The present invention relates generally to ultra-wideband communication systems, and, in particular, to a receiver for use in an ultra-wideband communication system adapted to determine the location of an RF transmitter relative to an RF receiver.
In general, in the descriptions that follow, we will italicize the first occurrence of each special term of art which should be familiar to those skilled in the art of ultra-wideband (“UWB”) communication systems. In addition, when we first introduce a term that we believe to be new or that we will use in a context that we believe to be new, we will bold the term and provide the definition that we intend to apply to that term. In addition, throughout this description, we will sometimes use the terms assert and negate when referring to the rendering of a signal, signal flag, status bit, or similar apparatus into its logically true or logically false state, respectively, and the term toggle to indicate the logical inversion of a signal from one logical state to the other. Alternatively, we may refer to the mutually exclusive boolean states as logic_0 and logic_1. Of course, as is well known, consistent system operation can be obtained by reversing the logic sense of all such signals, such that signals described herein as logically true become logically false and vice versa. Furthermore, it is of no relevance in such systems which specific voltage levels are selected to represent each of the logic states.
In the RF system topology shown in
sin θ=P/d [Eq. 1]
λ=c/f [Eq. 2]
Many angle-of-arrival (“AoA”) estimators require the use of multiple receivers, each listening to its own antenna, see, e.g., the First Related Application. In some AoA estimators, a single receiver is electronically switched between a plurality of antennas, see, e.g., the Second Related Application. In all such embodiments, the AoA approach tends to be problematic. In the Second Related Reference, several possible solutions are proposed.
Using two or more receiver antennas, the location of a transmitter can be found by using time of flight to get the distance to the transmitter and using the difference in either; time of arrival, or phase of arrival, to calculate an angle of arrival. However, we submit that it is unnecessary to calculate the angle of arrival in order to find that location. Further, we submit that what is needed is an improved method and apparatus for use in the receiver of a UWB communication system to determine the (x,y) location of a transmitter with respect to a receiver. In particular, we submit that such a method and apparatus should provide performance generally comparable to the best prior art techniques but more efficiently than known implementations of such prior art techniques.
In accordance with a one embodiment of our invention, we provide a method for determining the (x,y) location of a UWB transmitter relative to a UWB receiver. In accordance with this method, we use: the first antenna to receive a transmitted signal; the second antenna to receive the transmitted signal; and the receiver to: develop a range, r, between the transmitter and the first antenna; develop a first phase value as a function of the complex baseband impulse response of the transmitted signal received by the first antenna; develop a second phase value as a function of the complex baseband impulse response of the transmitted signal received by the second antenna; develop a phase difference value, p, as a function of the first and second phase values; and develop the (x,y) location of the transmitter relative to the receiver as a function of d, r and p.
In accordance with another embodiment of our invention, we provide a method for determining the (x,y) location of a UWB transmitter relative to a UWB receiver. In accordance with this method, we use: the first antenna to receive a transmitted signal; the second antenna to receive the transmitted signal; and the receiver to: develop a range, r, between the transmitter and the first antenna; develop a first time of arrival value as a function of the complex baseband impulse response of the transmitted signal received by the first antenna; develop a second time of arrival value as a function of the complex baseband impulse response of the transmitted signal received by the second antenna; develop a path difference value, p, as a function of the first and second time of arrival values; and develop the (x,y) location of the transmitter relative to the receiver as a function of d, r and p.
In accordance with yet another embodiment of our invention, we provide a method for determining the (x,y) location of a UWB transmitter relative to a UWB receiver. In accordance with this method, we use: the first antenna to receive a transmitted signal; the second antenna to receive the transmitted signal; and the receiver to: develop a range, r, between the transmitter and the first antenna; develop a first time of flight value as a function of the complex baseband impulse response of the transmitted signal received by the first antenna; develop a second time of flight value as a function of the complex baseband impulse response of the transmitted signal received by the second antenna; develop a path difference value, p, as a function of the first and second time of flight values; and develop the (x,y) location of the transmitter relative to the receiver as a function of d, r and p.
