Embodiments of the present invention relate to medical devices and the simultaneous delivery of diagnostic and therapeutic treatments. More specifically, embodiments of the present invention relate to devices and methods for delivering cardiovascular diagnostic, pacing therapy in a magnetic field environment, or Tachy shock therapy.
Magnetic resonance imaging (MRI) is a non-invasive imaging method that utilizes nuclear magnetic resonance techniques to render images within a patient's body. Typically, MRI systems employ the use of a magnetic coil having a magnetic field strength of between about 0.2 to 3 Teslas. During the procedure, the body tissue is briefly exposed to RF pulses of electromagnetic energy in a plane perpendicular to the magnetic field. The resultant electromagnetic energy from these pulses can be used to image the body tissue by measuring the relaxation properties of the excited atomic nuclei in the tissue.
During imaging, the electromagnetic radiation produced by the MRI system may be picked up by implantable device leads used in implantable medical devices such as pacemakers or cardiac defibrillators. This energy may be transferred through the lead to the electrode in contact with the tissue, which may lead to elevated temperatures at the point of contact. The degree of tissue heating is typically related to factors such as the length of the lead, the properties of the tissue near the lead, the conductivity or impedance of the lead, the shape of the lead, and the surface area of the lead electrodes. Exposure to a magnetic field may also induce an undesired voltage in the lead.
A medical device includes a pulse generator, a lead, and an electrode. The lead includes an electrode and a lead conductor connecting the pulse generator with the electrode via first and second conductive paths. The medical device includes first and second switches. The first switch is disposed along the first conductive path and includes an open state in the presence of a magnetic field and a closed state in the absence of the magnetic field. The second switch is disposed along the second conductive path and includes an open state when a voltage applied across the second switch is at or below a threshold voltage and a closed state when the voltage applied across the second switch exceeds a threshold voltage.
While some embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.
While the invention is amenable to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and are described in detail below. The intention, however, is not to limit the invention to the particular embodiments described. On the contrary, the invention is intended to cover all modifications, equivalents, and alternatives falling within the scope of the present disclosure.
In the embodiment of
In embodiments, the pulse generator 12 is configured to emit therapy pulses such as pacing pulses for cardiovascular therapy or pulses for shock therapy. Examples of therapy pulses include, but are not limited to, cardiac pacing pulses for heart failure and bradycardia; anti-tachy pacing and shock therapy for tachycardia; and pacing pulses for neurostimulation and pain mitigation. In embodiments, the pulse generator 12 operates in a normal mode in the absence of a magnetic field and an MRI mode in the presence of the magnetic field generated during MRI imaging. In embodiments, the pulse generator 12 includes one or more sensors to detect the presence of the magnetic field. In some embodiments, the pulse generator 12 is communicable with a remote device that switches the pulse generator 12 between the normal and MRI modes. In other embodiments, the pulse generator 12 detects the presence of a magnetic field by measuring the lead impedance of the lead conductor of lead 14.
In some embodiments, and as discussed further herein, when the pulse generator 12 is operating in the normal mode, the pulse generator 12 emits pacing pulses at a specified voltage level. When the pulse generator 12 is operating in the MRI mode, the pulse generator 12 emits pacing pulses at the specified voltage level plus a threshold voltage. In embodiments, the pulse generator 12 operates in the MRI mode only upon detection of the magnetic field. Generally, the pulse generator 12 is in the presence of the magnetic field for a minimal portion of the life time of the battery of the pulse generator 12. Accordingly, configuring the pulse generator 12 to operate in the MRI mode only when needed or in the presence of a magnetic field conserves the battery power of the pulse generator 12 since the pulse generator 12 operating in the MRI mode may consume more battery power compared to operating in the normal mode.
In embodiments, the device 44 includes a magnetic switch 48. In embodiments, the magnetic switch 48 is a single-pole double throw switch such as a reed switch. In the absence of any magnetic field, the switch 48, which is normally closed, shorts the lead conductor and the electrode at node 50 to conserve energy. In the presence of a magnetic field of the magnitude typically observed in an MRI procedure, such as the static magnetic field represented by arrow 46 of
According to some embodiments, the relay control switch 54 includes a relay control 55 that monitors the voltage across the switch 54 and closes the switch 54 when a certain threshold voltage level has been exceeded. According to embodiments, the therapy voltage provided by the pulse generator 12, when operating in the MRI mode, exceeds the threshold voltage level across the relay control switch 54, and the relay control switch 54 closes during the therapy pulse, which establishes a conductive path between the pulse generator 12 and lead 14 and electrode 42 via node 52. In some embodiments, the relay control 55 utilizes lines 56 and 57 to determine the voltage across switch 54 by measuring the voltage potential between node 51B and the electrode 42. If this voltage potential exceeds the threshold, the relay control 55 triggers the closure of the relay control switch 54. According to other embodiments, the pulse generator 12 is configured to send a control signal via line 58 timed to coincide with a therapy pulse, in order to trigger closure of the relay control switch 54 during the therapy pulse.
