Method and apparatus for determining the temperature of subterranean wells using fiber optic cable

Information

  • Patent Grant
  • 6557630
  • Patent Number
    6,557,630
  • Date Filed
    Tuesday, August 27, 2002
    22 years ago
  • Date Issued
    Tuesday, May 6, 2003
    21 years ago
Abstract
Methods and apparatuses to determine the temperature profile of a wellbore using a fiber optic cable and an anchor are disclosed. Furthermore, a pressurized wellhead spool that couples to a standard Christmas tree structure on a well head to facilitate the injection of fiber optic cable into an oil and gas well is disclosed. The wellhead spool is portable and may be connected to fiber optic cable already located at the site, for quick connection to on-site instrumentation. A method of using the apparatuses disclosed to measure wellbore temperature at multiple depths of investigation is also disclosed.
Description




BACKGROUND OF INVENTION




This invention generally relates to oil and gas well logging and, more particularly, to an apparatus and method for deploying fiber optic cabling and profiling the temperature of the well using the fiber optic cable.




Oil and gas exploration is a risky, complex task that involves sophisticated equipment and substantial financial resources. Whether on land or at sea, a search for oil and gas commences with the drilling of a well. A well may reach a depth of over a mile, or, in the case of ultraheavy rigs, may reach more than six miles in depth.




Once a well is drilled, a technique known as well logging (or wireline logging) provides valuable information about the well, specifically about the likely presence of hydrocarbons nearby. Traditionally, wireline logging was performed by lowering a measuring device known as a sonde down the well. A sonde is a metal container, usually a cylinder, which contains various instrumentation used to gather data.




The wireline sonde is lowered to the bottom of the well, at the well bore. Measurements are taken by the sonde as it is being lifted back to the surface of the well. The types of measurements taken may vary widely. Examples of measurements that may be performed include natural radiation emission, reaction to gamma ray or neutron bombardment, sonic, electrical, electromagnetic induction, resistivity, and so on.




With multiple instruments contained within, the sonde is typically heavy enough to be dropped down the well on a cable or wire. The sonde may be pulled back to the surface using a wench or a pulley.




Recently, fiber optic cable has been used as an alternative for obtaining valuable well data. Fiber optic cable may be advantageous because data can be transmitted at a high speed over long distances. Fiber optic cable is non-conductive and thus may be preferable to use in the well over electrical or electromechanical instruments because of the presence of explosive hydrocarbons.




Better yet, the measurements obtained using the fiber optic cable may be immediately transmitted up the well to a receiving system, such as a portable computer. Using techniques such as optical time domain reflectometry (OTDR), fiber optic cables have, in many cases, supplanted traditional mechanisms for obtaining data within the well bore. Transmitting fiber optic cable down a well under pressure, however, may be problematic.




Thus, there is a need for a method of delivering fiber optic cable down a well under pressure.




SUMMARY OF INVENTION




In accordance with the embodiments described herein, a wellhead spool is disclosed comprising a connection to a well head, a sealed spool for storing fiber optic cable to be disposed down a well bore, and an anchor coupled to the fiber optic cable, wherein the anchor is placed in an opening of the well head and the fiber optic cable is released from the spool. In one embodiment, the wellhead spool comprises a motor, preferably hydraulic, coupled to the spool to both release the fiber optic cable from and to return the fiber optic cable to the spool. In a second embodiment, the wellhead spool comprises a solvent dispersal tube to clean the fiber optic cable upon return to the spool. In a third embodiment, the wellhead spool comprises a safety valve for equalizing the pressure between the wellhead spool and the well bore.




In another aspect of the invention, a method is disclosed comprising mounting a wellhead spool providing a fiber optic cable in a sealable housing, coupling the fiber optic cable to an anchor, engaging the sealable housing to a well head, opening a valve to the well bore, deploying the anchor and fiber optic cable into the well bore, and coupling the fiber optic cable to a measuring instrument. The method further discloses dispersing a solvent upon the fiber optic cable and engaging the anchor to a wall of the well bore.




Furthermore, in another aspect of the invention, a method and apparatus to profile the temperature of a wellbore using a fiber optic cable and an anchor is disclosed. Particularly, the apparatus and method include mounting an anchor to a fiber optic cable and deploying the combination downhole to anchor and take measurements at desired depths of investigation. More specifically, a method for measuring the temperature of a wellbore at multiple depths of investigation using a fiber optic cable and an anchor is disclosed.