In accordance with one other embodiment of our invention, we provide a method for determining the (x,y) location of a UWB transmitter relative to a UWB receiver. In accordance with this method, we first use: the first antenna to receive a first transmitted signal; the second antenna to receive the first transmitted signal; and the receiver to: develop a first range, r1, between the transmitter and either the first or second antenna; develop a first phase value as a function of the complex baseband impulse response of the first transmitted signal received by the first antenna; develop a second phase value as a function of the complex baseband impulse response of the second transmitted signal received by the second antenna; develop a first phase difference value, p1, as a function of the first and second phase values. Then, we use: the first antenna to receive a second transmitted signal; the second antenna to receive the second transmitted signal; and the receiver to: develop a second range, r2, between the transmitter and either the first or second antenna; develop a third phase value as a function of the complex baseband impulse response of the second transmitted signal received by the first antenna; develop a fourth phase value as a function of the complex baseband impulse response of the second transmitted signal received by the second antenna; develop a second phase difference value, p2, as a function of the third and fourth phase values; and develop the (x,y) location of the transmitter relative to the receiver as a function of d, r1, p1, r2 and p2.
In one embodiment, we provide a location determination circuit configured to perform our method for determining relative location.
In one other embodiment, we provide an RF receiver comprising a location determination circuit circuit configured to perform our method for determining relative location.
In yet another embodiment, we provide an RF transceiver comprising an RF receiver comprising a location determination circuit circuit configured to perform our method for determining relative location.
In still another embodiment, we provide an RF communication system comprising an RF transceiver comprising an RF receiver comprising a location determination circuit circuit configured to perform our method for determining relative location.
The methods of our invention may be embodied in non-transitory computer readable code on a suitable computer readable medium such that when a processor executes the computer readable code, the processor executes the respective method.
Our invention may be more fully understood by a description of certain preferred embodiments in conjunction with the attached drawings in which:
In the drawings, similar elements will be similarly numbered whenever possible. However, this practice is simply for convenience of reference and to avoid unnecessary proliferation of numbers, and is not intended to imply or suggest that our invention requires identity in either function or structure in the several embodiments.
We have discovered that it is possible to get the Cartesian (x,y) location of a transmitter relative to a multi-antenna receiver directly from the range and the path difference without going through an intermediary step of calculating an angle of arrival. In accordance with our invention, the path difference can be determined either by using: the difference in the phase of a received frame at two of the antennas; the difference in time of arrivals of a received frame at two of the antennas; or the difference in ranges measured to two of the antennas. Further, our method can be implemented in an RF system comprising: multiple receivers, each with a respective antenna; a single receiver having multiple antennas; or any combination thereof.
In the example illustrated in
using the cosine rule:
cos(A)=(b2+c2−a2)/2bc [Eq. 7]
cos(α)=(r2+d2−(r−p)2)/2rd [Eq. 8]
x/r=(r2+d2−r2+2rp−p2)/2rd [Eq. 9]
x=(d2+2rp−p2)/2d [Eq. 10]
r2=x2+y2 [Eq. 11]
y=±√{square root over (r2−x2)} [Eq. 12]
or, alternatively:
(x2+y2)=((d2+2rp−p2)/2d)2+y2=r2 [Eq. 13]
y2=r2((d2+2rp−p2)/2d)2 [Eq. 14]
y=±(√{square root over ((d2−p2)((2r−p)2−d2))}/2d) [Eq. 15]
y=±(√{square root over ((d2−p2)(4r2−4rp+p2−d2))}/2d) [Eq. 16]
y=±(√{square root over ((1−(p/d)2)(4r2−4rp+p2−d2))}/2) [Eq. 17]
Note that we cannot tell if the y coordinate is positive or negative, so there is a front/back ambiguity.