The magnetic switch 48 may be a mechanical switch according to embodiments. In some embodiments, the switch 48 can monitor a signal from a magnetic field detector and/or sensor and change the state of the switch 48 upon detection of a magnetic field 46. Alternatively, and in other embodiments, the switch 48 itself may be sensitive to the magnetic field. As an example, the switch 48 may be a reed switch, in which the magnetic field 46 itself moves the pole from the position shown in
A bypass device 62 may be used to bypass the magnetoresistive element 60 in the presence of a magnetic field. The bypass device 62 may be an electrical or mechanical threshold circuit, such as, for example, a Zener diode, back-to-back Zener diodes, or devices with similar characteristics. According to some embodiments, the bypass device 62 features an open circuit or a high resistance until a voltage applied across the device 62 exceeds a threshold voltage. In embodiments, the pulse generator 12, when operating in the MRI mode, is configured to deliver a pacing pulse with a voltage level that exceeds the threshold voltage of the device 62.
In embodiments, the duration of pacing pulses and signals emitted from the pulse generator 12 are longer than a threshold duration, which means that the frequency of the pacing pulses is not higher than a threshold frequency (e.g., frequency=1/duration). In some embodiments, the threshold duration is 60 nanoseconds and the threshold frequency is 8.5 MHz. In embodiments, any switch, controller, or device that receives pacing pulses or signals from the pulse generator 12 is responsive to pacing pulses or signals below a particular frequency. As an example, the bypass device 62 (
The diode 70 may be used to override the switch 64 during therapy. In embodiments, the pulse generator 12, when operating in the MRI mode, is configured to deliver a pacing pulse such as the pacing pulse illustrated in
In the presence of a magnetic field, the magnetoresistive element 60 changes from a low impedance state to a high impedance state, and substantially electrically isolates the lead conductor of the lead 14 from the electrode 42. In embodiments, when the pulse generator 12 is operating in the MRI mode, a signal sent from the pulse generator 12 to the bypass switch 76 via the fiber optic line 78 bypasses the magnetoresistive element 60 during the delivery of therapeutic pulses. Accordingly, while in the MRI mode, the pulse generator 12 activates the bypass switch 76 via fiber optic line 78 to permit therapy pulses to reach the electrode 42 via lead 14. In some embodiments, the bypass signal from the pulse generator 12 is sent through the line 78 to bypass switch 76 during a therapy pulse only when the pulse generator 12 is operating in the MRI mode in order to minimize energy use. By activating the bypass switches 72, 76 only in an MRI environment (e.g., when the pulse generator 12 is operating in an MRI mode) and only during delivery of therapy, the pulse generator 12 may conserve battery power usage.
The process in
If a magnetic field is detected, the pulse generator 12 operates in the MRI mode (block 96). Further, when the magnetic field is detected, the conductive path provided between the pulse generator 12 and the electrode via the first switch 48 is substantially prevented (block 98). In embodiments, in the presence of the magnetic field, the single-pole of the magnetic switch 48 deflects from node 50 to node 52. Additionally, the second switch 54 monitors a voltage (V) across the second switch (block 100). In certain embodiments, for example, the second switch 54 may monitor a voltage (V) provided by the pulse generator 12. In embodiments, the relay switch 54 monitors the voltage applied across the second switch 54.
After measuring the voltage (V), the second switch 54 determines if the measured voltage (V) is greater than the voltage threshold (Vth) of the second switch 54 (block 102). If V≦Vth, the second switch 54 determines if the second switch 54 is closed (block 104), then the second switch 54 is opened (block 106). In embodiments, the second switch 54 is opened when V≦Vth. If the second switch 54 is already opened 104, the process returns to determining if the magnetic field is still present (block 90).
If V>Vth (block 102), the second switch 54 determines if the second switch 54 is closed (block 108). If the second switch 54 determines that the second switch 54 is open, the second switch 54 is then closed (block 110). In embodiments, the second switch 54 is closed when V>Vth. If the second switch 54 is already closed (block 108), the pulse generator 12 returns to determining if the magnetic field is still present (block 90).