BRIEF DESCRIPTION OF DRAWINGS





FIG. 1

is a diagram of a wellhead spool in an operative position according to a preferred embodiment of the invention;





FIG. 2

is an inside view of the wellhead spool of

FIG. 1

according to one embodiment of the invention;





FIG. 3

is a diagram of the outside of the wellhead spool of

FIG. 1

according to one embodiment of the invention;





FIG. 4

is a diagram of a fiber optic cable to be disposed down a well bore according to a preferred embodiment of the invention;





FIG. 5A

is a diagram of a wireline anchor used with the wellhead spool of FIG.


1


and the fiber optic cable of

FIG. 4

according to a preferred embodiment of the invention; and





FIG. 5B

is a diagram of the wireline anchor of

FIG. 5A

in an extended position.











DETAILED DESCRIPTION




In accordance with the embodiments described herein, a wellhead spool may be employed to facilitate the injection of fiber optic or other cable into an oil and gas well. The wellhead spool is portable and may be connected to fiber optic cable already located at the site, for quick connection to on-site instrumentation. As the fiber optic cable is spooled and unspooled, crimping of the cable and other effects known to occur when cable is wrapped around an object, is avoided The wellhead spool may be used in a well under pressure, whether on land or in sub-sea exploration operations, and may operate with a wireline anchor to gravity-feed the fiber optic cable, if needed. The wellhead spool couples to a standard Christmas tree structure for practical operation by oilfield employees.




A wellhead spool


100


, coupled to a typical Christmas tree structure


10


, is depicted in

FIG. 1

, according to one embodiment. Extending from the wellhead spool


100


are hydraulic lines


12


, wash feed lines


14


, and a cable feed


58


. The hydraulic lines


12


and the wash feed lines


14


are coupled to a portable hydraulic pump


70


that may be situated on a vehicle, as shown. Alternatively, the lines


12


and


14


may be connected to an on-site pump, to a portable electric generator or to a different electrical power source (not shown), if available.




The cable feed


58


may be coupled to an optical time domain reflectometer (OTDR) analyzer, such as is offered by Sensa as a distributed temperature sensing (DTS) device, or to on-site fiber optic cable (not shown). The on-site fiber optic cable may already be connected to the OTDR analyzer or other instrumentation such as a laptop computer, in preparation for performing well measurements. The wellhead spool


100


conveniently provides the link between the instrumentation and the well, as described further below.




Alternatively, the wellhead spool


100


may be maintained at the site and used, as needed, to obtain well information such as temperature, resistivity, chemical characteristic of the sub-surface structure, and so on. Additional valves and/or pipes, not shown in

FIG. 1

, may be coupled between the wellhead spool and the remainder of the Christmas tree structure


10


, as is the normal practice in well maintenance.




In

FIG. 2

, a more detailed view of the wellhead spool is depicted, according to one embodiment. The wellhead spool


100


includes spool housing


24


, inside which a spool


30


of fiber optic cable


40


is maintained. The spool


30


rotates around an axle


32


which is operated by a motor


20


, which may be a hydraulic motor . The spool housing


24


further includes a spool guide


54


coupled to a spool guide track


56


. The spool guide


54


moves freely along the spool guide track


56


to steer the fiber optic cable to and from the spool


30


. Although depicted below the spool


30


in

FIG. 2

, the spool guide


54


and track


56


may be positioned above the spool, in another embodiment. The fiber optic cable


40


may be held by a centralizing apparatus such as a ring, a guide, or by other methods well-known to those of skill in the art.




The hydraulic motor


20


is coupled to the hydraulic lines


12


, through which hydraulic fluid is transported. The hydraulic pump


70


(see

FIG. 1

) feeds the hydraulic fluid, typically an oil-based liquid, which then causes the hydraulic motor


20


to rotate, and, thus, the axle


32


and spool


30


to turn. Alternatively, an electric motor can be used to supply power to the wellhead spool


100


.




In one embodiment, a counter


18


is connected to the hydraulic motor. The counter


18


may tally the number of rotations, the length of the fiber optic cable disposed, and so on. This allows oil field workers to reasonably ascertain the position of the fiber optic cable


40


as it is disposed down the well bore.




The wellhead spool


100


further includes a pressure gauge


16


, disposed upon the top of the spool housing


24


, in one embodiment. Upon engagement, the wellhead spool becomes part of the wellhead. Accordingly, the contents therein may be under high pressure. The pressure gauge


16


is a standard device for monitoring the physical condition of the well bore. On either side of the pressure gauge, a pair of lift eyes


22


are coupled to the spool housing


24


, for handling of the spool


100


.




