This invention relates to methods and apparatus for determining electrical properties of structures. More particularly, the invention relates to methods and apparatus for determining location and severity of damage to a structure based on electrical properties of the structure.
Structural health-monitoring is a challenging problem that is particularly difficult in large structures or in structures in which damage is not easily detectable. A variety of sensors (e.g., strain gages or accelerometers) are often needed to effectively identify structural damage. It is sometimes necessary to bond the sensors to the structure or embed them in the structure.
Effective health-monitoring of a composite structure is difficult because damage to the structure can occur during manufacturing or usage. The damage is not easily detected and decreases the integrity of the structure. Further, it is often undesirable or difficult to integrate discrete or distributed sensors into a composite structure. This makes it difficult to accurately identify structural damage. A need therefore exists for methods and apparatus that effectively identify damage to structures, and in particular, composite structures.
It is known in the art that certain materials exhibit a change in electrical resistance as a function of strain experienced by a material. A grid of members (e.g., constantan or copper traces) which resistance changes as a function of strain can be constructed and bonded to or integrated with a structural element (e.g., an aircraft wing) to detect the stresses experienced by the structural element. But, electrical connections must be made to each node of the grid. For large systems with many nodes, the sheer number of electrical connections becomes unwieldy as do the instrumentation required to measure the change in resistance of all the legs between the nodes.
U.S. Pat. No. 5,650,570, incorporated herein by this reference, discloses a sheet-like sensor with amorphous iron-based alloy members woven into glass cloth layers separated by an insulating sheet and covered by synthetic rubber sheets. The members of the first cloth layer run parallel to each other and the members of the second cloth layer run parallel to each other but perpendicular to the members of the first cloth layer. One end of all the members of the first cloth layer are electrically connected to a first scanner and the other end of all of the members of the first cloth layer are electrically connected to a first impedance analyzer. One end of all of the members of the second cloth layer are electrically connected to a second scanner and the other end of all of the members of the second cloth layer are electrically connected to a second impedance analyzer. In this way, the change in resistance along the length of any member due to strain can be measured and the strain computed.
Unfortunately, the specific location of the strain experienced by the sensor cannot be detected. The same is true if a member fails: the sensor cannot identify the specific location of a failure. Moreover, the maximum strain that can be computed is limited by the failure strain of the ferromagnetic elements used which is between 0.2% and 0.4%. Finally, the method disclosed in the '570 patent cannot accurately predict the stress distribution of a structural component since it only provides an estimate of where a force or pressure is applied.
A need therefore exists for methods and apparatus that effectively identify damage to structures.
The invention, in one aspect, relates to a method of determining an electrical property of a structure. The method involves creating a model of an electrical property of a structure and measuring the electrical property of the structure between at least two of a plurality of locations. The method also involves determining the electrical property of at least a portion of the structure based on the model and the measurement of the electrical property between the at least two of the plurality of locations.
In some embodiments, the method also involves providing a plurality of electrical contacts to the structure. In some embodiments, the electrical property is selected from the group consisting of resistance, capacitance and inductance. In some embodiments, the electrical property is one or more electrical properties selected from the group consisting of resistance, capacitance and inductances. In some embodiments, the electrical property is a combination of two or more of resistance, capacitance and inductance. The plurality of locations can be located on a boundary of the structure. The model can be a lumped parameter model, measurement-based model or analytical model (e.g., a Volpe model). The model can include a grid array of electrical nodes.
At least a portion of the structure can be internal to a boundary of the structure. In some embodiments, an internal resistance of the structure can be determined. The internal resistance of the structure can used to determine location and severity of damage to the structure. In some embodiments, a severity of damage to the structure is determined based on the electrical property of the at least a portion of the structure.
In another aspect, the invention is a system for determining an electrical property of a structure. The system includes a model of an electrical property of a structure. The system also includes a measuring device for measuring an electrical property of the structure between at least two of a plurality of locations and for determining the electrical property of at least a portion of the structure based on the model and the measurement of the electrical property between the at least two of the plurality of locations.
The system can include a digital signal processor for selectively measuring electrical resistance between the at least two of the plurality of locations. The electrical property can be selected from the group consisting of resistance, capacitance and inductance. The plurality of locations can be located on a boundary of the structure. The model can be a lumped parameter model, measurement-based model or analytical model (e.g., a Volpe model). The model can include a grid array of electrical nodes. In some embodiments, at least a portion of the structure is internal to a boundary of the structure. An internal resistance of the structure can be determined using the system. The internal resistance of the structure can be used to determine location and severity of damage to the structure. Severity of damage to the structure can be determined based on the electrical property of at least a portion of the structure.
In another aspect, the invention is a system for determining an electrical property of a structure. The system includes a means for measuring an electrical property of the structure between at least two of a plurality of locations. The system also includes a means for determining the electrical property of at least a portion of the structure based on a model of the electrical property of the structure and the measurement of the electrical property between the at least two of the plurality of locations.
In another aspect, the invention is an analysis method for determining an electrical property of a structure. The method involves measuring at least one electrical property between each of a plurality of locations of a structure and forming a matrix comprising the electrical properties measured between each of the plurality of locations. The method also involves calculating the derivative of the matrix with respect to each of the electrical property measurements and estimating resistance of the structure between each of the locations based on the derivative of the matrix.
In some embodiments, estimating the resistance of the structure involves applying an iteration method (e.g., Newton-Raphson method) for solving a system of non-linear equations. The at least one electrical property can be one or more of resistance, capacitance and inductance.