Although several embodiments are disclosed with respect to a cardiac management system 10 deployed in a patient's heart 16 (
Various modifications and additions can be made to the exemplary embodiments discussed without departing from the scope of the present invention. For example, while the embodiments described above refer to particular features, the scope of this invention also includes embodiments having different combinations of features and embodiments that do not include all of the described features. Accordingly, the scope of the present invention is intended to embrace all such alternatives, modifications, and variations as fall within the scope of the present disclosure, together with all equivalents thereof.
This application is a continuation of U.S. patent application Ser. No. 12/329,383, filed Dec. 5, 2008, which claims priority under 35 U.S.C. §119(e) to U.S. Provisional Patent No. 60/992,991, filed on Dec. 6, 2007, each of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3888260 | Fischell | Jun 1975 | A |
3898995 | Dresbach | Aug 1975 | A |
4091818 | Brownlee et al. | May 1978 | A |
4379459 | Stein | Apr 1983 | A |
4404125 | Abolins et al. | Sep 1983 | A |
4516579 | Irnich | May 1985 | A |
4611127 | Ibrahim et al. | Sep 1986 | A |
4694837 | Blakeley et al. | Sep 1987 | A |
4729376 | DeCote, Jr. | Mar 1988 | A |
4751110 | Gulla et al. | Jun 1988 | A |
4779617 | Whigham | Oct 1988 | A |
4823075 | Alley | Apr 1989 | A |
4869970 | Gulla et al. | Sep 1989 | A |
4934366 | Truex et al. | Jun 1990 | A |
5038785 | Blakeley et al. | Aug 1991 | A |
5075039 | Goldberg | Dec 1991 | A |
5076841 | Chen et al. | Dec 1991 | A |
5120578 | Chen et al. | Jun 1992 | A |
5181511 | Nickolls et al. | Jan 1993 | A |
5187136 | Klobucar et al. | Feb 1993 | A |
5188117 | Steinhaus et al. | Feb 1993 | A |
5197468 | Proctor et al. | Mar 1993 | A |
5217010 | Tsitlik et al. | Jun 1993 | A |
5243911 | Dow et al. | Sep 1993 | A |
5279225 | Dow et al. | Jan 1994 | A |
5288313 | Portner | Feb 1994 | A |
5292342 | Nelson et al. | Mar 1994 | A |
5309096 | Hoegnelid | May 1994 | A |
5325728 | Zimmerman et al. | Jul 1994 | A |
5345362 | Winkler | Sep 1994 | A |
5391188 | Nelson et al. | Feb 1995 | A |
5406444 | Selfried et al. | Apr 1995 | A |
5424642 | Ekwall | Jun 1995 | A |
5438900 | Sundstrom | Aug 1995 | A |
5454837 | Lindegren et al. | Oct 1995 | A |
5470345 | Hassler et al. | Nov 1995 | A |
5523578 | Herskovic | Jun 1996 | A |
5527348 | Winkler et al. | Jun 1996 | A |
5529578 | Struble | Jun 1996 | A |
5545187 | Bergstrom et al. | Aug 1996 | A |
5562714 | Grevious | Oct 1996 | A |
5607458 | Causey, III et al. | Mar 1997 | A |
5609622 | Soukup et al. | Mar 1997 | A |
5618208 | Crouse et al. | Apr 1997 | A |
5620476 | Truex et al. | Apr 1997 | A |
5647379 | Meltzer | Jul 1997 | A |
5649965 | Pons et al. | Jul 1997 | A |
5650759 | Hittman et al. | Jul 1997 | A |
5662694 | Lidman et al. | Sep 1997 | A |
5662697 | Li et al. | Sep 1997 | A |
5683434 | Archer | Nov 1997 | A |
5687735 | Forbes et al. | Nov 1997 | A |
5694952 | Lidman et al. | Dec 1997 | A |
5697958 | Paul et al. | Dec 1997 | A |
5709225 | Budgifvars et al. | Jan 1998 | A |