We note that d is small compared to r so d2 is very small compared to r2 and can be neglected:
y≈±(√{square root over ((1−(p/d)2)(4r2−4rp+p2))}/2) [Eq. 18]
y≈±(r−(p/2))√{square root over (1−(p/d)2)} [Eq. 19]
We have determined that the maximum error by using this approximation is 0.22 mm for a 6.5 GHz carrier and a receiver antenna separation of λ/2. So, using Eq. 10 and Eq. 12, or Eq. 10 and Eq. 19, we can calculate the (x,y) coordinates of the transmitter without calculating the angle of arrival. We just need to know:
One of the most accurate ways to get the path difference is to get the phase difference of arrival of the transmitted signal in fractions of a cycle, and then multiply by the wavelength. Another way is to get the time difference of arrival of the transmitted signal, and multiply by the speed of light. A third way is to get the difference in time of flight, and multiply by the speed of light.
As can be seen in
Consider, for example, the Taylor series for √{square root over (1−x2)}:
Using 6 terms in this Taylor expansion, the calculation is accurate to 2 cm up to a phase difference of 140° and to 5 cm up to 150°. Above 150°, however, the error increases rapidly. So, we will use a two-polynomial piece-wise approximation for the square root function:
Using this approximation gives a worst case error in position of 2.5 cm within a 10 m radius, and an RMS error of 0.77 cm.
By way of example, in
When the distance between the antennas is greater than half the wavelength of the center frequency, a particular phase difference can give more than one valid solution, because adding 360° will give the same phase difference. For instance, if the center frequency is 8 GHz and the distance between the antennas is 1 wavelength of a 6.5 GHz carrier, we would have the situation shown in
In practice, noise perturbations in the phase measurement will almost always ensure that the corresponding solutions will not be exactly the same, so we must pick pairs of solutions, one from each set, which are closest to each other in the Euclidean sense. A well known way to do this is to pick the (xi,yi) from Set 1 and the (xj,xj) from Set 2 that minimizes:
√{square root over ((xi+xj)2+(yi−yj)2)} [Eq. 20]
To get even better results, we can repeat this on a third (or even fourth or fifth) channel. For a third channel, we could pick the (xi,yi) from Set 1, (xj,yj) from Set 2 and the (xk,yk) from a Set 3 that minimizes:
Up to this point, we have assumed that the effective, i.e., measured, path difference is precisely equal to the Cartesian path difference. However, in a real system, the effective path difference and the Cartesian path difference will not be precisely equal. For example, when our two antennas are closer than a few wavelengths, the antennas interact through an effect known as mutual coupling; this causes the electromagnetic waves to behave differently than would be the case in free space resulting in different effective and Cartesian path differences as a function of the path difference. Another effect seen in the real world is that the feed wires to the antennas can have slightly difference lengths, or the paths from the down-mixer generator to the two separate down-mixers can have slightly different lengths. These two effects, and others, add a calculatable offset to the path difference.
We propose to compensate for these cumulative effects by developing a Calibration Function between the effective and Cartesian path differences. In accordance with this embodiment, we first perform a system calibration process wherein a number of calibration measurements are taken, each from a different known (x,y) coordinate but, collectively, having a wide range of actual path differences. Since we know all of the (x,y) coordinates, we can calculate the respective expected path differences. By measuring the respective phase differences, we can also calculate the respective effective path differences. In this way we can develop a suitable Calibration Function, e.g., in the form of a look-up table or as apiece-wise linear generator function or by using a polynomial fitting function. Then we can use this Calibration Function to correct the effective path difference, p, before applying the formulas to calculate the (x,y) coordinates. By way of example, in
Although we have described our invention in the context of particular embodiments, one of ordinary skill in this art will readily realize that many modifications may be made in such embodiments to adapt either to specific implementations. For example, rather than calculating the path difference, p, one might directly determine the range, r2, between the second antenna and the receiver using the same method used to determine the range, r1, between the first antenna and the receiver. Further, the several elements described above may be adapted so as to be operable under either hardware or software control or some combination thereof, as is known in this art. Alternatively, the several methods of our invention as disclosed herein in the context of special purpose receiver apparatus may be embodied in computer readable code on a suitable non-transitory computer readable medium such that when a general or special purpose computer processor executes the computer readable code, the processor executes the respective method.