In some embodiments, measuring at least one electrical property involves applying a voltage at one of the locations of the structure and measuring the at least one electrical property relative to each other location of the plurality of locations of the structure. In some embodiments, the method involves applying a voltage at a second location of the structure and measuring the at least one electrical property relative to each other location of the plurality of locations of the structure.
In another aspect, the invention is a system for determining an electrical property of a structure. The system includes a measuring device for determining at least one electrical property between each of a plurality of locations of a structure. The system also includes an electrical device for calculating the derivative of a matrix with respect to each of the electrical property measurements and estimating resistance of the structure between each of the locations based on the derivative of the matrix, wherein the matrix is formed from the electrical properties measured between each of the plurality of locations.
The system can include a digital signal processor for calculating the derivative of the matrix with respect to each of the electrical property measurements. In some embodiments, the digital signal processor applies an iteration method (e.g., Newton-Raphson method) to solve a system of non-linear equations to estimate the resistance of the structure between each of the locations. The electrical property can be selected from the group consisting of resistance, capacitance and inductance. In some embodiments, the measuring device measures the at least one electrical property by applying a voltage at one of the locations of the structure and measuring the at least one electrical property relative to each other location of the plurality of locations of the structure.
In another aspect, the invention is a system for determining an electrical property of a structure. The system includes means for measuring at least one electrical property between each of a plurality of locations of a structure and means for forming a matrix comprising the electrical properties measured between each of the plurality of locations. The system also includes means for calculating the derivative of the matrix with respect to each of the electrical property measurements and means for estimating resistance of the structure between each of the locations based on the derivative of the matrix.
It is an object of this invention to provide improved sheet-like sensors for measuring stress distribution.
It is a further object of this invention to provide such a sensor which reduces the number of electrical connections required to fully analyze the stress experienced by a structural component.
It is a further object of this invention to provide such a sensor in which no electrical connections are required internal to the sensor to fully analyze the full stress distribution.
It is a further object of this invention to provide such a sensor which is capable of detecting the specific location of the strains experienced by the sensor.
It is a further object of this invention to provide such a sensor which is capable of detecting the specific location of a change in resistance in the sensor.
It is a further object of this invention to provide such a sensor which is capable of identifying the specific location of a failure.
It is a further object of this invention to provide such a sensor which is able to measure strains of a higher magnitude.
It is a further object of this invention to provide such a sensor which can fully predict stress distribution.
It is a further object of this invention to provide a method of determining all of the impedances of a grid of leg impedances.
It is a further object of this invention to provide such a method useful in connection with a sheet-like sensor or in connection with analyzers of other electrical circuits.
This invention, in one aspect, results from the realization that a better, less cumbersome, more accurate, and more useful sheet-like sensor is effected by arranging members which change resistance as a function of strain as a grid forming legs between both internal and external nodes but only connecting the resistance measurement analyzer to the boundary nodes and then determining all of the leg resistances based on the measured resistances of the legs between the boundary nodes using an iterative algorithm. In some embodiments, resistance changes as a function of deformation or pressure. In this way, the electrical interconnections between the analyzer and the internal nodes of the grid are eliminated thus seriously reducing the number of electrical interconnections required. Moreover, the specific location of any strains experienced by the sensor can be more accurately detected, the specific location of any failure can be identified, and full stress distribution of a structural member or component underlying the sensor can be predicted. In addition, by using pseudoelastic shape memory alloy material instead of standard strain gage materials, such as constantan or copper, strains of a higher magnitude can be measured. Strain gages are typically fabricated from conductive materials (e.g., metals or alloys) and/or semiconductors. The resistivity (ρ) of strain gage material at 20° C. is different for different materials (e.g., silver −1.47×10−8 Ωm, copper −1.72×10−8 Ωm, tungsten −5.25×10−8 Ωm, manganin −44×10−8 Ωm, constantan −49×10−8 Ωm, nichrome −100×10−8 Ωm, pure carbon −3.5×10−5 Ωm, pure germanium −0.60 Ωm and −2300 Ωm). This invention also results from the realization that the algorithm used in connection with the analyzer of the sheet-like sensor can be used in other environments, e.g., for evaluating electrical circuits.
This invention, in one aspect, features a sheet-like sensor for measuring stress distribution typically comprising a grid of members which change in resistance when subjected to strain, the members intersecting at internal nodes and intersecting at boundary nodes at the periphery of the grid defining a plurality of legs. An analyzer is electrically connected only to the boundary nodes and configured to calculate any change in resistance in all of the legs based solely on the measured resistance of the legs between the boundary nodes.
In one example, the members are copper wires. In another example, the wires are made of pseudoelastic shape memory alloy material. The grid of members may be encapsulated in an encapsulation material such as Kapton. In this way, the analyzer can be formed as a circuit integral with the encapsulation material. The grid may be in the shape of a polygon, e.g., a rectangle or a square. Other shapes and designs, however, are possible.
Typically, the analyzer is configured to measure the resistances of the legs between the boundary nodes, to estimate the resistances of all of the legs, calculate the resistances of all of the legs based on the measured resistances of the legs between the boundary nodes and the estimated resistances of all of the legs, and to compare the calculated resistances of the legs between the boundary nodes with the measured resistances of the legs between the boundary nodes. Based on the comparison, a re-estimate of the resistances of all of the legs is made. Then, iterations of these steps are performed until the measured resistances of the legs between the boundary nodes converge to the calculated resistances of the legs between the boundary nodes to thus accurately determine the resistances of the legs between or connected to the internal nodes.