5714536 | Ziolo et al. | Feb 1998 | A |
5722998 | Prutchi et al. | Mar 1998 | A |
5727552 | Ryan | Mar 1998 | A |
5735884 | Thompson et al. | Apr 1998 | A |
5749910 | Brumwell et al. | May 1998 | A |
5751539 | Stevenson et al. | May 1998 | A |
5759197 | Sawchuk et al. | Jun 1998 | A |
5764052 | Renger | Jun 1998 | A |
5766227 | Nappholz et al. | Jun 1998 | A |
5776168 | Gunderson | Jul 1998 | A |
5782241 | Felblinger et al. | Jul 1998 | A |
5782891 | Hassler et al. | Jul 1998 | A |
5792201 | Causey, III et al. | Aug 1998 | A |
5800496 | Swoyer et al. | Sep 1998 | A |
5800497 | Bakels et al. | Sep 1998 | A |
5814090 | Latterell et al. | Sep 1998 | A |
5817130 | Cox et al. | Oct 1998 | A |
5827997 | Chung et al. | Oct 1998 | A |
5853375 | Orr | Dec 1998 | A |
5867361 | Wolf et al. | Feb 1999 | A |
5869078 | Baudino | Feb 1999 | A |
5870272 | Seifried et al. | Feb 1999 | A |
5871509 | Noren | Feb 1999 | A |
5877630 | Kraz | Mar 1999 | A |
5895980 | Thompson | Apr 1999 | A |
5905627 | Brendel et al. | May 1999 | A |
5959829 | Stevenson et al. | Sep 1999 | A |
5964705 | Truwit et al. | Oct 1999 | A |
5968854 | Akopian et al. | Oct 1999 | A |
5973906 | Stevenson et al. | Oct 1999 | A |
5978204 | Stevenson | Nov 1999 | A |
5978710 | Prutchi et al. | Nov 1999 | A |
5999398 | Makl et al. | Dec 1999 | A |
6008980 | Stevenson et al. | Dec 1999 | A |
6031710 | Wolf et al. | Feb 2000 | A |
6032063 | Hoar et al. | Feb 2000 | A |
6055455 | O'Phelan et al. | Apr 2000 | A |
6079681 | Stern et al. | Jun 2000 | A |
6101417 | Vogel et al. | Aug 2000 | A |
6147301 | Bhatia | Nov 2000 | A |
6161046 | Maniglia et al. | Dec 2000 | A |
6162180 | Miesel et al. | Dec 2000 | A |
6173203 | Barkley et al. | Jan 2001 | B1 |
6188926 | Vock | Feb 2001 | B1 |
6192279 | Barreras, Sr. et al. | Feb 2001 | B1 |
6198968 | Prutchi et al. | Mar 2001 | B1 |
6198972 | Hartlaub et al. | Mar 2001 | B1 |
6209764 | Hartlaub et al. | Apr 2001 | B1 |
6217800 | Hayward | Apr 2001 | B1 |
6235038 | Hunter et al. | May 2001 | B1 |
6245464 | Spillman et al. | Jun 2001 | B1 |
6246902 | Naylor et al. | Jun 2001 | B1 |
6249701 | Rajasekhar et al. | Jun 2001 | B1 |
6268725 | Vernon et al. | Jul 2001 | B1 |
6270831 | Kumar et al. | Aug 2001 | B2 |
6275369 | Stevenson et al. | Aug 2001 | B1 |
6288344 | Youker et al. | Sep 2001 | B1 |
6324431 | Zarinetchi et al. | Nov 2001 | B1 |
6358281 | Berrang et al. | Mar 2002 | B1 |
6365076 | Bhatia | Apr 2002 | B1 |
6381494 | Gilkerson et al. | Apr 2002 | B1 |
6421555 | Nappholz | Jul 2002 | B1 |
6424234 | Stevenson | Jul 2002 | B1 |
6446512 | Zimmerman et al. | Sep 2002 | B2 |
6452564 | Schoen et al. | Sep 2002 | B1 |
6456481 | Stevenson | Sep 2002 | B1 |
6459935 | Piersma | Oct 2002 | B1 |
6470212 | Weijand et al. | Oct 2002 | B1 |
6487452 | Legay | Nov 2002 | B2 |
6490148 | Allen et al. | Dec 2002 | B1 |
6496714 | Weiss et al. | Dec 2002 | B1 |
6503964 | Smith et al. | Jan 2003 | B2 |
6506972 | Wang | Jan 2003 | B1 |
6510345 | Van Bentem | Jan 2003 | B1 |
6512666 | Duva | Jan 2003 | B1 |
6522920 | Silvian et al. | Feb 2003 | B2 |
6526321 | Spehr | Feb 2003 | B1 |
6539253 | Thompson et al. | Mar 2003 | B2 |