The wellhead spool


100


is coupled to the Christmas tree


10


or other wellhead structure by a quick-connect flange


28


, in one embodiment. In one embodiment, the quick-connect flange


28


is a type of threaded hammer union device, known to those of skill in the art. The quick-connect flange


28


is one of a number of devices, known to those familiar with oilfield exploration and maintenance, that may be used to connect the wellhead spool


100


to the Christmas tree


10


.




Above the quick-connect flange


28


is a safety valve housing


66


for supporting a safety valve


26


, as shown in FIG.


3


. Until the safety valve


26


is opened, the fiber optic cable


40


is not sent down the wellhead. Further, in one embodiment, the safety valve


26


is used to balance the pressure from the well following installation or to prevent a high-pressure incident during removal of the wellhead spool from the well.




Extending downward in a cylindrical, then tubular arrangement, a fiber optic feed tube


68


receives the fiber optic cable


40


. Upon engagement of the wellhead spool


100


with the Christmas tree


10


, the fiber optic feed tube


68


forms a continuous cavity with a similar cavity in the Christmas tree


10


and, ultimately, with the well bore. The continuous cavity is the conduit through which the fiber optic cable


40


is fed down, and then back up, the well bore.




Installation of the wellhead spool


100


may occur while the well is under high pressure. The fiber optic feed tube


68


cavity fills with gas under high pressure during installation. The safety valve


26


may be adjusted to equalize the pressure between the well bore and the feed tube


68


. Further, in one embodiment, a bleed valve


64


is used with safety valve


26


to adjust the pressure in the wellhead spool.




The wellhead spool


100


is installed in a manner familiar to those of ordinary skill in the art. For example, to install the wellhead spool


100


, a valve in the Christmas tree


10


is closed such that hydrocarbons are not released from the top of the Christmas tree


10


. Then, the wellhead spool


100


is coupled to the Christmas tree with the safety valve


26


closed, according to one embodiment. Once the wellhead spool is successfully engaged with the Christmas tree, the valve of the Christmas tree


10


, then the safety valve


26


, are opened, allowing hydrocarbons to flow from the well bore up to the fiber optic feed tube


68


.




To remove the wellhead spool


100


, in one embodiment, the safety valve


26


is first closed, separating the cavity of the wellhead spool from the well bore cavity. Also, the valve of the Christmas tree is closed, in one embodiment. Prior to removing the wellhead spool, to release pressure within the fiber optic feed tube


68


, the bleed valve


64


is opened, releasing pressure from the wellhead spool. The wellhead spool may then be removed safely.




Once pressure is balanced between the spool body and the well bore, the feed tube and the well bore are maintained at the same pressure, in one embodiment. Further, there is no resistance of a type typically encountered when trying to inject a line from a low pressure orifice into a high pressure stream.




In one embodiment, the wellhead spool


100


includes a mechanism for cleaning the fiber optic cable


40


as it is being returned to the spool


30


. The wash feed lines


14


that are coupled to the hydraulic pump


70


(see

FIG. 1

) transport solvent into the wellhead spool through a pair of solvent dispersal tubes (


62


). A first wash feed line


14




a


is coupled to a left solvent dispersal tube


62




a


; a second wash feed line


14




b


is coupled to a right solvent dispersal tube


62




b


, as depicted in

FIGS. 2 and 3

.




In

FIG. 2

, the left solvent dispersal tube


62




a


directs the solvent toward the fiber optic cable


40


from the left; simultaneously the right solvent dispersal tube


62




b


directs the solvent toward the fiber optic cable


40


from the right. In one embodiment, the tubes


62


are positioned just above the tubular portion, in the cylindrical portion, of the fiber optic feed tube


68


. Other arrangements of the solvent dispersal tubes


62


may be made. Further, other types of solvent delivery systems may be substituted without departing from the spirit of this disclosure, many of which are well-known to those in the industry.




The solvent that is dispersed may be any of a number of well-known and readily available solvents used in the maintenance of oil field technologies. For example, trichloroethylene, isopropanol, or citrus-based solvents may be effective in cleaning the fiber optic cable


40


before it is returned to the spool


30


.




The fiber optic cable


40


is depicted in

FIG. 4

, according to one embodiment. Central to the fiber optic cable is a bundle of fibers


82


, through which light may be transported. The fibers are actually very thin strands of glass, that may be surrounded by a gel filling


84


. The fiber optic cable


40


further includes tubing


86


, wires


88


, which are usually made of steel, and a sheath


92


, giving the cable more strength.