In one example, the analyzer is further configured to calculate the strain experience by each leg. Also, the analyzer may be further configured to identify any leg which has failed based on a very high determined resistance. Typically, the initial estimate is based on the measured resistances, e.g., the initial estimate is set to the mean of the measured resistances. Also, relaxation techniques may be used.
A sheet-like sensor for measuring stress distribution in accordance with this invention typically includes a grid of members which change in resistance when subjected to strain, the members intersecting at internal nodes and intersecting at boundary nodes at the periphery of the grid defining a plurality of legs. An analyzer is connected only to the boundary nodes. In the preferred embodiment, the analyzer is configured to measure the resistances of the legs between the boundary nodes and estimate the resistances of all of the legs, calculate the resistances of all of the legs based on the measured resistances of the legs between the boundary nodes and the estimated resistances of all of the legs. The calculated resistances of the legs between the boundary nodes is compared with the measured resistances of the legs between the boundary nodes. Based on the comparison, a re-estimate of the resistances of all of the legs is made, and iterations continue until the measured resistances of the legs between the boundary nodes converge to the calculated resistances of the legs between the boundary nodes. In this way, the resistances of the legs between or connected to the internal nodes is accurately determined.
This invention also features a sensor system or method for a grid including internal nodes and boundary nodes at the periphery of the grid defining a plurality of legs in which a characteristic of the legs between the boundary nodes is measured, the same characteristic of all of the legs is estimated, and the same characteristic of all of the legs is calculated based on the measured characteristic of the legs between the boundary nodes and the estimated characteristic of all of the legs. Next, a comparison is made between the calculated characteristic of the legs between the boundary nodes and the measured characteristic of the legs between the boundary nodes. Based on the comparison, the characteristic of all of the legs is again estimated, and iterations continue until the measured characteristic of the legs between the boundary nodes converge to the calculated characteristic of the legs between the boundary nodes. In one example, the members change in resistance when subjected to strain and the characteristic analyzed is resistance which varies as a function of strain. In one example, the characteristics are complex impedances.
One exemplary method for determining impedances in a grid of leg impedances in accordance with this invention includes: a) measuring the resistances of the legs between the boundary nodes, b) estimating the resistances of all of the legs, c) calculating the resistances of all of the legs based on the measured resistances of the legs between the boundary nodes and the estimated resistances of all of the legs, d) comparing the calculated resistances of the legs between the boundary nodes with the measured resistances of the legs between the boundary nodes, e) based on the comparison, re-estimating the resistances of all of the legs, and f) iteratively repeating steps c)–e) until the measured resistances of the legs between the boundary nodes converge to the calculated resistances of the legs between the boundary nodes to thus accurately determine the resistance of the legs between or connected to the internal nodes. Further included may be the steps of calculating the strain experience by each leg, and identifying any leg which has failed based on a very high determined resistance. Typically, the estimate of step b) is based on the step a), (e.g., the estimate is set to the mean of the measured resistances). Also, a relaxation technique may be used in step f).
A sheet-like sensor for measuring stress distribution in accordance with this invention may include a grid of members which change in resistance when subjected to strain, the members intersecting at internal nodes and intersecting at boundary nodes at the periphery of the grid defining a plurality of legs and means, such as an analyzer, connected only to the boundary nodes, for calculating any change in resistance in all of the legs based solely on the measured resistance of the legs between the boundary nodes.
The foregoing and other objects, aspects, features, and advantages of the invention will become more apparent from the following description and from the claims.
Other objects, features and advantages will occur to those skilled in the art from the following illustrative description, when read together with the accompanying drawings which are not necessarily drawn to scale.
Aside from the preferred embodiment or embodiments disclosed below, this invention is capable of other embodiments and of being practiced or being carried out in various ways. Thus, it is to be understood that the invention is not limited in its application to the details of construction and the arrangements of components or steps set forth in the following description or illustrated in the drawings.
Proposed sensor 10,
As delineated in the Background section above, one problem with this arrangement is the need for wires or electrical interconnects connected to all of the nodes. For N×M nodes (in
Note, however, that for a system with 10,000 nodes, there are only 2M+2N−4 boundary nodes or 396 boundary nodes. If any change in resistance of all the legs between the 10,000 nodes could be detected via wires or electrical interconnections connected to only the 396 boundary nodes, there would be 9,604 less wires or electrical interconnections greatly reducing the complexity and cost of the system.
Disclosed in U.S. Pat. No. 5,650,570 is sheet-like sensor 20,
Note that no nodes are formed. Thus, when an electrical connection is made between each end of each member 22 and between each end of members 26 to separate analyzers (see FIG. 25 of the '570 patent), any change in resistance along the length of a given member due to stress can be detected but not the specific location of the stress in all cases, for example, if only one member of layer 28 experiences stress. The same is true if one member fails at some point along its length: the system can not then identify the specific location of the failure. Moreover, the system of the '570 patent cannot accurately predict the full stress distribution since it only provides an estimate of where a force or pressure is applied. Also, the need for the insulating sheet between the two glass cloth layers results in a thicker and more unwieldy sheet-like sensor.
