehicle in a hazardous environment. If fluctuations are limited and a route may be predicted such as public transportation, driving based on cloud computing may be used. High reliability and low standby time are key requirements.
Identifier for V2X Communication Via PC5
Each terminal (or user equipment (UE)) has a Layer-2 identifier for V2 communication through one or more PC5. This includes a source Layer-2 ID and a destination Layer-2 ID.
The source and destination Layer-2 IDs are included in a Layer-2 frame, and the Layer-2 frame is transmitted through a layer-2 link of PC5 identifying a source and a destination of Layer-2 on a frame.
The source and destination Layer-2 ID selection of a UE is based on a communication mode of the V2X communication of the PC5 of the layer-2 link. The source Layer-2 ID may differ between different communication modes.
If IP-based V2X communication is allowed, the UE is configured to use a link local IPv6 address as a source IP address. The UE may use the IP address for V2X communication of PC5, even without sending a Neighbor Solicitation and Neighbor Advertisement message for searching for duplicate addresses.
If one UE has an active V2X application that requires personal information protection supported in a current geographic area, the source Layer-2 ID may change over time and be randomized in order for the source UE (e.g., vehicle) to be tracked or identified from another UE only for a certain time. In the case of IP-based V2X communications, the source IP address must also change over time and be randomized.
Changes in identifiers of the source UE should be synchronized in a layer used for PC5. In other words, if an application layer identifier is changed, the source Layer-2 ID and the source IP address are also required to be changed.
1. Identifier for Broadcast Mode V2X Communication
For a broadcast mode of V2X communication through PC5, the UE is set to a destination Layer-2 ID for using a V2X service. The destination Layer-2 ID to be used for the V2X service is selected according to a configuration as described in 5.1.2.1 of the 3GPP 23.287 document.
The UE self-selects the source Layer-2 ID. The UE may use different source Layer-2 IDs according to different types of PC5 reference points (i.e., LTE-based PC5, NR-based PC5).
2. Identifier for Groupcast Mode V2X Communication
For a groupcast mode of V2X communication via PC5, a V2X application layer may provide group identifier information. When the group identifier information is provided by the V2X application layer, the UE converts the provided group identifier into a destination Layer-2 ID. If the group identifier information is not provided by the V2X application layer, the UE determines the destination Layer-2 ID according to a mapping configuration between service types as described in 5.1.2.1 of the 3GPP 23.287 document. The UE self-selects the source Layer-2 ID.
3. Identifier for Unicast Mode V2X Communication
For a unicast mode of V2X communication over PC5, the destination Layer-2 ID is used on the basis of a communication peer discovered during establishment of a unicast link. Initial signaling for establishing a unicast link may use a default destination Layer-2 ID associated with a service type (i.e., PSID/ITS-AID) configured for establishing the unicast link. During the unicast link establishment procedure, Layer-2 IDs are exchanged and used in subsequent communication between the two UEs.
An Application Layer ID is associated with one or more V2X applications of the UE. If the UE has one or more Application Layer IDs, each Application Layer ID of the same UE may be viewed as an Application Layer ID of a different UE from the perspective of a peer UE.
Since the V2X application layer does not use Layer-2 IDs, the UE must maintain mapping between Application Layer IDs and source Layer-2 IDs used in the unicast link. This allows V2X applications to change the source Layer-2 ID without interruption.
When the Application Layer ID is changed, if a link is used for V2X communication with the changed Application Layer ID, the source Layer-2 ID of the unicast link is changed.
The UE may establish a plurality of unicast links with the peer UE, and may use the same or different source Layer-2 ID for the unicast link.
Broadcast Mode
1. A receiving UE determines a destination Layer-2 ID for broadcast reception. The destination Layer-2 ID is transmitted to an AS layer of the receiving
UE for reception.
2. A V2X application layer of a transmitting UE may provide a data unit and provide V2X application requirements.
3. The transmitting UE determines the destination Layer-2 ID for broadcast. The transmitting UE self-assigns a source Layer-2 ID.
4. One broadcast message transmitted by the transmitting UE transmits V2X service data using the source Layer-2 ID and the destination Layer-2 ID.
Groupcast Mode
1. V2X group management is performed through a V2X application layer.
2. The V2X application layer may provide a group identifier as described in 5.6.1.3 of the 3GPP 23.287 document. In addition, the V2X application layer may provide service requirements for communication.