Local data such as temperature may be measured by sending quick pulses of laser light down the fiber optic cable. A weak back-scattering of the laser light occurs, which, when measured, indicates the temperature at the point of back-scattering. In one embodiment, as the fiber optic cable


40


is disposed down the well bore, analysis of the back-scattered light spectrum is made at every meter along the fiber optic cable.




Generally, in one embodiment, pulses of light at a fixed wavelength are transmitted from the light source in surface equipment down the fiber optic line


40


. At every measurement point in the line


40


, light is back-scattered and returns to the surface equipment. Knowing the speed of light and the moment of arrival of the return signal, enables its point of origin along the fiber line


40


to be determined. Temperature stimulates the energy levels of the silica molecules in the fiber line


40


. The back-scattered light contains upshifted and downshifted wavebands (such as the Stokes Raman and Anti-Stokes Raman portions of the back-scattered spectrum) which can be analyzed to determine the temperature at origin. In this way the temperature of each of the responding measurement points in the fiber line


40


can be calculated by the equipment, providing a complete temperature profile along the length of the fiber line


40


. This general fiber optic distributed temperature system and technique is known in the prior art.




In one embodiment, part of the gel filling


84


is displaced by a gas tube


90


. The gas tube allows a gas, such as nitrogen, to be transmitted through the fiber optic cable, for operating the wireline anchor


50


, described in more detail, below. Although a single gas tube


90


is depicted in

FIG. 4

, the fiber optic cable


40


can include multiple gas tubes. With its many components and layers, the fiber optic cable is built for durability. However, in some prior art applications, the fiber optic cable may become crimped, such as when the cable is wrapped around an apparatus at an acute angle. As with a phone cord, over time, the fiber optic cable may become unwieldy in its use, as the crimping may, for example, impair the ability of the cable to be disposed down a well bore.




In some applications, therefore, the wellhead spool


100


may be preferred. The fiber optic cable


40


is unspooled from the spool and sent down the well bore in a substantially vertical direction downward. The likelihood that the fiber optic cable will become crimped is diminished, in some embodiments. Upon completion of the measurement operation, the fiber optic cable is then respooled on to the spool, where the cable is essentially stored until needed for a subsequent operation.




In prior art systems for obtaining well bore data using a sonde, the one or more instruments packed within the sonde provided some weight. Typically, the weight was sufficient such that the sonde could be disposed within the well bore using only gravity. Where the instruments were not sufficiently weighty, the sonde itself could be weighted to achieve this effect.




With fiber optic cable, however, no natural weighted element is present. Furthermore, many wells include hydrocarbons under pressure, making the insertion of fiber optic cable within problematic. Thus, according to one embodiment, a wireline anchor


50


, as depicted in

FIGS. 5A and 5B

, may be connected to the fiber optic cable


40


before the cable is disposed down the well bore.




In one embodiment, the fiber optic cable


40


, wrapped about the spool


30


of the wellhead spool


100


, is extended down the fiber optic feed tube


68


and coupled to the wireline anchor


50


. Accordingly, before installation, the wireline anchor


50


occupies a portion of the fiber optic feed tube


68


. Then, the wireline anchor


50


is coupled to the fiber optic cable


40


. Where the wireline anchor


50


is longer than the cavity (the fiber optic feed tube


68


) of the wellhead spool


100


, a short pipe may be inserted between the safety valve and the spool to permit the anchor to be enclosed with the fiber optic cabling prior to engagement with the Christmas tree


10


.




The wireline anchor


50


, therefore, is of a size sufficiently small to be disposed within the wellhead spool


100


and down the cavity of the Christmas tree


10


. In one embodiment, the wireline anchor


50


is a cylindrical device composed principally of a non-corrosive metal, such as titanium. However, the anchor may be constructed of other metal, plastic, or composite materials, as the anchor typically does not stay in the well bore for an extended period of time.




In

FIG. 5A

, the wireline anchor


50


is shown in its retracted state. This is the state the anchor will be in as it is disposed down the well bore. In one embodiment, the wireline anchor may additionally assume an extended state, as depicted in

FIG. 5B

, such that the anchor may be affixed to the well wall, such as when the fiber optic cable


40


has reached the desired depth.




