The application disclosed herein is in the field of optimizing the performance of data networks.
Data networks include the transmission of audio data and video data at increasingly high volumes and speeds. One of the challenges in designing and operating data networks is determining what routes through the network are most efficient at any one time. Routers, switches and controllers may be hardware or software or a combination of both. The proliferation of virtual machines not tied to any particular geographic location lends itself to using the term “point of presence” or “POP” for network nodes. For a given network, at any one time, each POP must determine how best to route data packets. Some POPS may be experiencing very high volume, and even if they are in a shortest path, might be best left out of the route. Several routing solutions are currently known. As an example of a prior art data network, refer to
A typical prior art method of this communication is “out of band”, which is illustrated by controller-to-controller link 107. Link 107 does not share the same data plane, or the same the data links, or “pipes” 109 as the data network itself. This out of band communication between controllers requires additional overhead at each end, in part because a different network is used (for example internet 103, but that is not limiting). In addition, to communicate with different, potentially different, or possibly legacy controllers, one or more different protocols (in addition to the actual data traffic protocol) must be managed.
There are some current in band solutions for communication between POPs, however they are focused on communication between actual hardware routers and thus include overhead in the form of establishment of connection, trust issues, handshakes, keeping state of neighbor routers, etc.
It is desirable to define a communication method between data network POPs that allows most efficient communication of data traffic metrics to all POPs in a network so that each POP can make optimized routing decisions at any time, yet does not burden each POP with addition overhead for the purpose.
Embodiments disclosed include a method and apparatus for global traffic control and optimization for software-defined networks. In an embodiment, data traffic is optimized by distributing predefined metrics (data traffic information) to all controllers in the network. The predefined metrics are specific to local network switches and controllers, but are distributed to all peers at configurable intervals. “Local” as used herein implies one POP and its associated switch and controller. The method of distribution of local POP metrics is strictly in band using a packet as defined by the protocol used by the data network. Herein, the term “control packet” is used to distinguish from a data packet.
As further described, embodiments include a proprietary software network controller local to each POP in a network. The network controllers are homogenous, and thus control packets sent between network controllers need only include chosen information (such as the predefined metrics) and minimal overhead data is required.
Each controller 202 can be referred to as a local controller. Each controller 202 talks to its own switch 203. Communication is between local controllers, but each controller is responsible for a single switch. In an embodiment, each POP is associated with a virtual machine, and for that POP, one controller is controlling one switch.
In embodiments, the controller framework is Onos (Open network operating system), which is software defined. Any other software defined framework could be used.
Controller/routing software 205 as further described below is proprietary software that performs communication between controllers in the network, collection and distribution of metric data for each controller, and formation of routing instructions for each controller.
Controller 2-x (the number of controllers being variable, but inferring all of the controllers in the network) receives the packet sent by controller 1 (306).
Controllers 2-x form on-the-fly routing decisions based on the received packet (308).
The traffic data collected by switch 1 is sent to associated network controller 205A (see arrow 1). The local feedback database 209A associated with network controller 205A and switch 1 (203A) is updated with the collected information (see arrow 2). At arrow 3, the network controller 205A then pulls data from the feedback database to report to all other controllers in the network.
At arrow 4, the network controller 205A instructs the local switch 1 (203A) to create and send a specific control packet containing the latest feedback data (also referred to as traffic data or traffic information). The control packet is then sent in band to a neighboring switch, in this case switch 2 (203B). Switch 1 (203B) forwards the packet to its associated local controller 205B as shown with arrow 6. Controller 2015B processes the received packet and updates its associated feedback database 209B (see arrow 7). Network controller 205B pulls data from the feedback database 209B as input to a routing algorithm 403 (arrows 8 and 9). Network controller 205B receives optimum routing data based on the output to the routing algorithm 403 (arrow 10). Network controller 205B then sends a message to switch 2 to install routing rules based on the output of routing algorithm 403. In an embodiment, the message is an OpenFlow message that includes instructions to create and distribute control packets and to install forwarding rules.