In the subject invention, in contrast, stress locations can be precisely determined and measured by only attaching wires, leads, or other electrical interconnections to the boundary nodes of the sheet-like sensor. As shown in
Unlike the system shown in
Analyzer 44 is configured to calculate any change in resistance in all of the legs based solely on the measured resistances of the legs between the boundary nodes. For example, in system 40′,
The subject invention is not limited to polygonal, rectangular, or square configurations, however. In system 40″,
Returning again to
Next, by knowing a) the resistive network or grid configuration and layout, b) the measured resistances between the boundary nodes, and c) the estimated resistances of all of the legs, the resistance of all of the legs is calculated, step 54,
Then, the calculated resistances of the legs between the boundary nodes is compared, step 56, with the measured resistance of the legs between the boundary nodes. Based on this comparison, at step 60, a new estimate is made for the resistances of all of the legs. If convergence has not occurred at step 58, steps 54, 56, 58, and 60 are again carried out until convergence occurs whereupon the measured resistances between the boundary nodes at step 50,
Once all the resistances are known and, more specifically, when there is a change in resistance of one or more of the legs due to strain, the resulting strain can be easily calculated step 62,
In a typical system, the sheet-like sensor of
This section provides the theory of how the internal voltages and currents in a grid with known leg resistances can be determined. Making use of two simple examples best does this. Consider the simple network of resistors in series of
Using standard electrical network theory, the following equations hold. The voltage drop over Resistance R1 is:
ΔV21=V2−V1=I1R1, (1)
the voltage drop over Resistance R2 is:
V3−V2=I2R2, and (2)
the voltage drop over Resistance R3 is:
V4−V3=I3R3. (3)
At the nodes, the net current flow must be zero. Thus, at node 2
I1−I2=0, and (4)
at node 3,
I2−I3=0 (5)
The unknowns I1, I2, I3, V2, V3 can be determined from equations (1) through (5) when a voltage is applied across nodes 1 and 4 and when V1 and V4 are known. Equations (1) through (5) can be placed into matrix form, which yields:
In order to solve this set of equations for the unknowns, the equations are re-organized as shown in Equation (7):
and then the unknowns can be calculated from:
re-organized to
Equation (11) provides the solution for the unknowns in the grid.
Another example is a circuit with resistors in parallel and in series as shown in
V2−V1=I1R1, (12)
the voltage drop over R2 (over network nodes 2 and 3) is:
V3−V2=I2R2, (13)
the voltage drop over R3 (over network nodes 2 and 3) is:
V3−V2=I3R3, and (14)
the voltage drop over R4 (over network nodes 2 and 3) is:
V4−V3=I4R4. (15)
At the nodes, the net current flow must be zero. Thus, at node 2
I1−I2−I3=0, and (16)
at node 3
I2+I3−I4=0 (17)
In matrix form:
This matrix can be re-organized and solved following the steps shown in Equations (8) through (11).
Thus, one innovation of this invention is a method for determining the leg resistances of a grid network of resistances. The internal currents and voltages can be determined by applying known voltages to the external nodes of the network if the leg resistances are known using an iterative algorithm that converges to the leg resistances, without any prior knowledge of the resistances.
The network of
Note that Ri-j is the measured resistance or impedance between boundary nodes i and j.
The first step in the iterative algorithm is to calculate what the resistances between the boundary nodes will be for initial estimates of the leg resistances (RLeg-estimatek). Here k is the index of the iterative loop. The closer the initial estimates are to the actual leg resistances, the quicker the algorithm will converge. Intelligent methods for determining good initial estimates are discussed later.
The calculated resistances are obtained by using the method outlined in the previous section. Once the input currents are known, the resistances between boundary nodes can be calculated and stored in a column vector {RNode-Estimatek}.
The second step in the iterative algorithm is to determine how this column of resistances will change when a leg resistance is perturbed. Let {RLeg nk} be the column vector between nominal and when leg number n's resistance has been changed by a small delta from the initial estimate, that is let:
A matrix [RPerturbedk] is constructed of these column vectors where the columns are obtained by varying sequentially the leg resistances.
where Nelem is the number of legs (resistive elements) in the grid. An improved estimate of the leg resistances are obtained using the following equation:
Where FRelax is a relaxation factor determined by standard relaxation methods.
The algorithm can also be used to identify failures in electronic circuits. Since the algorithm will sense the impedance of grid elements, the algorithm can detect when a leg is short circuited, the resistance is zero, or near-zero. The algorithm can also detect if a connection has been broken. For broken connections, the leg impedance goes to infinity, which can be detected by the algorithm.
The algorithm can also be used to identify complex impedances in a network. For example, by using complex variables, the approach can be used to identify complex impedances of the form:
Z=ZR+jZI (23)
where j=√{square root over (−1)}, ZR is the real component and ZI is the imaginary component of the impedance. In this process, an impedance meter will measure the complex impedance across the external nodes and the same procedure outlined in equations (19) through (22) will yield a measure of the grid impedances.
By measuring the impedance of the network at different frequencies, the method can be used to identify capacitances and inductors in an electrical network. Thus each leg can have a combination of a pure resistance, a pure capacitor and/or a pure inductor as shown in
where Z1, Z2, and Z3 are the leg impedances obtained at the three different frequencies. From these three equations the equivalent resistance, capacitance and inductance of any leg can be uniquely determined. When more test frequencies are used, minimization techniques can be used to estimate the values of leg elements.