3. The transmitting UE determines the source Layer-2 ID and the destination Layer-2 ID, and the receiving UE determines the destination Layer-2 ID. The destination Layer-2 ID is delivered to an AS layer of the receiving UE for group communication transmission. The transmitting UE determines a PC5 QoS parameter for groupcast.
4. The transmitting UE has a V2X service related to group communication.
In addition, the transmitting UE transmits V2X service data using the source Layer-2 ID and the destination Layer-2 ID.
The transmitting UE at step 4 has only one groupcast message.
Unicast Mode
1. The UE determines a destination Layer-2 ID for receiving signaling for establishing a PC5 unicast link.
2. A V2X application layer of the UE-1 provides application information for PC5 unicast communication. The application information includes the service type (e.g., PSID or ITS-AID) of the V2X application and an initiating UE's Application Layer ID.
The application layer ID of the target UE may be included in the application information. The V2X application layer of the UE-1 may provide service requirements for the corresponding unicast communication. The UE-1 determines a
PC5 QoS parameter and PFI.
If the UE-1 determines to reuse the existing PC5 unicast link, the UE triggers a Layer-2 link modification procedure.
3. The UE-1 transmits a Direct Communication Request message to initiate a unicast layer-2 link establishment procedure. The Direct Communication
Request message includes the following:
Target User Info: Application Layer ID of the target UE (i.e., Application Layer ID of UE-2)
The UE-1 transmits a direct communication request message through PC5 broadcast by using a source layer-2 ID and a destination layer-2 ID.
4. Direct Communication Accept message is transmitted to UE-1 as follows.
4a. (Establishing Layer-2 link directed to the UE) If the Target User Info is included in the Direct Communication Request message, it is transmitted to the target UE (i.e., the UE-2 responds with a Direct Communication Accept message).
4b. (Establishing Layer-2 link directed to V2X service) If Target User Info is not included in the Direct Communication Request message, it is transmitted to a UE interested in using a known V2X service. To determine to establish a Layer-2 link, it responds to a request from the UE-1 by sending a Direct Communication Accept message (UE-2 and UE-4).
The Direct Communication Accept message includes the following:
The destination Layer-2 ID is set to the source Layer-2 ID of the received Direct Communication Request message.
When the Direct Communication Accept message is received from the peer UE, the UE-1 obtains a Layer-2 ID of the peer UE used for future communication for signaling and data traffic for the unicast link.
The V2X layer of the UE that establishes the PC5 unicast link delivers the unicast link and the PC5 Link Identifier assigned to the information related to the unicast link to the AS layer. The information related to the PC5 unicast link includes
Layer-2 ID information (i.e., Source Layer-2 ID and Destination Layer-2 ID). Through this, the AS layer may maintain the PC5 Link Identifier with information associated with the PC5 unicast link.
5. V2X service data is transmitted via unicast link established as follows:
The PC5 Link Identifier and the PFI are provided to the AS layer along with the V2X service data.
The UE-1 transmits V2X service data using the source Layer-2 ID and the destination Layer-2 ID (i.e., the Layer-2 ID of the peer UE for the unicast link).
Since the PC5 unicast link is bidirectional, the peer UE of the UE-1 may transmit V2X service data to the UE-1 through the unicast link.
The 5G communication technology described above may be applied in combination with the methods proposed in the present disclosure to be described later, or may be supplemented to specify or clarify the technical features of the methods proposed in the present disclosure.
Hereinafter, various embodiments of the present disclosure will be described in detail with reference to the accompanying drawings.
Basic Safety Message (BSM)
A typical type of standard for encrypting messages transmitted and received in a vehicle communication environment is a basic safety message (BSM) defined in “SAE J2735”. BSM refers to broadcasting messages periodically received from the vehicle and are designed to increase safety. Vehicles transmit a message every 100 msec. and a vehicle which receives the message determines safety of the vehicle. The BSM is divided into transmitted information and additional information, which are defined as Part 1 and Part 2, respectively. The contents of the information may include a location of a vehicle, a movement direction, a current time, and state information of the vehicle.