In an embodiment, control packets are based on the PWOSPF protocol, with some modification to support additional data needed by the routing algorithm 403, but other protocols could be used. PWOSPF is a simplified link state routing protocol based on industry standard OSPFv2. Rules and metrics are conveyed by the protocol. Rules are updates for each instruction to a switch based on the information received from the routing algorithm. Metrics are predefined to include metrics of interest. In an embodiment, metrics include latency, packet loss, and utilization.
OVS switch 1 (203A) knows how much data is going through its connected pipes. In an embodiment, a link utilization algorithm is used. Link utilization is also a metric in an embodiment, which is meaningful given that each switch has finite capacity. Accordingly, link utilization is one type of data that the controller receives at arrow 1. When the database 209A receives the data it is saved locally and also prepares the control packet to be transmitted to peers. Transmission to peers does not necessarily happen each time data is received (arrow 1). For example, data can be collected every second r ten times/second. Alternatively, the data packed for transmission may include an average of the last X number of data items.
On a predetermined time basis the controller 2015A checks the database 209A find the most recent information. The packet is on the database 209A. At arrow 3, the controller 205A obtains the packet from the database 209A and directs the switch 203A to send to all peers/neighbors.
When controller 205B receives the packet, it determines whether the packet is not older than one already in the database 209B. If it is not older, the packet is saved to the database (arrow 7) as a switch 1 packet for whoever whichever peer controller wishes to use it. As previously stated, in practice, there are many packets from many switches not shown in
When controller 205B performs routing, it updates the rules on the switch 203B as well. Controller 205B goes to database 209B and asks for all the latest control packets including its own. Controller 205B receives the packets (step 8) and makes them accessible to a routing algorithm as previously described.
References 2, 3 and 4 make up the packet body. Reference 2 refers to information regarding the metrics for one specific link. References 2, 3 and 4 essentially repeat the information included in reference 2, but include information regarding metrics for multiple links.
Aspects of the systems and methods described herein may be implemented as functionality programmed into any of a variety of circuitry, including programmable logic devices (PLDs), such as field programmable gate arrays (FPGAs), programmable array logic (PAL) devices, electrically programmable logic and memory devices and standard cell-based devices, as well as application specific integrated circuits (ASICs). Some other possibilities for implementing aspects of the system include: microcontrollers with memory (such as electronically erasable programmable read only memory (EEPROM)), embedded microprocessors, firmware, software, etc. Furthermore, aspects of the system may be embodied in microprocessors having software-based circuit emulation, discrete logic (sequential and combinatorial), custom devices, fuzzy (neural) logic, quantum devices, and hybrids of any of the above device types. Of course the underlying device technologies may be provided in a variety of component types, e.g., metal-oxide semiconductor field-effect transistor (MOSFET) technologies like complementary metal-oxide semiconductor (CMOS), bipolar technologies like emitter-coupled logic (ECL), polymer technologies (e.g., silicon-conjugated polymer and metal-conjugated polymer-metal structures), mixed analog and digital, etc.
It should be noted that the various functions or processes disclosed herein may be described as data and/or instructions embodied in various computer-readable media, in terms of their behavioral, register transfer, logic component, transistor, layout geometries, and/or other characteristics. Computer-readable media in which such formatted data and/or instructions may be embodied include, but are not limited to, non-volatile storage media in various forms (e.g., optical, magnetic or semiconductor storage media) and carrier waves that may be used to transfer such formatted data and/or instructions through wireless, optical, or wired signaling media or any combination thereof. Examples of transfers of such formatted data and/or instructions by carrier waves include, but are not limited to, transfers (uploads, downloads, e-mail, etc.) over the internet and/or other computer networks via one or more data transfer protocols (e.g., HTTP, FTP, SMTP, etc.). When received within a computer system via one or more computer-readable media, such data and/or instruction-based expressions of components and/or processes under the system described may be processed by a processing entity (e.g., one or more processors) within the computer system in conjunction with execution of one or more other computer programs.
Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in a sense of “including, but not limited to.” Words using the singular or plural number also include the plural or singular number respectively. Additionally, the words “herein,” “hereunder,” “above,” “below,” and words of similar import refer to this application as a whole and not to any particular portions of this application. When the word “of” is used in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list and any combination of the items in the list.
The above description of illustrated embodiments of the systems and methods is not intended to be exhaustive or to limit the systems and methods to the precise forms disclosed. While specific embodiments of, and examples for, the systems components and methods are described herein for illustrative purposes, various equivalent modifications are possible within the scope of the systems, components and methods, as those skilled in the relevant art will recognize. The teachings of the systems and methods provided herein can be applied to other processing systems and methods, not only for the systems and methods described above.
The elements and acts of the various embodiments described above can be combined to provide further embodiments. These and other changes can be made to the systems and methods in light of the above detailed description.
In general, in the following claims, the terms used should not be construed to limit the systems and methods to the specific embodiments disclosed in the specification and the claims, but should be construed to include all processing systems that operate under the claims. Accordingly, the systems and methods are not limited by the disclosure, but instead the scope of the systems and methods is to be determined entirely by the claims.
While certain aspects of the systems and methods are presented below in certain claim forms, the inventors contemplate the various aspects of the systems and methods in any number of claim forms. For example, while only one aspect of the systems and methods may be recited as embodied in machine-readable medium, other aspects may likewise be embodied in machine-readable medium. Accordingly, the inventors reserve the right to add additional claims after filing the application to pursue such additional claim forms for other aspects of the systems and methods.
This application is a continuation of U.S. patent application Ser. No. 15/803,964, filed Nov. 6, 2017.
Number | Name | Date | Kind |
---|---|---|---|
5652751 | Sharony | Jul 1997 | A |
5909553 | Campbell et al. | Jun 1999 | A |
6154465 | Pickett | Nov 2000 | A |
6157648 | Voit et al. | Dec 2000 | A |
6201810 | Masuda et al. | Mar 2001 | B1 |
6363378 | Conklin et al. | Mar 2002 | B1 |
6445682 | Weitz | Sep 2002 | B1 |
6744775 | Beshai et al. | Jun 2004 | B1 |
6976087 | Westfall et al. | Dec 2005 | B1 |
7003481 | Banka et al. | Feb 2006 | B2 |