Thus it is apparent that we have provided a method and apparatus for determining the location of a wireless transmission relative to a multi-antenna receiver. Although we have so far disclosed our invention only in the context of a packet-based UWB communication system, we appreciate that our invention is broadly applicable to other types of wireless communication systems, whether packed-based or otherwise, that perform channel sounding. Further, we submit that our invention provides performance generally comparable to the best prior art techniques but more efficiently than known implementations of such prior art techniques.
This application is a Divisional Application of application Ser. No. 15/974,412, filed 8 May 2018, now U.S. Pat. No. 10,509,116 (“First Parent Application”), which is in turn related, and claims priority to Provisional Application Ser. No. 62/663,122, filed 26 Apr. 2018 (“Parent Provisional”). The subject matter of this Application is also related to the subject matter of PCT Application Serial No. PCT/EP2014/060722, filed 23 May 2014 (“First Related Application”). The subject matter of this Application is related to U.S. application Ser. No. 15/375,739, filed 12 Dec. 2016, now U.S. Pat. No. 10,056,993 (“Second Related Application”). This application claims priority to: 1. the First Parent Application; and2. the Parent Provisional; collectively, “Related References”, and hereby claims benefit of the filing dates thereof pursuant to 37 CFT § 1.78(a)(4). The subject matter of the Related References, and the First and Second Related Applications, each in its entirety, is expressly incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4422076 | Tricoles et al. | Dec 1983 | A |
4626860 | Tricoles et al. | Dec 1986 | A |
4734702 | Kaplan | Mar 1988 | A |
6233459 | Sullivan | May 2001 | B1 |
6317611 | Kobayakawa | Nov 2001 | B1 |
7349461 | Glazko et al. | Mar 2008 | B2 |
7636397 | McLaughlin | Dec 2009 | B2 |
7787544 | McLaughlin | Aug 2010 | B2 |
8358709 | McLaughlin | Jan 2013 | B2 |
8677224 | McLaughlin et al. | Mar 2014 | B2 |
8693286 | Rogers et al. | Apr 2014 | B1 |
9778340 | Mutz et al. | Oct 2017 | B2 |
10056993 | Clancy et al. | Aug 2018 | B2 |
10509116 | McLaughlin et al. | Dec 2019 | B2 |
20070085715 | McLaughlin | Apr 2007 | A1 |
20070140323 | Patel et al. | Jun 2007 | A1 |
20070159924 | Vook et al. | Jul 2007 | A1 |
20080112440 | Bedekar et al. | May 2008 | A1 |
20090243932 | Moshfeghi | Oct 2009 | A1 |
20090310444 | Hiroe | Dec 2009 | A1 |
20090316529 | Huuskonen et al. | Dec 2009 | A1 |
20100087151 | Auer | Apr 2010 | A1 |
20100097270 | Fukada | Apr 2010 | A1 |
20120276921 | Nemeth | Nov 2012 | A1 |
20130163638 | McLaughlin et al. | Jun 2013 | A1 |
20140093023 | Park | Apr 2014 | A1 |
20140204977 | Morche | Jul 2014 | A1 |
20160254889 | Shattil | Sep 2016 | A1 |
20160259033 | Madimirov et al. | Sep 2016 | A1 |
20170085293 | Marrow | Mar 2017 | A1 |
20190204432 | Safaripour et al. | Jul 2019 | A1 |
20190289568 | Pajovic et al. | Sep 2019 | A1 |
20190331781 | McLaughlin et al. | Oct 2019 | A1 |
20190331782 | McLaughlin et al. | Oct 2019 | A1 |
20200252101 | McLaughlin et al. | Aug 2020 | A1 |
20200334394 | Wodrich et al. | Oct 2020 | A1 |
Number | Date | Country |
---|---|---|
104484852 | Nov 2014 | CN |
2015051821 | Apr 2015 | WO |