The method or algorithm can use all the nodes in the grid or only the boundary nodes. The question is if all the leg impedances can be determined if resistances are only measured between the boundary nodes. For a regular grid of N×M nodes, the number of boundary nodes is
2M+2N−4, and (25)
the number of elements in a regular grid (See
M(N−1)+N(M−1)=2MN−M−N, (26)
and the number of leg impedances that can be determined is equal to the number of unique measurements that can be made between the external nodes is:
[2N+2M−4][2N+2M−4−1]/2=2N2+2M2+4NM−9N−9M+10 (27)
(2N2+2M2+4NM−9N−9M+10)−(2MN−M−N)=2(N2+M2+MN)−8(N+M)+10>0, (28)
Since the conclusion is that additional elements can be added to the regular grid.
A good choice for an initial guess is the mean of the measured resistances between the boundary nodes, that is:
RLeg n-Estimatek=1=mean {RNode-Meas} for n=1,Nelem (29)
This choice leads to convergence without any relaxation in most cases studied.
The grid of
In another experiment, resistance R7 was removed in the grid of
A mathematical model was also constructed of the circuit shown in
The convergence of the algorithm, starting with the mean of the simulated measurements between the boundary nodes are shown in
In another example, a mathematical model was constructed of the circuit shown in
In another example, a mathematical model was constructed of the circuit shown in
Another mathematical model was constructed of the 16 node circuit shown in
The convergence of the algorithm, starting with the mean of the simulated measurements between the boundary nodes are shown in
In addition, although leg resistances and impedances are the typical characteristics analyzed by the method of this invention, analysis of other characteristics is possible.
Strains induced in a structure are often complex and, depending on the loads, the strains can vary significantly spatially. This invention provides a grid of resistive elements that are sensitive to changes in strain. For example, constructing a grid of copper wires, where the resistance of the copper wires changes when they are strained, can form such a grid. An alternative strain sensitive material is pseudoelastic shape memory alloy wires. Using the methods described above, the resistance of each leg in the sensor grid is determined and the sensor grid can be used to measure, in detail, the complex strain in a structure. The sensors can be large to measure global structural strains or small to obtain a detail measurement of a stress concentration.
The sensing grids can also be used to determine spatial variation of loads and to determine the point of application of a load, for example, where a finger or stylus presses down on an input device constructed using the strain sensitive grid.
In one aspect of this invention is a grid of strain sensitive elements are used and the algorithm determines the resistance in each leg of the grid while only having electrical access to the external or boundary nodes of the grid.
The effective algorithms described above are used to determine the resistances in a sensor-grid make strain-sensing grids attractive for many applications. The grid elements in the sensing grid are connected at the internal nodes.
The algorithm converged to the actual resistance values within 8 iterations. It should be noted that algorithm converges much faster (one or two iterations) when the initial guess for the grid resistances are near the actual values. In this example the initial guess was randomly set to be between 0 and 500Ω. Given that in strain sensors the resistance change is proportional to strain, the conclusion is that the algorithm can thus measure the change in strain anywhere in the sensor-grid.
And, when Resistor 7 was removed, simulating a destructive failure at this location, the algorithm, using only measurements made through electrically accessing the boundary nodes (1, 2, 3, 4, 6, 7, 8 and 9), rapidly converges to the correct resistances. By verifying that the algorithm can detect a broken connection, it is demonstrated that the proposed solution is not only robust, but it can also be used for structural health monitoring.
The preferred sensor grid of
Structural strain will be inferred from the measurement of the change in grid-leg resistances. The “leg” resistances are determined by the algorithm disclosed above that only requires access to the boundary nodes of the grid.
The use of a strain-sensing grid of strain-sensitive thin shape memory alloy wires 100 connected on their boundary ends to bus 102 allow the sensor-grid to measure large strains. Depending on the fineness of the grid, strain can be monitored in far more detail than possible with point sensors. Ultra-thin copper, pseudoelastic shape memory alloy wires, and standard foil or ceramic gauges can be used as the sensor elements (legs).
The low-weight, robust and thin encapsulated sensor grid can be bonded to any structural surface, or it can be integrated into the structure itself as one of the layers in the composite. Logic can be added to the sensor-grid to determine structural health, structural shape, strain detail at stress concentrations, and structural dynamic response by the use of circuitry disposed on flex circuit 104. The sensor grids can also be used to improve the accuracy and sensitivity of loadcells, pressure sensors and accelerometers.
When piezoelectric actuator 106,
The proposed technology is markedly different from the “point-sensor” approach and warrants some basic understanding of the problem. In order to make the case that the proposed technology is feasible, a simple Rayleigh-Ritz model of a 1 m span, 0.4 m chord and 20 mm thick cantilevered plate was constructed. This Rayleigh-Ritz model was used to predict the static deflection of the plate when subjected to out-board leading and trailing edge vertical loads. The vertical loads were sized to yield a maximum deflection equal to one percent (1%) of the span dimension, namely 10 mm.
Embedding the sensor-grid in a soft polymer also allows the subject invention to be used as a fluid flow shear sensor. When the sensor is attached to the surface of an underwater vehicle, it can measure shear stresses induced by fluid flow.
A shear-sensor design is shown in
According to
Because pseudoelastic alloys and shape memory alloys exhibit measurable changes of resistance when strained, such alloys are suitable for use in strain gauges/sensors.
By contrast,
A strain gauge incorporating a pseudoelastic alloy material functions in a manner similar to conventional strain gauges, except that it is capable not only of measuring small strains in an object, but also medium to large size strains because of the use of a pseudoelastic alloy material. Conventional strain gauges made of typical metals and metal alloys fail upon straining with approximately 0.1–1% elongation, whereas the present invention is directed to strain gauges made of pseudoelastic materials capable of withstanding approximately 8% elongation without permanent deformation.