7280476 | Anderson | Oct 2007 | B2 |
7313629 | Nucci et al. | Dec 2007 | B1 |
7320017 | Kurapati et al. | Jan 2008 | B1 |
7581022 | Griffin et al. | Aug 2009 | B1 |
7680925 | Sathyanarayana et al. | Mar 2010 | B2 |
7681236 | Tamura et al. | Mar 2010 | B2 |
7962458 | Holenstein et al. | Jun 2011 | B2 |
8094575 | Vadlakonda et al. | Jan 2012 | B1 |
8094659 | Arad | Jan 2012 | B1 |
8111692 | Ray | Feb 2012 | B2 |
8141156 | Mao et al. | Mar 2012 | B1 |
8224971 | Miller et al. | Jul 2012 | B1 |
8228928 | Parandekar et al. | Jul 2012 | B2 |
8243589 | Trost et al. | Aug 2012 | B1 |
8259566 | Chen et al. | Sep 2012 | B2 |
8274891 | Averi et al. | Sep 2012 | B2 |
8301749 | Finklestein et al. | Oct 2012 | B1 |
8385227 | Downey | Feb 2013 | B1 |
8566452 | Goodwin et al. | Oct 2013 | B1 |
8661295 | Khanna et al. | Feb 2014 | B1 |
8724456 | Hong et al. | May 2014 | B1 |
8724503 | Johnsson et al. | May 2014 | B2 |
8745177 | Kazerani et al. | Jun 2014 | B1 |
8799504 | Capone et al. | Aug 2014 | B2 |
8804745 | Sinn | Aug 2014 | B1 |
8806482 | Nagargadde et al. | Aug 2014 | B1 |
8856339 | Mestery et al. | Oct 2014 | B2 |
8964548 | Keralapura et al. | Feb 2015 | B1 |
8989199 | Sella | Mar 2015 | B1 |
9009217 | Nagargadde et al. | Apr 2015 | B1 |
9055000 | Ghosh et al. | Jun 2015 | B1 |
9060025 | Xu | Jun 2015 | B2 |
9071607 | Twitchell, Jr. | Jun 2015 | B2 |
9075771 | Gawali et al. | Jul 2015 | B1 |
9137334 | Zhou | Sep 2015 | B2 |
9154327 | Marino et al. | Oct 2015 | B1 |
9306949 | Richard et al. | Apr 2016 | B1 |
9336040 | Dong et al. | May 2016 | B2 |
9354983 | Yenamandra et al. | May 2016 | B1 |
9356943 | Lopilato et al. | May 2016 | B1 |
9379981 | Zhou et al. | Jun 2016 | B1 |
9413724 | Xu | Aug 2016 | B2 |
9419878 | Hsiao et al. | Aug 2016 | B2 |
9432245 | Sorenson et al. | Aug 2016 | B1 |
9438566 | Zhang et al. | Sep 2016 | B2 |
9450817 | Bahadur et al. | Sep 2016 | B1 |
9450852 | Chen et al. | Sep 2016 | B1 |
9462010 | Stevenson | Oct 2016 | B1 |
9467478 | Khan et al. | Oct 2016 | B1 |
9485163 | Fries et al. | Nov 2016 | B1 |
9521067 | Michael et al. | Dec 2016 | B2 |
9525564 | Lee | Dec 2016 | B2 |
9602389 | Maveli et al. | Mar 2017 | B1 |
9608962 | Chang | Mar 2017 | B1 |
9621460 | Mehta et al. | Apr 2017 | B2 |
9641551 | Kariyanahalli | May 2017 | B1 |
9665432 | Kruse et al. | May 2017 | B2 |
9686127 | Ramachandran et al. | Jun 2017 | B2 |
9715401 | Devine et al. | Jul 2017 | B2 |
9717021 | Hughes et al. | Jul 2017 | B2 |
9722815 | Mukundan et al. | Aug 2017 | B2 |
9755965 | Yadav et al. | Sep 2017 | B1 |
9787559 | Schroeder | Oct 2017 | B1 |
9807004 | Koley et al. | Oct 2017 | B2 |
9825822 | Holland | Nov 2017 | B1 |
9825911 | Brandwine | Nov 2017 | B1 |
9825992 | Xu | Nov 2017 | B2 |
9832128 | Ashner et al. | Nov 2017 | B1 |
9906401 | Rao | Feb 2018 | B1 |
9930011 | Clemons, Jr. et al. | Mar 2018 | B1 |
9935829 | Miller et al. | Apr 2018 | B1 |
9942787 | Tillotson | Apr 2018 | B1 |