The message ID of the vehicle may be designated as msgID, msgCnt, id, or secMark, and 8 bytes may be allocated. A location value of the vehicle may be set to lat, long, elev, accuriacy, and 14 bytes may be allocated. Specific values of the field value may refer to “SAE J235”.
Table 1 is an example of the BSM that may be applied in the present disclosure.
MsgCount,
TemporaryID,
DSecond,
Latitude,
Longitude,
Elevation,
PositionelAccuracy,
TransmissionState,
Speed,
Heading,
SteeringWheelAngle,
AccelerationSet4Way,
BrakeSystemStatus,
VehicleSize
In the present disclosure, the BSM may be replaced with a V2X message or a V2X safety message performing a similar operation.
In the case of a vehicle, if a vehicle sensor (for example, vehicle information, wheel speed, etc.) is broken or partially damaged and cannot generate sensor information, the current V2X standard cannot transmit BSM. However, even when the sensor information is generated, if data fails to be transmitted due to a problem of RF of the UE and device equipment, it is not possible to check whether V2X communication is properly performed.
In the present disclosure, whether a normal Tx/Rx operation of a V2X on-board unit (OBU) may be determined through interaction with the RSU while driving on the road, and a countermeasure is proposed. In addition, it is possible to determine a normal operation through Interaction based on V2V for erroneous data transmission and a countermeasure is proposed.
Through this, it is possible to determine whether the OBU normally operate and to monitor the normal operation at any time.
The OBU is a vehicle UE which provides a more stable customized surface to a client through inter-communication with an OBU which is driving or stopped and a nearby road side unit (RSU) for the purpose of reducing increased vehicle accidents and providing user-oriented next-generation traffic safety service.
1. When the RSU recognizes a vehicle that passes through the road by a camera or a speed sensor, the RSU delivers a first diagnostic message in a broadcast manner. The first diagnostic message is a message set for determining whether the OBU operates normally and is a message set encrypted to perform a specific operation. The vehicle receiving the message parses and calculates the first diagnostic message and delivers a result value through a response message. In this process, it is possible to determine whether a Tx/Rx function of the OBU operates normally and whether an OBU processor operates normally.
2. The vehicle receiving the first diagnostic message from the RSU transmits a response message as a response to the first diagnostic message.
3. When it is determined on the basis of the response message that the corresponding OBU operates normally, the RSU transmits an OBU_NORMAL message indicating that the OBU operates normally to the OBU.
If the RSU does not receive a response message from the OBU (if process #2 does not operate normally), the RSU may periodically transmit a first diagnostic message (for example, processes {circle around (3)} and {circle around (5)}).
In addition, even if the RSU still does not receive a response message, for example, if the BSM message of the vehicle is received to obtain a certificate of the corresponding vehicle, it may be calculated as a Revocation Certificate List (RCL) and transmitted to the server so that other vehicles may know that there is a problem with the V2X message of the vehicle (process {circle around (6)}).
Alternatively, if the response message is not received and the BSM is also not received, it is determined that the UE for transmitting and receiving the V2X is not installed in the vehicle and a specific operation may not be performed.
The vehicle may determine that the RSU is located in a driving route by using map data, receive a first diagnostic message, and execute an application for calculation. If the first diagnostic message is not received even while driving the range of communication coverage of the RSU, the vehicle may determine that the OBU does not operate normally and restart the OBU system to initialize an operation error of the OBU.
After restarting the OBU system, if the first diagnostic message is normally received, a response message thereto may be transmitted, whereby the vehicle may resolve the temporary error.
If the first diagnostic message is not received from the RSU even after the OBU system is re-booted, the vehicle determines that the OBU does not operate normally, stops the OBU, and displays a notification message indicating that the OBU has a problem through the display for the user.
As described above, if the first diagnostic message is not from the RSU even after the OBU system is re-booted, the vehicle may determine that there is a problem with the OBU system. Here, the OBU may send a signal informing of an abnormal operation of the OBU through a CAN interface connected to the vehicle.
1. In a normal driving mode, not autonomous driving, a notification message indicating that the OBU has a problem is displayed through a display in a dashboard, whereby the user may recognize the notification and performs inspection.
2. In an autonomous driving mode, the vehicle may immediately disable modules that use V2X data, switches to a sensing data-based autonomous driving mode, and displays a notification message indicating that connected driving is impossible to the driver, whereby the user may recognize the situation and performs inspection.