This invention thus provides an improved sheet-like sensor for measuring stress distribution. The number of electrical connections required to fully analyze the strain experienced by a structural component is seriously reduced because no wires need be connected internally to the sensor to fully analyze the stress distribution. The sensor is capable of detecting the specific location of any strains experienced and is capable of identifying the specific location of a failure. The sensor is able to measure strains of a higher magnitude and can fully predict stress distribution. The method of this invention can be used in connection with the sheet-like sensors disclosed or their equivalents or, indeed, to identify failures of electronic circuitry. A better, less cumbersome, more accurate, and more useful sheet-like sensor is effected by arranging members which change resistance as a function of strain as a grid forming legs between both internal and external nodes but only connecting the resistance measurement means or analyzer to the boundary nodes and then determining all of the leg resistances based on the measured resistance of the legs between the boundary nodes. In this way, there need be no electrical interconnections between the analyzer and the internal nodes of the grid thus seriously reducing the number of electrical interconnections required. Moreover, the specific location of any strains experienced by the sensor can be more accurately detected, the specific location of any failure can be identified, and full stress distribution of a structural member or component underlying the sensor can be predicted. In addition, by using pseudoelastic shape memory alloy material instead of ferromagnetic materials, strains of a higher magnitude can be measured.
where ρ is the resistivity of the fiber composite material, A is the cross-sectional area of the composite structure and L is the length of the structure. When a composite structure is damaged (e.g., puncture hole through the composite or tear in the composite) the effective length (L), effective area (A) and resistance (R) of the composite structure will change. In this manner, changes in resistance of a structure can be used to identify damage in the structure.
In some embodiments, the severity of damage to a structure also can be determined based on changes in the resistance of the structure. For example, a large hole in a structure will change the effective length (L) more than will a small hole in the structure. In this manner, changes in resistance (R) relative to a nominal value will be greater in the presence of a large hole than the change in resistance would be in the presence of a small hole. In some embodiments, changes in capacitance or inductance of an electrically conductive structure can be similarly used to identify the presence and magnitude of damage in the structure.
In this embodiment, a lump parameter model of the structure 320a of
By way of example, if the structure 320a is an electrically conductive graphite fiber structure, electrical resistance of the resistive elements (R1–R12) can be modeled using equation (30) and by determining appropriate values for ρ, A and L. In some embodiments, the structure 320a can be formed of other resistive, capacitive or inductive materials. In some embodiments, alternative equations can be used to model the electrical properties of the structure 320a. Further, various types of models can be used to model electrical properties of a structure. For example, the model can be a lumped-parameter model, an analytical model (e.g., a Volpe model) or a measurement-based model.
Referring to
By way of example, the module 328 measures via connections 301 and 302 the electrical resistance between node 1 and node 2, R1–2 (referring to
The module 328 implements the method associated with, for example, equations (1)–(22) and the module 328 determines the resistances of the internal elements R4, R6, R7 and R9 based on the resistance measurements made between each of the external nodes (Nodes 1, 2, 3, 4, 6, 7, 8 and 9) of the structure 320a.
In alternative embodiments, the module 328 measures one or more electrical properties (e.g., resistance, capacitance and/or inductance) between nodes of the electrically conductive structure 320a. An exemplary module 328 for measuring electrical properties of a structure is a Model 4263B LCR meter (Agilent Technologies).
By way of illustration, an experiment was conducted to determine electrical properties of a lumped parameter electrical model of a structure, such as the grid 320b of
The module 328 measured the resistance between each of the external nodes (Node 1, Node 2, Node 3, Node 4, Node 6, Node 7, Node 8 and Node 9), the values of which are provided in Table VII. By way of illustration, the value provided in row 1, column 2 of Table VII corresponds to the resistance (172 ohms) measured by the module 328 between Node 1 and Node 2. By way of further illustration, the value provided in row 2, column 9 of Table VII corresponds to the resistance (270 ohms) measured by the module 328 between Node 2 and Node 9.
In the same manner as described previously herein regarding, for example,
The resistance of elements R4, R6, R7 and R9 as determined by module 328 for several experiments are provided in Table VIII. Column 2 and Column 3 correspond to an experiment in which all resistors (R1–R12) are included in the grid 320b. Column 2 of Table VIII lists, for comparison, the actual values of each of the resistors (R1–R12) of the grid 320b. Column 3 of Table VIII lists the values of each of the resistors (R1–R12) as determined by the module 328 based on the methods described herein and the measurements (provided in Table VII) between each of the nodes of the grid 320b that are located on the boundary 332 of the grid 320b.
Column 4 and column 5 correspond to an experiment in which resistor R7 is omitted from grid 320b (leaving resistors R1–R6 and R8–R12) to simulate a structural failure (e.g., a puncture 324 through the structure 320a of
By way of example, the resistance of elements R4, R6, R7 and R9 determined by module 328 can be compared with predefined values (e.g., nominal values associated with an undamaged structure) to determine the presence of structural damage. By way of example, an operator can identify the presence of damage in a structure at the location of resistive element R7 (regarding the experiment identified by column 4 and 5 of Table VIII) because the module 328 determined the value of R7 to be “open” (i.e., infinite).
In another embodiment, the resistances of the elements of grid 320b vary based on pressure applied to one or more of the elements R4, R6, R7 and R9. In this manner, the module 328 can determine the change in resistance of elements R4, R6, R7 and R9 due to pressure applied to one or more of the elements. Further, the resistance of elements R4, R6, R7 and R9 determined by module 328 can be compared with predefined values (e.g., nominal values associated with no pressure applied to the structure) to determine the location of the pressure applied to the grid 320b.