10038601 | Becker et al. | Jul 2018 | B1 |
10057183 | Salle et al. | Aug 2018 | B2 |
10057294 | Xu | Aug 2018 | B2 |
10135789 | Mayya et al. | Nov 2018 | B2 |
10142226 | Wu et al. | Nov 2018 | B1 |
10178032 | Freitas | Jan 2019 | B1 |
10187289 | Chen et al. | Jan 2019 | B1 |
10229017 | Zou et al. | Mar 2019 | B1 |
10237123 | Dubey et al. | Mar 2019 | B2 |
10263832 | Ghosh | Apr 2019 | B1 |
10320664 | Nainar et al. | Jun 2019 | B2 |
10326830 | Singh | Jun 2019 | B1 |
10348767 | Lee et al. | Jul 2019 | B1 |
10425382 | Mayya et al. | Sep 2019 | B2 |
10454714 | Mayya et al. | Oct 2019 | B2 |
10498652 | Mayya et al. | Dec 2019 | B2 |
10511546 | Singarayan et al. | Dec 2019 | B2 |
10523539 | Mayya et al. | Dec 2019 | B2 |
10554538 | Spohn | Feb 2020 | B2 |
10560431 | Chen et al. | Feb 2020 | B1 |
10565464 | Han et al. | Feb 2020 | B2 |
10574528 | Mayya et al. | Feb 2020 | B2 |
10594516 | Cidon et al. | Mar 2020 | B2 |
10608844 | Cidon et al. | Mar 2020 | B2 |
10666460 | Cidon et al. | May 2020 | B2 |
10686625 | Cidon et al. | Jun 2020 | B2 |
10749711 | Mukundan et al. | Aug 2020 | B2 |
10778466 | Cidon et al. | Sep 2020 | B2 |
10778528 | Mayya et al. | Sep 2020 | B2 |
10805114 | Cidon et al. | Oct 2020 | B2 |
10805272 | Mayya et al. | Oct 2020 | B2 |
10841131 | Cidon et al. | Nov 2020 | B2 |
20020198840 | Banka et al. | Dec 2002 | A1 |
20030088697 | Matsuhira | May 2003 | A1 |
20030112808 | Solomon | Jun 2003 | A1 |
20030126468 | Markham | Jul 2003 | A1 |
20030161313 | Jinmei et al. | Aug 2003 | A1 |
20030189919 | Gupta et al. | Oct 2003 | A1 |
20030202506 | Perkins et al. | Oct 2003 | A1 |
20030219030 | Gubbi | Nov 2003 | A1 |
20040059831 | Chu et al. | Mar 2004 | A1 |
20040068668 | Lor et al. | Apr 2004 | A1 |
20040165601 | Liu et al. | Aug 2004 | A1 |
20040224771 | Chen et al. | Nov 2004 | A1 |
20050078690 | DeLangis | Apr 2005 | A1 |
20050154790 | Nagata et al. | Jul 2005 | A1 |
20050172161 | Cruz et al. | Aug 2005 | A1 |
20050265255 | Kodialam et al. | Dec 2005 | A1 |
20060002291 | Alicherry et al. | Jan 2006 | A1 |
20060114838 | Mandavilli et al. | Jun 2006 | A1 |
20060171365 | Borella | Aug 2006 | A1 |
20060182034 | Klinker et al. | Aug 2006 | A1 |
20060193247 | Naseh et al. | Aug 2006 | A1 |
20070064604 | Chen et al. | Mar 2007 | A1 |
20070064702 | Bates et al. | Mar 2007 | A1 |
20070091794 | Filsfils et al. | Apr 2007 | A1 |
20070121486 | Guichard et al. | May 2007 | A1 |
20070130325 | Lesser | Jun 2007 | A1 |
20070177511 | Das et al. | Aug 2007 | A1 |
20070237081 | Kodialam et al. | Oct 2007 | A1 |
20070260746 | Mirtorabi et al. | Nov 2007 | A1 |
20070268882 | Breslau et al. | Nov 2007 | A1 |
20080002670 | Bugenhagen et al. | Jan 2008 | A1 |
20080049621 | McGuire et al. | Feb 2008 | A1 |
20080080509 | Khanna et al. | Apr 2008 | A1 |
20080095187 | Jung et al. | Apr 2008 | A1 |
20080144532 | Chamarajanagar et al. | Jun 2008 | A1 |
