The present application provides methods and apparatus for the delivery of liquids under conditions that require highly accurate control of pressure or flow rate. In particular, the present invention provides methods and apparatus for the delivery of high purity chemicals or slurries to one or more points of use in a semiconductor manufacturing process, wherein the flow rate of the chemical or slurry is provided at a constant flow rate to the points of use.
It is often desirable to precisely control the amount of liquid provided to an end point of a liquid dispensing system. Further, it is important that the amount of liquid provided is as constant as possible to avoid spiking that can have deleterious effects. This is particularly true for semiconductor manufacturing processes where the amount of liquid provided can greatly affect the process, such as layer formation, etching, cleaning, etc. Variations in pressure can lead to non-repeatability and ultimately a loss in yield. Flow control is also important. For certain processes, such as semiconductor processes requiring slurries, it is important to maintain the flow rate at a velocity necessary to keep particles suspended in the slurry. Alternatively, for high purity chemical applications, maintaining consistent flow rate is important to assure optimum filtration. Changes in flow rate can also affect the pressure in the distribution system, such as by frictional losses (e.g. headloss) in piping or filtration cartridges.
It is therefore desirable to provide a precise, controllable, constant flow rate of liquid to the points of use or end point of the dispensing system. However, this can be difficult to achieve for a number of reasons, including, variations in demand, pressure changes in the distribution system during operation, pressure changes caused by filter clogging, pump cycle effects, and others. To more fully explain the problems that must be overcome,
Centrifugal pumps are good at maintaining stable pressures for small liquid demands. However, large consumption demands or disruptions in the distribution system, e.g. charging an empty filter housing, can cause flow transients that significantly reduce the output pressure of the centrifugal pump and therefore significantly effect the pressure in the distribution system. Further, centrifugal pumps demand a high amount of electrical power and have limitations on discharge pressure. Reaching higher pressures requires more electrical power and centrifugal pumps running at the high RPMs needed for high pressure operation, can introduce heat into the system that may negatively impact some processes.
While only one point of use 30, is shown in
As noted above, the tank 10 is normally a standard vented tank. However, pressure vessels have also been used to provide more stable pressure control to the distribution system. There are many variations on pressure vessel dispense systems, all of which have certain disadvantages. For example, multiple pressure vessels that operate in sequence can provide the most stable pressure for the system, but suffer from system complexity because of the need to continually pressurize, empty, vent and refill as liquid is circulated through the system. When a single pressure vessel is used, the liquid returning to the vessel must be first sent to a vessel at a lower pressure than is required for the dispense vessel and then pumped back into the dispense vessel. When liquid demand is low, significant energy is still consumed because of the necessity of maintaining the re-circulating flow.
There remains a need in the art to overcome the problems noted above.
The present application provides methods and apparatus for the delivery of liquids under conditions that require highly accurate control of pressure or flow rate. In particular, the present invention provides methods and apparatus for the delivery of high purity chemicals or slurries to one or more points of use in a semiconductor manufacturing process, wherein the flow rate of the chemical or slurry is provided at a constant flow rate to the points of use.
The objectives of the present invention are accomplished by combining a pressure vessel and a centrifugal pump within the same distribution system. By using both a pressure vessel and a centrifugal pump together, the advantages provided by each component can be optimized and the overall performance of the system can be enhanced.
The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
In operation, liquid is pumped through the system 200, by the centrifugal pump 220. Liquid is delivered out of the pressure vessel 210, and provided to the point of use 230. Any excess liquid is returned to the pressure vessel 210. Preferably, the return line would be submerged below the liquid level in the pressure vessel 210. Pressure within the system 200, is maintained by establishing the appropriate pressure within the pressure vessel 210, for example by pressurization using regulating means 250. The speed for the centrifugal pump 220 is also set appropriately to maintain the system 200 pressure at a desired level.
By using the pressure vessel 210 in conjunction with the centrifugal pump 220, significant advantages are achieved. In particular, by using a pressurized vessel 210, the centrifugal pump 220 can operate at lower speeds and still produce the required system 200 pressure. In this way, the system 200 according to the present invention requires much less energy than the systems of the prior art that utilize a standard vented tank. Further, by using the pressure vessel 210 and centrifugal pump 220, higher system pressure can be achieved than if a vented tank is used.
A further advantage of the present invention is that the regulated pressure of pressure vessel 220 serves to dampen pressure fluctuations during transient periods of operation. For example, the higher the pressure there is in pressure vessel 210, the more it will limit return flow, thus reducing frictional headloss. This provides a stabilizing effect on the pressure throughout the system 200.
Alternatively, the controller 370 may send a signal to the regulating means 350 to adjust pressure in the pressure vessel 310 as required to maintain constant pressure or flow to the point of use 330. One advantage of this alternative is that the centrifugal pump 320 can be operated at a constant speed, while the pressure of the pressure vessel 310 is adjusted to control system 300 operation.
A further alternative is to have the controller 370 provide signals to both the pump 320 and the regulating means 350 to maintain constant pressure and flow rate to the point of use 330.
While
Other alternatives and embodiments are included in the present invention. For example, additional centrifugal pumps could be added to the system to provide back up and redundancy for the system. In addition, multiple pressure vessels could be utilized, either for back up and redundancy or to allow liquid blending to take place in one pressure vessel while another vessel is distributing liquid through the system. Isolation valves can be added to the system to allow for servicing. In addition, pressure relief valves could be provided to protect against failure of the pressure regulating means. Humidification can also be provided if needed, for example, by humidifying the nitrogen gas stream used for pressurization.
Alternatives for the embodiment shown in
The present invention provides many advantages over the prior art by combining the favorable attributes of both pressure vessels and centrifugal pumps. In particular the centrifugal pumps of the system according to the present invention can operate at lower speeds and still produce the required system pressure. Therefore the systems according to the present invention require much less energy than the systems of the prior art that utilize a standard vented tank. Further, by using a pressure vessel and centrifugal pump together system pressures can be achieved than if a vented tank is used. A further advantage of the present invention is that the pressure vessel serves to dampen pressure fluctuations during transient periods of operation and provides a stabilizing effect on the pressure throughout the system 200.
Many modifications and other embodiments of the invention will come to mind to one skilled in the art to which this invention pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the invention is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
Number | Date | Country | |
---|---|---|---|
60773448 | Feb 2006 | US |