In another embodiment, the illustrative method of determining an electrical property of a structure involves formulating a model of a structure (e.g., a lumped parameter electrical model of the resistance of the structure). Referring to
ΔV21=V2−V1=I1R1 (31)
Voltage drop over Resistance R2 (between Nodes 2 and 3):
V3−V2=I2R2 (32)
Voltage drop over Resistance R3 (between Nodes 3 and 4):
V4−V3=I3R3 (33)
At the nodes the net current flow is zero; and at node 2:
I1−I2=0 (34)
and, where Ij is the current through resistor j; and at node 3
I2−I3=0 (35)
The unknowns I1, I2, I3, V2, V3 are determined from equations (31), (32), (33), (34) and (35) when a voltage is applied across nodes 1 and 4, which is when V1 and V4 are known. Equations (31), (32), (33), (34) and (35) are placed into matrix form, which yields:
To solve this set of equations for the unknowns, the equations are re-organized as shown in Equation (37):
Then the unknowns are calculated from:
Equation (38) is reorganized to the following format:
The next step involves pre-multiplying Equation (40) with B2, yielding:
Equation (44) is used to solve for the voltage drops across the leg elements, while equation (40) is used to determine the currents in the legs. The resistance between boundary nodes is determined by:
where Fi is the direction current flows from the boundary node to which the voltage is applied.
By way of example, the equations (31)–(45) may be used to determine the resistance of a structure making use of only the boundary nodes of the structure, for example, a structure 440a (of
In this 20 node network (Node 1–Node 20), Nodes 1–12 are boundary nodes and Nodes 13–20 are interior to the boundary nodes. The leg resistances (R1–R22) are determined by module 328 (for example, similarly as previously described herein regarding
where Ri-j is the measured resistance between boundary nodes i and j.
The next step in applying the illustrative method is to determine (e.g., estimate) the resistances between the boundary nodes to provide initial estimates of the leg resistances (RLeg-Estimatek), were k is an index of the iterative loop. The closer the initial estimates are to the actual leg resistances, the quicker the algorithm will converge. Examples of methods for determining initial estimates are discussed herein. The calculated resistances are obtained by using the method outlined in equations (31)–(45). After the input currents are determined, updated values of the resistances between boundary nodes are calculated and stored in a column vector {RNode-Estimatek}.
The slope of the column vector of resistances {RNode-Estimatek} with respect to the leg resistances is determined as follows:
is the column vector and is set equal to the derivative of {RNode-Estimatek} with respect to leg resistance n. A matrix └RSlopek┘ is constructed of these column vectors where the columns are derivatives with respect to the leg resistances:
and where, Nelem is the number of legs (resistive elements) in the grid.
The gradients (slopes) can, alternatively, be calculated using an appropriate form of equation (48) modified, for example, to reflect the correct number of resistive elements, Relement in the specific structure:
The illustrative method then involves determining:
The unknown currents (Iu) are eliminated from equation (50) by multiplying the first line of equation (50) with B2[B1]−1:
and then subtracting:
[B2[B1(RElem)]−1A11]Vu+[B2[B1(RElem)]−1A12]Vk=0 (52)
The derivative of equation (52) is then determined with respect to the leg resistances by:
and, because B1−1 has
on the diagonal, the derivative of B1−1 is given by:
resulting in:
Equation (56) is rank deficient by one because the resistances can be scaled by a constant (scalar) to yield the same nodal voltages. The additional equation that is required to find the proper scaling involves setting the predicted current during one of the measurements equal to a measured value. No relaxation is needed for convergence. Relaxation is a method of solving simultaneous equations (e.g., non-linear equations) by guessing a solution of the equations and then reducing the errors that result by successive approximations of the solution until all the errors are less than a specified value.
In one experiment, the method converged within 4 iterations regardless of the initial guess used for the resistances. This suggests that the gradients are not strongly dependent on the resistance values which aids the speed of convergence of the method to a solution (e.g., solution achieved in a small number of iterations). This method also can be used to determine, for example, complex impedances between nodes of a structure.
Various techniques can be employed to determine an initial estimate of, for example, the leg resistances. In one embodiment, the Newton-Raphson method is used to determine initial estimates of, for example, leg resistances by the following relationship:
This relationship (equation (57)) is over-defined and a solution that minimizes the error between RNode-Estimatek and resistances measured between the boundary-nodes (RNode-Meas) is obtained by using the pseudo inverse:
which yields:
where FRelax is a relaxation factor used to ensure convergence.
By way of illustration, an experiment was conducted on the structure 420a of
In this embodiment, the module 328 sets a variable (k) equal to the number 2 (step 524). In accordance with the method 500, a voltage is then applied by the module 328 to an individual node (step 512) (voltage is applied to Node 2 in the first iteration of the method 500). The module 328 also measures the voltage at each of the other external nodes (step 516). The module 328 likewise measures (step 516) the current to ground (through Node 1) during each repetition (step 504) of the method 500. Generally, the method 500 is repeated (step 504) such that a voltage is applied (step 512) to each external node (Nodes 2–12) and a corresponding voltage is measured at each if the other nodes (step 516) and current is measured at Node 1 (step 516). In this manner, as the method 500 is repeated (step 504) the method 500 increments (step 520) the indicia (k) that designates to which node a voltage is to be applied during each iteration of the method 500. The method 500 is terminated (step 508) at the conclusion of step 516 when the indicia k is equal the total number of external or boundary nodes.