In one preferred embodiment, the wireline anchor


50


comprises a feed tube


34


, a spring assembly


60


, and a weight


52


, as illustrated. The feed tube


34


receives the fiber optic cable


40


. At the bottom of the feed tube is a cable connector


36


. The cable connector


36


secures the fiber optic cable


40


to the wireline anchor, ensuring that the two do not separate during the trek down the well bore. The cable connector


36


may be any of a variety of securing means, such as a bolt, a clamp, or a fastener.




The spring assembly


60


comprises a spring


38


, a piston


72


, extension rods


44


, rod housing


48


, and wall engagement members, according to one embodiment. The piston


72


comprises a rod portion


42


and a head portion


74


. The piston rod


42


extends through the center of the rod housing


48


, parallel to the body of the wireline anchor


50


. The piston head


74


is orthogonal to the piston rod


42


, close to the cable connector


36


.




In one embodiment, the wireline anchor


50


is cylindrical in shape. Accordingly, the piston head


74


of the anchor is a circular piece which extends a full 360 degrees along the wall of the spring assembly to allow arrangement of a dynamic sealing O-ring


78


formed in the lateral edge of the piston head. The sealing arrangement ensures that, between the cable connector


36


and the piston head


74


, the cylinder bore


94


is a leak-proof cavity.




The spring


38


wraps around the piston rod


42


, just below the piston head


74


and above the rod housing


48


. The spring


38


is composed of a material that will allow repeated deformation and restoration of the spring


38


. This allows the piston


72


to move up and down when a gas is injected into the cylinder bore


94


through the gas tube


90


(see

FIG. 4

) of the fiber optic cable


40


.




Below the piston


72


, two pairs of extension rods


44


are disposed, in parallel. A left top extension rod


44




a


is coupled to a left bottom extension rod


44




b


by a left wall engagement member


46




a


. Likewise, a right top extension rod


44




c


is coupled to a right bottom extension rod


44




d


by a right wall engagement member


46




b


, as shown.




The left and right bottom extension rods


44




b


and


44




d


are secured to a pair of hinges


76




a


and


76




b


. The hinges


76




a


and


76




b


affix the bottom of the extension rods


44




b


and


44




d


to the rod housing


48


. The top of the extension rods


44




b


and


44




d


are affixed, by hinges


76




f


and


76




h


, respectively, to the wall engagement members


46


.




Hinges


76




c


and


76




d


likewise affix the top of the extension rods


44




a


and


44




c


to the rod housing


48


. The bottom of the extension rods


44




a


and


44




c


are affixed, by hinges


76




e


and


76




g


, respectively, to the wall engagement members


46


.




The hinged connections of the extension rods


44


enable them to be mobile. When a gaseous material is injected into the wireline anchor


50


through the gas tube


90


, the piston


72


moves downward until the spring


38


is maximally depressed, as shown in FIG.


5


B. The extension rods


44


, in turn, move such that hinges


76




c


and


76




d


move closer to hinges


76




a


and


76




b


, causing the wall engagement members


46


to move laterally. When the wireline anchor


50


is in the well bore, the gas injection causes the wall engagement members


46


to press against the wall of the well bore, according to one embodiment.




The ability to engage the wireline anchor


50


to the wall of the well bore may be useful during data gathering operations. As the wellhead spool


100


is sending the fiber optic cable


40


down the well bore, the wireline anchor


50


may be engaged with the wall of the well bore at different points. The counter


18


may be used to keep track of approximately where in the well bore the wireline anchor is disposed.




Anchor


50


can also be activated and deactivated through other means not utilizing the gas tube


90


. Particularly, in an alternative embodiment, optical energy can be sent through the fibers


82


(or another light conduit) to activate anchor


50


beneath the surface. In this configuration, anchor


50


would include a photovoltaic cell that would convert the light energy to electrical energy to extend or retract anchor


50


.




Additionally, in another embodiment, at least one pressure pulse (a pressure signal with a given amplitude and duration) may be sent through the wellbore fluids from the surface, and anchor


50


may include a pressure transducer that enables and commands the extension or retraction the anchor


50


only upon recognition of a given set of pulses. In another embodiment, anchor


50


may be configured to be activated by a series of rupture discs. Using such a configuration, the wellbore fluid pressure is increased at the surface, and the discs are adapted to rupture at pre-determined pressures to activate or deactivate anchor


50


. In this configuration, one rupture disc would preferably be designed to extend anchor


50


at one pressure and a second disc would be designed to rupture and retract anchor


50


at a second, elevated, pressure. As would be commonly understood by those skilled in the art, the rupture discs could be replaced by shear pins or the like.