6545854 | Trinh et al. | Apr 2003 | B2 |
6555745 | Kruse et al. | Apr 2003 | B1 |
6563132 | Talroze et al. | May 2003 | B1 |
6566978 | Stevenson et al. | May 2003 | B2 |
6567259 | Stevenson et al. | May 2003 | B2 |
6580947 | Thompson | Jun 2003 | B1 |
6584351 | Ekwall | Jun 2003 | B1 |
6595756 | Gray et al. | Jul 2003 | B2 |
6607485 | Bardy | Aug 2003 | B2 |
6626937 | Cox | Sep 2003 | B1 |
6629938 | Engvall et al. | Oct 2003 | B1 |
6631290 | Guck et al. | Oct 2003 | B1 |
6631555 | Youker et al. | Oct 2003 | B1 |
6640137 | MacDonald | Oct 2003 | B2 |
6643903 | Stevenson et al. | Nov 2003 | B2 |
6646198 | Maciver et al. | Nov 2003 | B2 |
6648914 | Berrang et al. | Nov 2003 | B2 |
6662049 | Miller | Dec 2003 | B1 |
6673999 | Wang et al. | Jan 2004 | B1 |
6711440 | Deal et al. | Mar 2004 | B2 |
6713671 | Wang et al. | Mar 2004 | B1 |
6718203 | Weiner et al. | Apr 2004 | B2 |
6718207 | Connelly | Apr 2004 | B2 |
6725092 | MacDonald et al. | Apr 2004 | B2 |
6731979 | MacDonald | May 2004 | B2 |
6795730 | Connelly et al. | Sep 2004 | B2 |
6901292 | Hrdlicka et al. | May 2005 | B2 |
6925328 | Foster et al. | Aug 2005 | B2 |
6937906 | Terry et al. | Aug 2005 | B2 |
6944489 | Zeijlemaker et al. | Sep 2005 | B2 |
6963779 | Shankar | Nov 2005 | B1 |
7013180 | Dublin et al. | Mar 2006 | B2 |
7020517 | Weiner | Mar 2006 | B2 |
7050855 | Zeijlemaker et al. | May 2006 | B2 |
7076283 | Cho et al. | Jul 2006 | B2 |
7082328 | Funke | Jul 2006 | B2 |
7092756 | Zhang et al. | Aug 2006 | B2 |
7123013 | Gray | Oct 2006 | B2 |
7138582 | Lessar et al. | Nov 2006 | B2 |
7164950 | Kroll et al. | Jan 2007 | B2 |
7174219 | Wahlstrand et al. | Feb 2007 | B2 |
7174220 | Chitre et al. | Feb 2007 | B1 |
7212863 | Strandberg | May 2007 | B2 |
7231251 | Yonce et al. | Jun 2007 | B2 |
7242981 | Ginggen | Jul 2007 | B2 |
7272444 | Peterson et al. | Sep 2007 | B2 |
7369898 | Kroll et al. | May 2008 | B1 |
7388378 | Gray et al. | Jun 2008 | B2 |
7509167 | Stessman | Mar 2009 | B2 |
7561915 | Cooke et al. | Jul 2009 | B1 |
7801625 | MacDonald | Sep 2010 | B2 |
7835803 | Malinowski et al. | Nov 2010 | B1 |
7839146 | Gray | Nov 2010 | B2 |
8014867 | Cooke et al. | Sep 2011 | B2 |
8032228 | Ameri et al. | Oct 2011 | B2 |
8086321 | Ameri | Dec 2011 | B2 |
8121705 | MacDonald | Feb 2012 | B2 |
8160717 | Ameri | Apr 2012 | B2 |
8311637 | Ameri | Nov 2012 | B2 |
20010002000 | Kumar et al. | May 2001 | A1 |
20010006263 | Hayward | Jul 2001 | A1 |
20010011175 | Hunter et al. | Aug 2001 | A1 |
20010018123 | Furumori et al. | Aug 2001 | A1 |
20010025139 | Pearlman | Sep 2001 | A1 |
20010037134 | Munshi | Nov 2001 | A1 |
20010050837 | Stevenson et al. | Dec 2001 | A1 |
20020019658 | Munshi | Feb 2002 | A1 |
20020026224 | Thompson et al. | Feb 2002 | A1 |
20020038135 | Connelly et al. | Mar 2002 | A1 |
20020050401 | Youker et al. | May 2002 | A1 |
20020072769 | Silvian et al. | Jun 2002 | A1 |
20020082648 | Kramer et al. | Jun 2002 | A1 |
20020102835 | Stucchi et al. | Aug 2002 | A1 |
20020116028 | Greatbatch et al. | Aug 2002 | A1 |
20020116029 | Miller et al. | Aug 2002 | A1 |
20020116033 | Greatbatch et al. | Aug 2002 | A1 |