By way of example, the module 328 can be a digital signal processor that also measures, for example, the various properties of the structure 420a and determines the resistance of internal resistive elements (between each of the Nodes 1–20 as described in
In some embodiments, an initial estimate of, for example, the resistance of the legs of a composite structure is determined using the following equation that specifies the voltage between boundary nodes of the structure:
Vij=Vijn(RElemn) (60)
in which a matrix is constructed of different values of the resistances. The different values are selected by choosing an open-circuit value for each (0 ohms). The value of each of the resistances is then each perturbed in order from a value of Rlow equal to about 1 ohm to a value of Rhigh equal to about 100 kOhm. In this manner, two matrices are obtained:
Now let:
following which an estimate of the leg resistance is:
In some embodiments, the illustrative method for determining an electrical property of a structure involves sequentially multiplying the measured voltages with a gradient provided by a Newton-Raphson solver. The matrices are stored and used to determine a set of matrices of the following form that are used as a pre-conditioner:
where, for example,
Although specific features of the invention are shown in some drawings and not in others, this is for convenience only as each feature may be combined with any or all of the other features in accordance with the invention. The words “including”, “comprising”, “having”, and “with” as used herein are to be interpreted broadly and comprehensively and are not limited to any physical interconnection. Moreover, any embodiments disclosed in the subject application are not to be taken as the only possible embodiments.
Other embodiments will occur to those skilled in the art and are within the following claims.
This application is a continuation-in-part of U.S. patent application Ser. No. 10/277,649 filed on Oct. 23, 2002 now U.S. Pat. No. 6,802,216, which claims priority of U.S. Provisional application Ser. No. 60/373,096 filed Apr. 16, 2002 and U.S. Provisional application Ser. No. 60/373,058 filed Apr. 16, 2002.
Number | Name | Date | Kind |
---|---|---|---|
3552856 | Schwallie | Jan 1971 | A |
3789657 | Ching, Jr. et al. | Feb 1974 | A |
4142405 | Stevens | Mar 1979 | A |
4292851 | Brewer | Oct 1981 | A |
4429580 | Testa et al. | Feb 1984 | A |
4482784 | Whetstone | Nov 1984 | A |
4514688 | Whetstone | Apr 1985 | A |
4637263 | Fritz et al. | Jan 1987 | A |
4689448 | Snyder et al. | Aug 1987 | A |
4744252 | Stout | May 1988 | A |
4869113 | Sarrazin | Sep 1989 | A |
4901575 | Bohannan et al. | Feb 1990 | A |
4956999 | Bohannan et al. | Sep 1990 | A |
5125017 | Lempriere | Jun 1992 | A |
5184516 | Blazic et al. | Feb 1993 | A |
5195046 | Gerardi et al. | Mar 1993 | A |
5255565 | Judd et al. | Oct 1993 | A |
5375471 | Blazic et al. | Dec 1994 | A |
5383133 | Staple | Jan 1995 | A |
5525853 | Nye et al. | Jun 1996 | A |
5549803 | Schoess et al. | Aug 1996 | A |
5559358 | Burns et al. | Sep 1996 | A |
5636021 | Udd | Jun 1997 | A |
5650570 | Goto et al. | Jul 1997 | A |
5723792 | Miyazaki | Mar 1998 | A |
5723857 | Underwood et al. | Mar 1998 | A |
5774376 | Manning | Jun 1998 | A |
5841034 | Ball | Nov 1998 | A |
5911158 | Henderson et al. | Jun 1999 | A |
5936411 | Jacobsen et al. | Aug 1999 | A |
5970393 | Khorrami et al. | Oct 1999 | A |
6006163 | Lichtenwalner et al. | Dec 1999 | A |
6014896 | Schoess | Jan 2000 | A |
6069985 | Albin et al. | May 2000 | A |
6076405 | Schoess | Jun 2000 | A |
6079277 | Chung | Jun 2000 | A |
6080982 | Cohen | Jun 2000 | A |
6109115 | Miyazaki | Aug 2000 | A |
6144026 | Udd et al. | Nov 2000 | A |
6148675 | Okano | Nov 2000 | A |
6191519 | Nye et al. | Feb 2001 | B1 |
6192759 | Schoess | Feb 2001 | B1 |
6252334 | Nye et al. | Jun 2001 | B1 |
6256090 | Chen et al. | Jul 2001 | B1 |
6370964 | Chang et al. | Apr 2002 | B1 |
6396262 | Light et al. | May 2002 | B1 |
6399939 | Sundaresan et al. | Jun 2002 | B1 |
6480792 | Prendergast | Nov 2002 | B1 |
6529127 | Townsend et al. | Mar 2003 | B1 |
6547448 | Johnson et al. | Apr 2003 | B1 |
6617963 | Watters et al. | Sep 2003 | B1 |
6625569 | James et al. | Sep 2003 | B1 |
6668105 | Chen et al. | Dec 2003 | B1 |
6674928 | Johnson et al. | Jan 2004 | B1 |
6693548 | Boyce et al. | Feb 2004 | B1 |
20020107679 | Roelofs | Aug 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20050139001 A1 | Jun 2005 | US |
Number | Date | Country | |
---|---|---|---|
60373096 | Apr 2002 | US | |
60373058 | Apr 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10277649 | Oct 2002 | US |
Child | 10949944 | US |