Furthermore, collar stops, nipple profiles, muleshoes, or other mechanical landing devices may be disposed within the wellbore or production tubing to actuate anchor


50


. These mechanical landing devices would also index fiber optic cable


40


and anchor


50


in desired measurement positions and activate anchor


50


mechanically with their profiles. Alternatively, a timer device may be disposed within anchor


50


to extend and retract anchor


50


at known time intervals. Using this system, an operator would position the anchor


50


on the fiber optic cable


40


at the desired measuring points during the pre-determined intervals.




Wellhead spool


100


may be deployed in sub-sea wells. The wellhead spool


100


may be installed upon the well head by divers or may be engaged using robotics, mechanical equipment, or using other means familiar to those of ordinary skill in the art. On-site fiber optic cable, that is, fiber optic cable that is connected to instrumentation at the well site, may be coupled to the wellhead spool, at the cable feed


58


(see FIG.


2


), either prior to or following deployment below the surface of the water.




Finally, it is an aspect of the invention that the wellbore temperature profiling system and method is feasible without the use of a wellhead spool


100


as shown in

FIGS. 1 and 2

. An anchor may be disposed upon a fiber optic cable and raised and lowered into position within a wellbore to take temperature profile measurements in accordance with the present invention. It is also important to note that such temperature measurements can be made whether or not the particular wellbore in question is producing (hydrocarbons flowing) at the time of measurement.




While the invention has been described with respect to a limited number of embodiments; those skilled in the art will appreciate numerous modifications and variations therefrom. It is intended that the appended claims cover all such modifications and variations as fall within the true spirit and scope of the invention.