20020116034 | Miller et al. | Aug 2002 | A1 |
20020117314 | Maciver et al. | Aug 2002 | A1 |
20020128689 | Connelly et al. | Sep 2002 | A1 |
20020128691 | Connelly | Sep 2002 | A1 |
20020133086 | Connelly et al. | Sep 2002 | A1 |
20020133199 | MacDonald et al. | Sep 2002 | A1 |
20020133200 | Weiner et al. | Sep 2002 | A1 |
20020133201 | Connelly et al. | Sep 2002 | A1 |
20020133202 | Connelly et al. | Sep 2002 | A1 |
20020133208 | Connelly | Sep 2002 | A1 |
20020133211 | Weiner et al. | Sep 2002 | A1 |
20020133216 | Connelly et al. | Sep 2002 | A1 |
20020138102 | Weiner et al. | Sep 2002 | A1 |
20020138107 | Weiner et al. | Sep 2002 | A1 |
20020138108 | Weiner et al. | Sep 2002 | A1 |
20020138110 | Connelly et al. | Sep 2002 | A1 |
20020138112 | Connelly et al. | Sep 2002 | A1 |
20020138113 | Connelly et al. | Sep 2002 | A1 |
20020138124 | Helfer et al. | Sep 2002 | A1 |
20020143258 | Weiner et al. | Oct 2002 | A1 |
20020147388 | Mass et al. | Oct 2002 | A1 |
20020147470 | Weiner et al. | Oct 2002 | A1 |
20020162605 | Horton et al. | Nov 2002 | A1 |
20020166618 | Wolf et al. | Nov 2002 | A1 |
20020175782 | Trinh et al. | Nov 2002 | A1 |
20020183796 | Connelly | Dec 2002 | A1 |
20020198569 | Foster et al. | Dec 2002 | A1 |
20030036774 | Maier et al. | Feb 2003 | A1 |
20030036776 | Foster et al. | Feb 2003 | A1 |
20030045907 | MacDonald | Mar 2003 | A1 |
20030053284 | Stevenson et al. | Mar 2003 | A1 |
20030055457 | MacDonald | Mar 2003 | A1 |
20030056820 | MacDonald | Mar 2003 | A1 |
20030074029 | Deno et al. | Apr 2003 | A1 |
20030081370 | Haskell et al. | May 2003 | A1 |
20030083570 | Cho et al. | May 2003 | A1 |
20030083723 | Wilkinson et al. | May 2003 | A1 |
20030083726 | Zeijlemaker et al. | May 2003 | A1 |
20030083728 | Greatbatch et al. | May 2003 | A1 |
20030100925 | Pape et al. | May 2003 | A1 |
20030109901 | Greatbatch | Jun 2003 | A1 |
20030111142 | Horton et al. | Jun 2003 | A1 |
20030114897 | Von Arx et al. | Jun 2003 | A1 |
20030114898 | Von Arx et al. | Jun 2003 | A1 |
20030120197 | Kaneko et al. | Jun 2003 | A1 |
20030130647 | Gray et al. | Jul 2003 | A1 |
20030130700 | Miller et al. | Jul 2003 | A1 |
20030130701 | Miller | Jul 2003 | A1 |
20030130708 | Von Arx et al. | Jul 2003 | A1 |
20030135114 | Pacetti et al. | Jul 2003 | A1 |
20030135160 | Gray et al. | Jul 2003 | A1 |
20030139096 | Stevenson et al. | Jul 2003 | A1 |
20030140931 | Zeijlemaker et al. | Jul 2003 | A1 |
20030144704 | Terry et al. | Jul 2003 | A1 |
20030144705 | Funke | Jul 2003 | A1 |
20030144706 | Funke | Jul 2003 | A1 |
20030144716 | Reinke et al. | Jul 2003 | A1 |
20030144717 | Hagele | Jul 2003 | A1 |
20030144718 | Zeijlemaker | Jul 2003 | A1 |
20030144719 | Zeijlemaker | Jul 2003 | A1 |
20030144720 | Villaseca et al. | Jul 2003 | A1 |
20030144721 | Villaseca et al. | Jul 2003 | A1 |
20030149459 | Von Arx et al. | Aug 2003 | A1 |
20030158584 | Cates et al. | Aug 2003 | A1 |
20030176900 | MacDonald | Sep 2003 | A1 |
20030179536 | Stevenson et al. | Sep 2003 | A1 |
20030191505 | Gryzwa et al. | Oct 2003 | A1 |
20030195570 | Deal et al. | Oct 2003 | A1 |
20030199755 | Halperin et al. | Oct 2003 | A1 |
20030204207 | MacDonald et al. | Oct 2003 | A1 |