A processor of the vehicle obtains map data related to a driving route from the memory (S1910). Such map data may be obtained from a traffic server, stored in a memory, and updated. The map data may include location information and specification information of the RSU capable of diagnosing whether the vehicle may operate normally in the present disclosure.
The processor may determine the RSU located on the driving route using the obtained map data (S1920). In this manner, the vehicle may determine whether a current location thereof is within a monitoring range of the RSU.
The RSU transmits a first diagnostic message for determining whether a communication module of the vehicle operates normally (S1930).
If the first diagnostic message transmitted from the RSU is not received although the vehicle is within the monitoring range of the RSU on the basis of the map data, the processor of the vehicle transmits a restart signal for restarting the communication module to the communication module (S1940).
The communication module performs a restarting operation according to the restart signal (S1950). By restarting, the temporary error of the communication module may be resolved.
When the temporary error is resolved through the restarting operation of the communication module, the first diagnostic message may be received from the RSU and transferred to the processor (S1960).
The processor generates a response message informing the RSU that the first diagnostic message was normally received as a response to the first diagnostic message (S1970).
The processor delivers the response message to the communication module, and the communication module transmits the response message to the RSU (S1980).
When the RSU successfully receives the response message, the RSU transmits a normal message indicating that the communication module of the vehicle operates normally, and upon receiving the normal message, the communication module transmits the normal message to the processor (S1990).
As described above, the vehicle may determine a location of the RSU through the map data, and when the vehicle enters the monitoring range of the RSU, it may be expected to be able to receive the first diagnostic message from the RSU. If the first diagnostic message is not received due to an abnormal operation of the communication module, the communication module may perform the restarting operation (S2010).
If the error of the communication module is not resolved even through the restarting operation, the communication module may not be able to normally receive the first diagnostic message transmitted from the RSU (S2020).
If the communication module cannot normally receive, a transmission operation of the V2X message of the vehicle may be normally performed (S2030). The V2X message may include certificate information or vehicle ID on the network of the vehicle.
When the certificate information or ID of the vehicle is obtained through the
V2X message, the RSU may transmit an authentication discard message to the server to share with other vehicles that the communication module of the vehicle does not operate normally (S2040).
When the vehicle cannot receive the first diagnostic message even after the restarting operation is performed, if the vehicle is in a normal driving mode, the processor transmits a first notification message to the display to inform the user that there is a problem with the communication module. The display may display the first notification message for user information.
When the vehicle cannot receive the first diagnostic message even after the restarting operation is performed, if the vehicle is in an autonomous driving mode, the processor immediately disables the modules which use the V2X message to prevent an accident due to the abnormal operation of the communication module (S2060).
Further, the processor transmits a second notification message indicating that driving using the V2X message is not possible to the display. The display may display the second notification message for user information.
The vehicle may determine a location of the RSU capable of performing a monitoring operation from the map data. In addition, the vehicle may determine that the vehicle enters an area in which the vehicle may be able to receive a first diagnostic message on the basis of the location of the RSU (S2110).
If the vehicle does not receive the first diagnostic message from the RSU even though the vehicle enters the area in which the first diagnostic message can be received, the vehicle restarts the communication module (S2120).
According to the restarting of the communication module, it may be expected that the error has been resolved, and it is determined again whether the first diagnostic message is received (S2130).
When the first diagnostic message is received, a response message is generated and transmitted to the RSU (S2140).
A normal message indicating that the communication module of the vehicle operates normally may be received from the RSU (S2150).
If the first diagnostic message is not received, it is determined whether the vehicle is in an autonomous driving mode (S2160).
In the case of the autonomous driving mode, the module that uses V2X data is disabled and a second notification message is displayed on the display (S2170).
If the vehicle is not in the autonomous driving mode, a first notification message may be displayed on the display to inform the user about the abnormal operation of the communication module (S2180).
If an internal sensor (e.g., a vehicle state sensor, a wheel speed sensor, etc.) of the vehicle is broken down or is partially damaged and cannot obtain valid sensing data, the vehicle may not be able to transmit a BSM for the safety of other vehicles. However, the module for determining whether the sensing data generated by the internal sensor is valid operates only when the sensing data exceeds a certain range of a specific standard or when the sensing data is not generated.