2015176776 | Nov 2015 | WO |
Entry |
---|
Non-Final Office Action for U.S. Appl. No. 16/352,105, dated Jul. 26, 2021, 10 pages. |
Advisory Action for U.S. Appl. No. 16/352,372, dated May 19, 2021, 3 pages. |
Notice of Allowance for U.S. Appl. No. 16/780,004, dated May 27, 2021, 17 pages. |
Alexander, S.N., “Soviet Computer Technology—1959,” Communications of the ACM, vol. 3, Issue 3, Mar. 1960, pp. 131-166. |
Carr, J.W. et al., “A Visit to Computation Centers in the Soviet Union,” Communications of the ACM, vol. 2, Issue 3, Jun. 1959, pp. 8-20. |
Loeffler, A., “Localizing with Passive UHF RFID Tags Using Wideband Signals,” IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems (COMCAS), Nov. 7-9, 2011, Tel Aviv, Israel, IEEE, 6 pages. |
Manteuffel, D. et al., “Antenna and Propagation impairments of a UWB localization system integrated into an aircraft cabin,” 2010 Loughborough Antennas & Propagation Conference, Nov. 8-9, 2010, Loughborough, Uk, IEEE, pp. 589-592. |
Song, “A Low Complexity Asynchronous UWB TDOA Localization Method,” International Journal of Distributed Sensor Networks, vol. 2015, Article IDS 675490, Oct. 2015, Hindawi Publishing Corporation, 11 pages. |
Wang, Z. et al., “A New Multi-Antenna Based LOS-NLOS Separation Technique,” 2009 IEEE 13th Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop, Jan. 4-7, 2009, Marco Island, L, IEEE, pp. 331-336. |
Non-Final Office Action for U.S. Appl. No. 15/375,739, dated Jun. 9, 2017, 12 pages. |
Final Office Action for U.S. Appl. No. 15/375,739, dated Nov. 9, 2017, 14 pages. |
Applicant-Initiated Interview Summary for U.S. Appl. No. 15/375,739, dated Mar. 1, 2018, 3 pages. |
Notice of Allowance for U.S. Appl. No. 15/375,739, dated Jul. 17, 2018, 10 pages. |
Non-Final Office Action for U.S. Appl. No. 15/974,412, dated Apr. 25, 2019, 9 pages. |
Notice of Allowance for U.S. Appl. No. 15/974,412, dated Oct. 23, 2019, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 16/352,105, dated Aug. 25, 2020, 11 pages. |
Final Office Action for U.S. Appl. No. 16/352,105, dated Feb. 5, 2021, 13 pages. |
Non-Final Office Action for U.S. Appl. No. 16/352,372, dated Oct. 9, 2020, 13 pages. |
Final Office Action for U.S. Appl. No. 16/352,372, dated Feb. 5, 2021, 15 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/EP2013/070851, dated Jun. 4, 2014, 13 pages. |
International Preliminary Report on Patentability for International Patent Application No. PCT/EP2013/070851, dated Apr. 21, 2016, 10 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/EP2014/060722, dated Jan. 28, 2015, 10 pages. |
International Preliminary Report on Patentability for International Patent Application No. POT/EP2014/060722, dated Dec. 8, 2016, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 16/780,004, dated Aug. 26, 2020, 9 pages. |
Notice of Allowance for U.S. Appl. No. 16/780,004, dated Dec. 28, 2020, 8 pages. |
Advisory Action for U.S. Appl. No. 16/352,105, dated May 10, 2021, 3 pages. |
Non-Final Office Action for U.S. Appl. No. 16/352,372, dated Sep. 3, 2021, 12 pages. |
Number | Date | Country | |
---|---|---|---|
20190331783 A1 | Oct 2019 | US |
Number | Date | Country | |
---|---|---|---|
62663122 | Apr 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15974412 | May 2018 | US |
Child | 16352480 | US |