Claims
  • 1. A wellhead spool comprising:a connection to a wellhead; a sealed spool for storing fiber optic cable to be disposed down a wellbore; and an anchor coupled to the fiber optic cable, wherein the anchor is placed in an opening of the well head, and the fiber optic cable is released from the spool.
  • 2. The wellhead spool of claim 1, further comprising a motor coupled to the spool to both release the fiber optic cable from and to return the fiber optic cable to the spool.
  • 3. The wellhead spool of claim 2, wherein the motor is hydraulically driven.
  • 4. The wellhead spool of claim 2, further comprising a counter coupled to the motor.
  • 5. The wellhead spool of claim 4, wherein the counter tallies a number of rotations of the spool.
  • 6. The wellhead spool of claim 4, wherein the counter tallies a length of the fiber optic cable.
  • 7. The wellhead spool of claim 1, further comprising a solvent dispersal tube to clean the fiber optic cable upon return to the spool.
  • 8. The wellhead spool of claim 1, further comprising a cable feed for coupling the fiber optic cable in the spool to other fiber optic cable.
  • 9. The wellhead spool of claim 1, wherein the fiber optic cable enters the well bore vertically.
  • 10. The wellhead spool of claim 1, further comprising a safety valve for coupling a cavity within the wellhead spool to the well bore, wherein the cavity attains a pressure of the well bore when the safety valve is opened.
  • 11. The wellhead spool of claim 10, further comprising a bleed valve disposed on the wellhead spool to adjust the pressure of the cavity.
  • 12. The wellhead spool of claim 1, wherein the fiber optic cable further includes at least one gas tube for operating the anchor.
  • 13. The wellhead spool of claim 12, wherein the anchor further comprises:a piston coupled to a wall engagement mechanism; and a weight.
  • 14. The wellhead spool of claim 1, wherein the anchor is remotely selectively engageable to a wall of the wellbore.
  • 15. The wellhead spool of claim 1, wherein the wellhead is a subsea wellhead.
  • 16. An apparatus to determine the temperature of a wellbore comprising:a fiber optic cable to be disposed down the wellbore; an anchor coupled to the fiber optic cable; wherein the anchor is selectively engageable to a wall of the wellbore; and wherein the fiber optic cable is adapted to measure the temperature along the length of the cable.
  • 17. The apparatus of claim 16 further comprising a spool to store and dispense the fiber optic cable down the wellbore.
  • 18. The apparatus of claim 17 wherein the spool is encapsulated within a compartment that is in communication with the wellbore.
  • 19. The apparatus of claim 16 wherein the anchor is remotely selectively expandable to engage a wall of the wellbore.
  • 20. The apparatus of claim 18 wherein the wellhead is a sub-sea wellhead.
  • 21. The apparatus of claim 16 wherein the anchor has a retracted position and an extended position.
  • 22. The apparatus of claim 21 wherein the anchor engages the wellbore and resists movement when in the extended position.
  • 23. The apparatus of claim 21 wherein optical energy in combination with a photovoltaic cell is used to actuate the anchor from the retracted position to the extended position.
  • 24. The apparatus of claim 21 further comprising a fluid conduit extending from the wellhead to the anchor.
  • 25. The apparatus of claim 24 wherein the anchor includes a piston, the piston connected to an extension mechanism, the extension mechanism configured to actuate the anchor from the retracted position into the extended position when the pressure of a working fluid is increased in the fluid conduit.
  • 26. The apparatus of claim 21 wherein the anchor includes a first rupture disc, the rupture disc configured to rupture and place the anchor in the extended position when a first predetermined pressure is achieved in the wellbore.
  • 27. The apparatus of claim 26 wherein the anchor further includes a second rupture disc, the second rupture disc configured to rupture and place the anchor in the retracted position when a second predetermined pressure is achieved in the wellbore.
  • 28. The apparatus of claim 21 wherein the anchor is actuated from the retracted position to the extended position by a mechanical profile located within the wellbore.
  • 29. The apparatus of claim 28 wherein the mechanical profile is selected from the group consisting of nipple profiles, collar stops, and muleshoes.
  • 30. The apparatus of claim 21 wherein the anchor further includes a timer, said timer configured to actuate the anchor from the retracted position to the extended position at a predetermined time interval.
  • 31. The apparatus of claim 21 wherein the anchor further includes a pressure transducer and the anchor is retracted or extended when a given pressure signal is received by the pressure transducer.
  • 32. A method comprising:mounting a wellhead spool in a sealable housing, the spool providing a fiber optic cable; coupling the fiber optic cable to an anchor; engaging the sealable housing to a wellhead of a well; opening a valve to a wellbore of the well; deploying the anchor and the fiber optic cable into the well bore; and coupling the fiber optic cable to a measuring instrument.
  • 33. The method of claim 32, further comprising engaging the anchor to a wall of the well bore.
  • 34. The method of claim 32, further comprising opening a safety valve to equalize a pressure between the sealable housing and the well bore.
  • 35. The method of claim 34, further comprising opening a second valve to adjust the pressure in the sealable housing.
  • 36. The method of claim 32, further comprising closing a safety valve to stop the flow of hydrocarbons to the sealable housing from the well bore.
  • 37. The method of claim 36, further comprising opening a second valve to adjust the pressure in the sealable housing.
  • 38. The method of claim 32, further comprising:connecting the wellhead spool to a motor; and operating the motor to wind and unwind the wellhead spool.
  • 39. The method of claim 38, further comprising:returning the fiber optic cable to the wellhead spool; and removing the wellhead spool from the well head.
  • 40. The method of claim 32, further comprising dispersing a solvent upon the fiber optic cable.
  • 41. A method for determining the temperature of a wellbore, the method comprising:deploying a fiber optic cable assembly into the wellbore, the fiber optic cable assembly including an anchor and a conduit for transmitting optical energy, the anchor configured to engage and disengage the wellbore to restrict or allow movement of the cable assembly therethrough; engaging the wellbore with the anchor at a desired depth of investigation; measuring the temperature along the length of the conduit; and disengaging the anchor from the wellbore.
  • 42. The method of claim 41 further comprising mounting a spool to a wellhead of the wellbore.
  • 43. The method of claim 42 further including using the spool to deploy and retract the fiber optic cable assembly to and from the wellbore.
  • 44. The method of claim 43 further including enclosing the spool in a compartment, the compartment having an interior, the interior being in fluid communication with the wellbore.
  • 45. The method of claim 44 further including isolating the spool, the fiber optic cable assembly, and the interior of the compartment from atmospheric conditions.
  • 46. The method of claim 45 further including equalizing the pressure of the interior of the compartment with the pressure of the wellbore.
  • 47. The method of claim 44 wherein the wellhead is a sub-sea wellhead.
  • 48. The method of claim 41 further including activating the engagement of the anchor by transmitting optical energy through the conduit.
  • 49. The method of claim 41 further including activating the engagement of the anchor by transmitting gas through a gas tube located in the fiber optic cable assembly.
  • 50. The method of claim 41 further including activating and deactivating the engagement of the anchor by setting a timing device to engage and disengage the wellbore at specified time intervals.
  • 51. The method of claim 41 further including activating the engagement of the anchor by transmitting a pressure signal in the wellbore that is received by a pressure transducer associated with the anchor.
  • 52. The method of claim 41 further including activating the engagement of the anchor by elevating the pressure in the wellbore to rupture a first rupture disc associated with the anchor.
  • 53. The method of claim 41 further including deactivating the engagement of the anchor by elevating the pressure in the wellbore to rupture a second rupture disc associated with the anchor.
  • 54. The method of claim 41 further including activating the engagement of the anchor by engaging the anchor to a mechanical profile located within the wellbore.
  • 55. A method to measure the temperature of a wellbore at multiple depths of investigation, the method comprising:attaching an anchor to a fiber optic cable; the anchor configured to engage and disengage the wellbore to restrict or allow movement of the cable therethrough; deploying the fiber optic cable down the wellbore; engaging the wellbore with the anchor at a desired depth of investigation; pulsing light at a fixed wavelength from the fiber optic cable; measuring back-scattered wavelengths of the pulsed light; analyzing the wavelengths to determine a temperature profile at the desired depth of investigation; and disengaging the anchor from the wellbore.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of provisional application U.S. Ser. No. 60/315,658 filed Aug. 29, 2001.