That is, when the module does not operate, even though sensing data has an error value (for example, if an incorrect value is generated within a certain range (an actual heading direction of the vehicle is 100 degrees but it is generated as 200 degrees)), the sensing data may be generated as a BSM and transmitted to nearby vehicles, causing a risk of an accident.
Therefore, it is necessary to disable the OBU that transmits the BSM including the sensing data having the error value, and to this end, sensors of the RSU and nearby vehicles may be used.
When V2X vehicles receive a V2X Safety Msg such as a BSM from another vehicle, the V2X vehicles may compare and verify the V2X safety Msg using sensors thereof for integrity of the autonomous driving mode.
Through the V2X Safety Msg, if GPS information, speed, excel, and brake information, etc. of the counterpart vehicle are different from the information obtained through the sensor, it may be determined that there is a problem with the V2X module of the corresponding vehicle and the second diagnostic message may be delivered to the vehicle. The second diagnostic message may be delivered in a unicast manner. To this end, a unicast link may be established by using an ID of the counterpart vehicle obtained through the V2X safety msg as an ID of the target UE.
A second diagnostic message indicates what data items of different V2X safety Msg are compared with the sensing data. When the second diagnostic message is received from two or more different vehicles (for example, when the second diagnostic message is transmitted from the first and second vehicles), the host vehicle restarts the corresponding V2X generating module. If the second diagnostic message is no longer received after the restarting, it is determined that the V2X generating module operates normally and no additional alarm or control is performed.
However, if the second diagnostic message is still received after the restarting, host vehicle may determine that the OBU thereof has an error, stop the V2X message transmission operation of the OBU, and inform the user about a problematic sensor of the vehicle on the basis of the data items indicated in the second diagnostic message.
In addition, the RSU may include a sensor capable of sensing the nearby vehicles by itself, and receives GPS information regarding a vehicle within a sensing-available range or obtain speed, excel, brake information, and the like, through the sensor thereof ({circle around (3)}). When the obtained information is different from the V2X safety msg information sent from the vehicle, it is determined that there is a problem in the V2X generating module of the corresponding vehicle and transmits the second diagnostic message to the vehicle. The second diagnostic message may be delivered in a unicast manner. To this end, a unicast link may be established by using an ID of the counterpart vehicle obtained through the V2X safety msg as an ID of the target UE.
The second diagnostic message indicates what the data items of different V2X safety Msg are compared with the sensing data. The host vehicle receiving the second diagnostic message restarts the corresponding V2X generating module. If the second diagnostic message is no longer received after the restarting, it is determined that the V2X generating module operates normally and no additional alarm or control is performed.
However, if the second diagnostic message is still received even after the restarting, the host vehicle may determine that the OBU thereof has an error, stop the V2X message transmission operation of the OBU, and inform the user about a problematic sensor of the vehicle on the basis of the data items indicated in the second diagnostic message.
In addition, the RSU may send information of the vehicle to the server simultaneously with the second diagnostic message until a valid V2X safety msg is received from the corresponding vehicle, so that other vehicles disregard the message of the corresponding vehicle (j).
If the second diagnostic message is received from the RSU or two or more other vehicles by a predetermined number or for a predetermined time or longer even after the system restarts, the vehicle may determine that the V2X system has an error.
The vehicle may display an alarm message regarding an abnormal operation to the user by {circle around (1)} in a case where the data item indicated in the second diagnostic message is wheel speed, by {circle around (2)} in the case of GPS, by {circle around (3)} in the case of a heading angle, and by {circle around (4)} in the case of a brake state, or in a similar manner.
In addition, if the vehicle is in autonomous driving mode, the vehicle may immediately disable the module that uses the V2X data, change to a sensor-based autonomous driving mode, and display an alarm message indicating that connected driving is not possible, for the user as indicated by {circle around (5)} in
If state information of a host vehicle included in a V2X message from the host vehicle is not valid as compared with sensing data of a first vehicle and a second vehicle, the first vehicle and the second vehicle transmit a second diagnostic message indicating that the state information of the host vehicle is invalid (S2410).
The host vehicle performs a restarting operation in order to resolve a temporary error of a module that generates a V2X message (S2420).
After the restarting operation of the module that generates the V2X message, the V2X message including state information of the host vehicle is transmitted again (S2430).