20030204215 | Gunderson et al. | Oct 2003 | A1 |
20030204217 | Greatbatch | Oct 2003 | A1 |
20030213604 | Stevenson et al. | Nov 2003 | A1 |
20030213605 | Brendel et al. | Nov 2003 | A1 |
20040005483 | Lin | Jan 2004 | A1 |
20040015162 | McGaffigan | Jan 2004 | A1 |
20040015197 | Gunderson | Jan 2004 | A1 |
20040019273 | Helfer et al. | Jan 2004 | A1 |
20040049237 | Larson et al. | Mar 2004 | A1 |
20040088012 | Kroll et al. | May 2004 | A1 |
20040093432 | Luo et al. | May 2004 | A1 |
20040263174 | Gray et al. | Dec 2004 | A1 |
20050043761 | Connelly et al. | Feb 2005 | A1 |
20050070787 | Zeijlemaker | Mar 2005 | A1 |
20050070975 | Zeijlemaker et al. | Mar 2005 | A1 |
20050113676 | Weiner et al. | May 2005 | A1 |
20050113873 | Weiner et al. | May 2005 | A1 |
20050113876 | Weiner et al. | May 2005 | A1 |
20050197677 | Stevenson | Sep 2005 | A1 |
20050222656 | Wahlstrand et al. | Oct 2005 | A1 |
20050222657 | Wahlstrand et al. | Oct 2005 | A1 |
20050222658 | Hoegh et al. | Oct 2005 | A1 |
20050222659 | Olsen et al. | Oct 2005 | A1 |
20060025820 | Phillips et al. | Feb 2006 | A1 |
20060030774 | Gray et al. | Feb 2006 | A1 |
20060041294 | Gray | Feb 2006 | A1 |
20060167496 | Nelson et al. | Jul 2006 | A1 |
20060173295 | Zeijlemaker | Aug 2006 | A1 |
20060247747 | Olsen et al. | Nov 2006 | A1 |
20060247748 | Wahlstrand et al. | Nov 2006 | A1 |
20060271138 | MacDonald | Nov 2006 | A1 |
20060293591 | Wahlstrand et al. | Dec 2006 | A1 |
20070019354 | Kamath | Jan 2007 | A1 |
20070021814 | Inman et al. | Jan 2007 | A1 |
20070179577 | Marshall et al. | Aug 2007 | A1 |
20070179582 | Marshall et al. | Aug 2007 | A1 |
20070191914 | Stessman | Aug 2007 | A1 |
20070203523 | Betzold | Aug 2007 | A1 |
20070238975 | Zeijlemaker | Oct 2007 | A1 |
20070255332 | Cabelka et al. | Nov 2007 | A1 |
20080033497 | Bulkes et al. | Feb 2008 | A1 |
20080132985 | Wedan et al. | Jun 2008 | A1 |
20080154342 | Digby et al. | Jun 2008 | A1 |
20080221638 | Wedan et al. | Sep 2008 | A1 |
20080234772 | Shuros et al. | Sep 2008 | A1 |
20090138058 | Cooke et al. | May 2009 | A1 |
20090149906 | Ameri et al. | Jun 2009 | A1 |
20090149909 | Ameri | Jun 2009 | A1 |
20090157146 | Linder et al. | Jun 2009 | A1 |
20090204182 | Ameri | Aug 2009 | A1 |
20090210025 | Ameri | Aug 2009 | A1 |
20100087892 | Stubbs et al. | Apr 2010 | A1 |
20100211123 | Stubbs et al. | Aug 2010 | A1 |
20110137359 | Stubbs et al. | Jun 2011 | A1 |
20110270338 | Cooke et al. | Nov 2011 | A1 |
20120071941 | Ameri | Mar 2012 | A1 |
20120253425 | Yoon et al. | Oct 2012 | A1 |
Number | Date | Country |
---|---|---|
0530006 | Mar 1993 | EP |
0591334 | Apr 1994 | EP |
0331959 | Dec 1994 | EP |
0891786 | Jan 1999 | EP |
0891207 | Nov 1999 | EP |
0980105 | Feb 2000 | EP |
0989623 | Mar 2000 | EP |
0989624 | Mar 2000 | EP |
1007132 | Jun 2000 | EP |
1109180 | Jun 2001 | EP |
1128764 | Sep 2001 | EP |
0705621 | Jan 2002 | EP |
1191556 | Mar 2002 | EP |
1271579 | Jan 2003 | EP |
0719570 | Apr 2003 | EP |
1308971 | May 2003 | EP |
1007140 | Oct 2003 | EP |
1372782 | Jan 2004 | EP |
0870517 | Jun 2004 | EP |
1061849 | Nov 2005 | EP |
1060762 | Aug 2006 | EP |
0836413 | Aug 2008 | EP |