US Referenced Citations (54)
Number Name Date Kind
2677427 McKinney et al. May 1954 A
RE24086 Summers Nov 1955 E
2899633 Smith et al. Aug 1959 A
2943682 Ingram, Jr. et al. Jul 1960 A
3517736 Waldron Jun 1970 A
3866679 Laky Feb 1975 A
3874232 Hardison Apr 1975 A
4091867 Shannon, Jr. et al. May 1978 A
4189705 Pitts, Jr. Feb 1980 A
4192380 Smith Mar 1980 A
4389645 Wharton Jun 1983 A
4515211 Reed et al. May 1985 A
4547774 Gould Oct 1985 A
4577693 Graser Mar 1986 A
4705353 Wagoner Nov 1987 A
4832121 Anderson May 1989 A
4915178 Goldschild Apr 1990 A
5111880 Wittrisch et al. May 1992 A
5122209 Moore et al. Jun 1992 A
5140319 Riordan Aug 1992 A
5184682 Delacour et al. Feb 1993 A
5275038 Sizer et al. Jan 1994 A
5355128 Riordan Oct 1994 A
5435351 Head Jul 1995 A
5441110 Scott, III Aug 1995 A
5493626 Schultz et al. Feb 1996 A
5495547 Rafie et al. Feb 1996 A
5495755 Moore Mar 1996 A
5581024 Meyer, Jr. et al. Dec 1996 A
5894104 Hedberg Apr 1999 A
5896939 Witte Apr 1999 A
5988286 Dwiggins Nov 1999 A
6004639 Quigley et al. Dec 1999 A
6060662 Rafie et al. May 2000 A
6072567 Sapack Jun 2000 A
6082454 Tubel Jul 2000 A
6100696 Sinclair Aug 2000 A
6137621 Wu Oct 2000 A
6151961 Huber et al. Nov 2000 A
6170570 Aguesse et al. Jan 2001 B1
6268911 Tubel et al. Jul 2001 B1
6272434 Wisler et al. Aug 2001 B1
6281489 Tubel et al. Aug 2001 B1
6333699 Zierolf Dec 2001 B1
6351245 Amini Feb 2002 B1
6359569 Beck et al. Mar 2002 B2
6378627 Tubel et al. Apr 2002 B1
6446723 Ramos et al. Sep 2002 B1
20010043146 Beck et al. Nov 2001 A1
20010054969 Thomeer et al. Dec 2001 A1
20020007945 Neuroth et al. Jan 2002 A1
20020027004 Bussear et al. Mar 2002 A1
20020032529 Duhon Mar 2002 A1
20020050930 Thomeer et al. May 2002 A1
Foreign Referenced Citations (4)
Number Date Country
WO 9641066 Dec 1996 WO
WO 9948111 Sep 1999 WO
WO 0120129 Mar 2001 WO
WO 0206631 Jan 2002 WO
Non-Patent Literature Citations (2)
Entry
Method and Apparatus for Determining the Temperature of Subterranean Wells Using Fiber Optic Cable, Description of invention, pp 1-24.
Method and Apparatus for Logging a Well Using Fiber Optics, Background Information and drawings of invention, pp 1-23.
Provisional Applications (1)
Number Date Country
60/315658 Aug 2001 US