The first vehicle and the second vehicle that receive the V2X message may perform an operation of verifying the V2X message on the basis of the sensing data (S2440).
If it is determined that the V2X message is still invalid on the basis of the verifying operation of the V2X message, the first vehicle and the second vehicle transmit the second diagnostic message again (S2450).
When the vehicle receives the second diagnostic message even after the restarting operation of the module that generates the V2X message, the host vehicle stops the V2X message transmission operation of the communication module so that other vehicles may not receive the invalid V2X message from the host vehicle (S2460).
Further, the host vehicle displays a third notification message on the display in order to inform the user about an invalid data item of the V2X message indicated in the second diagnostic message (S2470).
An RSU may monitor a state of a vehicle which is driving, by using a sensor, and if state information of the host vehicle in a V2X message received from the host vehicle is different from a monitoring result value, the RSU transmits a second diagnostic message to the host vehicle (S2510).
In addition, the RSU may transmit information of the host vehicle obtained through the V2X message to the server (S2520). Through this, the server may transmit a message instructing other connected vehicles to disregard the V2X message from the host vehicle, or other vehicles may obtain information that the V2X message from the host vehicle is not valid through the server.
The host vehicle that receives the second diagnostic message from the RSU may perform an operation of restarting a module that generates the V2X message (S2530). Through this, the host vehicle may expect that the error associated with generation of the V2X message is resolved.
The host vehicle transmits a V2X message including state information of the host vehicle again (S2540).
The RSU compares the received V2X message with information monitored by the RSU to verify the V2X message (S2560).
If it is determined that the V2X message is still invalid, the RSU transmits a second diagnostic message to the host vehicle again (S2570).
When the second diagnostic message is still received even after the the module that generates the V2X message is restarted, the host vehicle stops the V2X message transmission operation of the communication module in order to prevent transmission of the invalid V2X message to other vehicles (S2580).
Further, the host vehicle displays a third notification message indicating which sensor of the vehicle has a problem on the basis of a data item indicated in the second diagnostic message on the display (S2590).
If the vehicle receives the second diagnostic message from two or more other vehicles or from the RSU, the vehicle restarts the module that generates the V2X message (S2610).
The vehicle determines whether a second diagnostic message is received (S2620).
If the second diagnostic message is not received, it is determined that the module that generates the V2X message operates normally, and thus, no additional alarm or control is performed (S2630).
If the second diagnostic message is still received, the vehicle stops the V2X message transmission operation through the communication module and displays a third notification message on the display (S2640).
General Device to which Present Disclosure May be Applied
Referring to
In addition, a specific configuration of the UE device X100 and the server X200 as described above may be implemented such that the details described in various embodiments of the present disclosure described above are applied independently or two or more embodiments are applied at the same time, and redundant descriptions are omitted for clarity.
Embodiments to which Present Disclosure May be Applied
A method for determining an error in an autonomous driving system, the method includes:
determining a location of a road side unit (RSU) on the basis of map information;
determining, on the basis of the location of the RSU, that a vehicle enters an area in which it is possible to receive, from the RSU, a diagnostic message for determining whether a communication module of the vehicle operates normally;
restarting, if the diagnostic message is not received, the communication module to resolve an error that the communication module fails to receive the diagnostic message; and
receiving, from the RSU, a diagnostic message for determining whether the communication module operates normally.
In embodiment 1, the method further includes:
generating a response message as a response to the diagnostic message and transmitting the response message to the RSU; and
receiving a normal message indicating that the communication module operates normally on the basis of the response message from the RSU.
In embodiment 1, the method further includes:
transmitting a V2X message including information of the vehicle to the RSU; wherein the RSU transmits the information of the vehicle to a server in order to share the error of the vehicle with other vehicles.
In embodiment 1, the method further includes:
displaying that the communication module has an error on a display when a driving mode of the vehicle is a normal driving mode, if the diagnostic message is not received after the communication module is restarted.
In embodiment 1, the method further includes:
disabling a module which uses a V2X message when a driving mode of the vehicle is an autonomous driving mode, if the diagnostic message is not received after the communication module is restarted.
In embodiment 5, the method further includes:
displaying on the display that it is impossible to drive using the V2X message.
In embodiment 5, the method further includes:
switching to a driving mode using a sensor of the vehicle.