20080219276 | Shah | Sep 2008 | A1 |
20080240121 | Xiong et al. | Oct 2008 | A1 |
20090013210 | McIntosh et al. | Jan 2009 | A1 |
20090125617 | Klessig et al. | May 2009 | A1 |
20090154463 | Hines et al. | Jun 2009 | A1 |
20090247204 | Sennett et al. | Oct 2009 | A1 |
20090276657 | Wetmore et al. | Nov 2009 | A1 |
20090303880 | Maltz et al. | Dec 2009 | A1 |
20100008361 | Guichard et al. | Jan 2010 | A1 |
20100017802 | Lojewski | Jan 2010 | A1 |
20100046532 | Okita | Feb 2010 | A1 |
20100088440 | Banks et al. | Apr 2010 | A1 |
20100091823 | Retana et al. | Apr 2010 | A1 |
20100107162 | Edwards et al. | Apr 2010 | A1 |
20100118727 | Draves et al. | May 2010 | A1 |
20100191884 | Holenstein et al. | Jul 2010 | A1 |
20100223621 | Joshi et al. | Sep 2010 | A1 |
20100309841 | Conte | Dec 2010 | A1 |
20100309912 | Mehta et al. | Dec 2010 | A1 |
20100322255 | Hao et al. | Dec 2010 | A1 |
20100332657 | Elyashev et al. | Dec 2010 | A1 |
20110007752 | Silva et al. | Jan 2011 | A1 |
20110032939 | Nozaki et al. | Feb 2011 | A1 |
20110040814 | Higgins | Feb 2011 | A1 |
20110075674 | Li et al. | Mar 2011 | A1 |
20110107139 | Middlecamp et al. | May 2011 | A1 |
20110110370 | Moreno et al. | May 2011 | A1 |
20110141877 | Xu et al. | Jun 2011 | A1 |
20110142041 | Imai | Jun 2011 | A1 |
20110153909 | Dong | Jun 2011 | A1 |
20120008630 | Ould-Brahim | Jan 2012 | A1 |
20120027013 | Napierala | Feb 2012 | A1 |
20120157068 | Eichen et al. | Jun 2012 | A1 |
20120173694 | Yan et al. | Jul 2012 | A1 |
20120173919 | Patel et al. | Jul 2012 | A1 |
20120221955 | Raleigh et al. | Aug 2012 | A1 |
20120250682 | Vincent et al. | Oct 2012 | A1 |
20120250686 | Vincent et al. | Oct 2012 | A1 |
20120300615 | Kempf et al. | Nov 2012 | A1 |
20120317291 | Wolfe | Dec 2012 | A1 |
20130019005 | Hui et al. | Jan 2013 | A1 |
20130021968 | Reznik et al. | Jan 2013 | A1 |
20130044764 | Casado et al. | Feb 2013 | A1 |
20130051399 | Zhang et al. | Feb 2013 | A1 |
20130054763 | Merwe et al. | Feb 2013 | A1 |
20130103834 | Dzerve et al. | Apr 2013 | A1 |
20130124718 | Griffith et al. | May 2013 | A1 |
20130124911 | Griffith et al. | May 2013 | A1 |
20130124912 | Griffith et al. | May 2013 | A1 |
20130128889 | Mathur et al. | May 2013 | A1 |
20130142201 | Kim et al. | Jun 2013 | A1 |
20130173788 | Song | Jul 2013 | A1 |
20130182712 | Aguayo et al. | Jul 2013 | A1 |
20130191688 | Agarwal et al. | Jul 2013 | A1 |
20130238782 | Zhao et al. | Sep 2013 | A1 |
20130242718 | Zhang | Sep 2013 | A1 |
20130254599 | Katkar et al. | Sep 2013 | A1 |
20130258839 | Wang et al. | Oct 2013 | A1 |
20130283364 | Chang et al. | Oct 2013 | A1 |
20130286846 | Atlas et al. | Oct 2013 | A1 |
20130301642 | Radhakrishnan et al. | Nov 2013 | A1 |
20130308444 | Sem-Jacobsen et al. | Nov 2013 | A1 |
20130315243 | Huang et al. | Nov 2013 | A1 |
20130329548 | Nakil et al. | Dec 2013 | A1 |
20130329601 | Yin et al. | Dec 2013 | A1 |
20130346470 | Obstfeld et al. | Dec 2013 | A1 |