WO9104069 | Apr 1991 | WO |
WO9638200 | Dec 1996 | WO |
WO9712645 | Apr 1997 | WO |
WO0054953 | Sep 2000 | WO |
WO0137286 | May 2001 | WO |
WO0180940 | Nov 2001 | WO |
WO0186774 | Nov 2001 | WO |
WO02056761 | Jul 2002 | WO |
WO02065895 | Aug 2002 | WO |
WO02072004 | Sep 2002 | WO |
WO02089665 | Nov 2002 | WO |
WO02092161 | Nov 2002 | WO |
WO03013199 | Feb 2003 | WO |
WO03037399 | May 2003 | WO |
WO03059445 | Jul 2003 | WO |
WO03061755 | Jul 2003 | WO |
WO03063952 | Aug 2003 | WO |
WO03063954 | Aug 2003 | WO |
WO03063955 | Aug 2003 | WO |
WO03063956 | Aug 2003 | WO |
WO03063958 | Aug 2003 | WO |
WO03063962 | Aug 2003 | WO |
WO03070098 | Aug 2003 | WO |
WO03073449 | Sep 2003 | WO |
WO03073450 | Sep 2003 | WO |
WO03086538 | Oct 2003 | WO |
WO03090846 | Nov 2003 | WO |
WO03090854 | Nov 2003 | WO |
WO03095022 | Nov 2003 | WO |
WO03063946 | Apr 2005 | WO |
WO2006124481 | Nov 2006 | WO |
Entry |
---|
Dempsey Mary F. et al., “Investigation of the Factors Responsible for Burns During MRI”, Journal of Magnetic Resonance Imaging 2001:13:627-631. |
File History for U.S. Appl. No. 11/015,807, filed Dec. 17, 2004. |
International Search Report and Written Opinion issued in PCT/US2009/059093, mailed Dec. 29, 2009. |
International Search Report and Written Opinion issued in PCT/US2009/068314, mailed Mar. 25, 2009, 14 pages. |
Kerr, Martha, “Shock Rate Cut 70% With ICDs Programmed to First Deliver Antitachycardia Pacing: Results of the PainFREE Rx II Trial,” Medscape CRM News, May 21, 2003. |
Luechinger, Roger et al., “In vivo heating of pacemaker leads during magnetic resonance imaging”, European Heart Journal 2005;26:376-383. |
Schueler, et al., “MRI Compatibility and Visibility Assessment of Implantable Medical Devices”, Journal of Magnetic Resonance Imaging, 9:596-603 (1999). |
Shellock FG, “Reference manual for magnetic resonance safety, implants, and devices”, pp. 136-139, 2008 ed. Los Angeles; Biomedical Research Publishing Group; 2008. |
Shellock, Frank G. et al., “Cardiovascular catheters and accessories: ex vivo testing of ferromagnetism, heating, and artifacts associated with MRI”, Journal of Magnetic Resonance Imaging, Nov./Dec. 1998; 8:1338-1342. |
Sweeney, Michael O. et al., Appropriate and Inappropriate Ventricular Therapies, Quality of Life, and Mortality Among Primary and Secondary Prevention Implantable Cardioverter Defibrillator Patients: Results From the Pacing Fast VT REduces Shock Therapies (PainFREE Rx II) Trial, American Heart Association, 2005. |
Wilkoff, Bruce L. et al., “A Comparison of Empiric to Physician-Tailored Programming of Implantable Cardioverter-Defibrillators Results From the Prospective Randomized Multicenter EMPIRIC Trial,” Journal of the American College of Cardiology vol. 48, No. 2, 2006. doi:10.1016/j.jacc.2006.03.037. |
International Search Report and Written Opinion issued in PCT/US2010/053202, mailed Dec. 30, 2010, 12 pages. |
Number | Date | Country | |
---|---|---|---|
20110276104 A1 | Nov 2011 | US |
Number | Date | Country | |
---|---|---|---|
60992991 | Dec 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12329383 | Dec 2008 | US |
Child | 13186194 | US |