A method for determining an error in an autonomous driving system, the method includes:
receiving a diagnostic message indicating that there is an error in a V2X message transmitted by a vehicle; and restarting a module generating the V2X message to resolve the error; and transmitting the V2X message in a broadcast manner, wherein the V2X message includes state information of the vehicle and the error is based on external monitoring information related to the vehicle.
In embodiment 8, the restarting is performed if the diagnostic message is generated from two or more vehicles or from a road side unit (RSU).
In embodiment 8, the diagnostic message includes a data item related to the state information of the vehicle different from the monitoring information of the V2X message.
In embodiment 10, the method further includes:
stopping the operation of transmitting the V2X message, if the diagnostic message is received after the module generating the V2X message is restarted.
In embodiment 11, the method further includes:
displaying the data item on a display.
In embodiment 8,
the V2X message includes information of the vehicle, and if the diagnostic message is generated by the RSU, the RSU transmits the information of the vehicle to a server in order to share the error of the vehicle with other vehicles.
A vehicle for determining an error in an autonomous driving system, the vehicle includes:
a communication module;
a display;
a sensing unit;
a memory; and
a processor controlling the communication module, the display, the sensing unit, and the memory,
wherein the processor
determines a location of a road side unit (RSU) on the basis of map information obtained from the memory,
determines, on the basis of the location of the RSU, that the vehicle enters an area in which it is possible to receive, from the RSU, a diagnostic message for determining whether a communication module of the vehicle operates normally,
restarts, if the diagnostic message is not received, the communication module to resolve an error that the communication module fails to receive the diagnostic message, and
receives, from the RSU, a diagnostic message for determining whether the communication module operates normally through the communication module.
In embodiment 14,
the processor generates a response message as a response to the diagnostic message, transmits the response message to the RSU, and receives a normal message indicating that the communication module operates normally on the basis of the response message from the RSU.
In embodiment 14,
the processor transmits a V2X message including information of the vehicle to the RSU through the communication module, and
the RSU transmits the information of the vehicle to a server in order to share the error of the vehicle with other vehicles.
In embodiment 14,
the processor displays that the communication module has an error on a display when a driving mode of the vehicle is a normal driving mode, if the diagnostic message is not received after the communication module is restarted.
In embodiment 14,
the processor disables a module which uses a V2X message when a driving mode of the vehicle is an autonomous driving mode, if the diagnostic message is not received after the communication module is restarted.
In embodiment 18,
the processor displays on the display that it is impossible to drive using the V2X message.
In embodiment 18,
the processor switches to a driving mode which uses the sensing unit.
The present disclosure described above may be implemented as a computer-readable code in a medium in which a program is recorded. The computer-readable medium includes any type of recording device in which data that can be read by a computer system is stored. The computer-readable medium may be, for example, a hard disk drive (HDD), a solid state disk (SSD), a silicon disk drive (SDD), a ROM, a RAM, a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, and the like. The computer-readable medium also includes implementations in the form of carrier waves (e.g., transmission via the Internet). Also, the computer may include the controller 180 of the UE. Thus, the foregoing detailed description should not be interpreted limitedly in every aspect and should be considered to be illustrative. The scope of the present disclosure should be determined by reasonable interpretations of the attached claims and every modification within the equivalent range are included in the scope of the present disclosure.
In addition, while the present disclosure has been particularly described with reference to embodiments, the present disclosure is not limited thereto. It will be understood by those skilled in the art that various modifications and applications, which are not illustrated in the above, may be made without departing from the spirit and scope of the present disclosure. For example, each component illustrated in the embodiments may be modified and made. It should be interpreted that differences related to these modifications and applications are included in the scope of the invention defined in the appended claims.
The present disclosure has been described with reference to the examples applied to an automated vehicle & highway systems based on a 5th-generation (5G) system but can be applied to various other wireless communication systems and autonomous vehicles.
According to an embodiment of the present disclosure, an error of a vehicle may be determined in the autonomous driving system.
Further, according to an embodiment of the present disclosure, a linking operation with the RSU or other vehicles may be performed to determine an error of the vehicle in the autonomous driving system.
Number | Date | Country | Kind |
---|---|---|---|
10-2019-0104704 | Aug 2019 | KR | national |