20140019604 | Twitchell, Jr. | Jan 2014 | A1 |
20140019750 | Dodgson et al. | Jan 2014 | A1 |
20140064283 | Balus et al. | Mar 2014 | A1 |
20140092907 | Sridhar et al. | Apr 2014 | A1 |
20140108665 | Arora et al. | Apr 2014 | A1 |
20140112171 | Pasdar | Apr 2014 | A1 |
20140115584 | Mudigonda et al. | Apr 2014 | A1 |
20140126418 | Brendel et al. | May 2014 | A1 |
20140156818 | Hunt | Jun 2014 | A1 |
20140156823 | Liu et al. | Jun 2014 | A1 |
20140164560 | Ko et al. | Jun 2014 | A1 |
20140173113 | Vemuri et al. | Jun 2014 | A1 |
20140173331 | Martin et al. | Jun 2014 | A1 |
20140208317 | Nakagawa | Jul 2014 | A1 |
20140219135 | Li et al. | Aug 2014 | A1 |
20140223507 | Xu | Aug 2014 | A1 |
20140244851 | Lee | Aug 2014 | A1 |
20140258535 | Zhang | Sep 2014 | A1 |
20140269690 | Tu | Sep 2014 | A1 |
20140279862 | Dietz et al. | Sep 2014 | A1 |
20140280499 | Basavaiah et al. | Sep 2014 | A1 |
20140317440 | Biermayr et al. | Oct 2014 | A1 |
20140337500 | Lee | Nov 2014 | A1 |
20140341109 | Cartmell et al. | Nov 2014 | A1 |
20140372582 | Ghanwani et al. | Dec 2014 | A1 |
20150016249 | Mukundan et al. | Jan 2015 | A1 |
20150029864 | Raileanu et al. | Jan 2015 | A1 |
20150046572 | Cheng et al. | Feb 2015 | A1 |
20150052247 | Threefoot et al. | Feb 2015 | A1 |
20150056960 | Egner et al. | Feb 2015 | A1 |
20150058917 | Xu | Feb 2015 | A1 |
20150088942 | Shah | Mar 2015 | A1 |
20150089628 | Lang | Mar 2015 | A1 |
20150092603 | Aguayo et al. | Apr 2015 | A1 |
20150096011 | Watt | Apr 2015 | A1 |
20150134777 | Onoue | May 2015 | A1 |
20150139238 | Pourzandi et al. | May 2015 | A1 |
20150146539 | Mehta et al. | May 2015 | A1 |
20150163152 | Li | Jun 2015 | A1 |
20150172121 | Farkas et al. | Jun 2015 | A1 |
20150188823 | Williams et al. | Jul 2015 | A1 |
20150189009 | Bemmel | Jul 2015 | A1 |
20150195178 | Bhattacharya et al. | Jul 2015 | A1 |
20150201036 | Nishiki et al. | Jul 2015 | A1 |
20150222543 | Song | Aug 2015 | A1 |
20150222638 | Morley | Aug 2015 | A1 |
20150236945 | Michael et al. | Aug 2015 | A1 |
20150236962 | Veres et al. | Aug 2015 | A1 |
20150244617 | Nakil et al. | Aug 2015 | A1 |
20150249644 | Xu | Sep 2015 | A1 |
20150271104 | Chikkamath et al. | Sep 2015 | A1 |
20150312142 | Barabash et al. | Oct 2015 | A1 |
20150334696 | Gu et al. | Nov 2015 | A1 |
20150349978 | Wu et al. | Dec 2015 | A1 |
20150350907 | Timariu et al. | Dec 2015 | A1 |
20150363733 | Brown | Dec 2015 | A1 |
20150372943 | Hasan et al. | Dec 2015 | A1 |
20150381407 | Wang et al. | Dec 2015 | A1 |
20150381493 | Bansal et al. | Dec 2015 | A1 |
20160035183 | Buchholz et al. | Feb 2016 | A1 |
20160036924 | Koppolu et al. | Feb 2016 | A1 |
20160037434 | Gopal et al. | Feb 2016 | A1 |
20160072669 | Saavedra | Mar 2016 | A1 |
20160080502 | Yadav et al. | Mar 2016 | A1 |
20160105392 | Thakkar et al. | Apr 2016 | A1 |
20160105471 | Nunes et al. | Apr 2016 | A1 |
20160134528 | Lin et al. | May 2016 | A1 |
20160142373 | Ossipov | May 2016 | A1 |
20160164832 | Bellagamba et al. | Jun 2016 | A1 |
20160164914 | Madhav et al. | Jun 2016 | A1 |
20160173338 | Wolting | Jun 2016 | A1 |
20160191363 | Haraszti et al. | Jun 2016 | A1 |
20160191374 | Singh et al. | Jun 2016 | A1 |
20160197834 | Luft | Jul 2016 | A1 |
20160197835 | Luft | Jul 2016 | A1 |
20160198003 | Luft | Jul 2016 | A1 |
20160210209 | Verkaik et al. | Jul 2016 | A1 |
20160218947 | Hughes et al. | Jul 2016 | A1 |
20160255169 | Kovvuri et al. | Sep 2016 | A1 |
20160261493 | Li | Sep 2016 | A1 |
20160261495 | Xia et al. | Sep 2016 | A1 |
20160261639 | Xu | Sep 2016 | A1 |
20160269926 | Sundaram | Sep 2016 | A1 |
20160308762 | Teng et al. | Oct 2016 | A1 |
20160315912 | Mayya et al. | Oct 2016 | A1 |
20160323377 | Einkauf et al. | Nov 2016 | A1 |
20160352588 | Subbarayan et al. | Dec 2016 | A1 |
20160359738 | Sullenberger et al. | Dec 2016 | A1 |
20160366187 | Kamble | Dec 2016 | A1 |
20160380886 | Blair et al. | Dec 2016 | A1 |
20170005986 | Bansal et al. | Jan 2017 | A1 |
20170012870 | Blair et al. | Jan 2017 | A1 |
20170026283 | Williams et al. | Jan 2017 | A1 |
20170026355 | Mathaiyan et al. | Jan 2017 | A1 |
20170034046 | Cai et al. | Feb 2017 | A1 |
20170034129 | Sawant et al. | Feb 2017 | A1 |
20170053258 | Carney et al. | Feb 2017 | A1 |
20170055131 | Kong et al. | Feb 2017 | A1 |
20170063674 | Maskalik et al. | Mar 2017 | A1 |
20170063782 | Jain et al. | Mar 2017 | A1 |
20170063794 | Jain et al. | Mar 2017 | A1 |
20170064005 | Lee | Mar 2017 | A1 |
20170093625 | Pera et al. | Mar 2017 | A1 |
20170097841 | Chang et al. | Apr 2017 | A1 |
20170104755 | Arregoces et al. | Apr 2017 | A1 |
20170118173 | Arramreddy et al. | Apr 2017 | A1 |
20170123939 | Maheshwari et al. | May 2017 | A1 |
20170126564 | Mayya et al. | May 2017 | A1 |
20170134186 | Mukundan et al. | May 2017 | A1 |
20170134520 | Abbasi et al. | May 2017 | A1 |
20170139789 | Fries et al. | May 2017 | A1 |
20170155557 | Desai et al. | Jun 2017 | A1 |
20170163473 | Sadana et al. | Jun 2017 | A1 |
20170171310 | Gardner | Jun 2017 | A1 |
20170181210 | Nadella et al. | Jun 2017 | A1 |
20170195169 | Mills et al. | Jul 2017 | A1 |
20170201585 | Doraiswamy et al. | Jul 2017 | A1 |
20170207976 | Rovner et al. | Jul 2017 | A1 |
20170214545 | Cheng et al. | Jul 2017 | A1 |
20170214701 | Hasan | Jul 2017 | A1 |
20170223117 | Messerli et al. | Aug 2017 | A1 |
20170237710 | Mayya et al. | Aug 2017 | A1 |
20170257260 | Govindan et al. | Sep 2017 | A1 |
20170257309 | Appanna | Sep 2017 | A1 |
20170264496 | Ao et al. | Sep 2017 | A1 |
20170279717 | Bethers et al. | Sep 2017 | A1 |
20170279803 | Desai et al. | Sep 2017 | A1 |
20170289002 | Ganguli et al. | Oct 2017 | A1 |
20170310641 | Jiang et al. | Oct 2017 | A1 |
20170310691 | Vasseur et al. | Oct 2017 | A1 |
20170317974 | Masurekar et al. | Nov 2017 | A1 |
20170337086 | Zhu et al. | Nov 2017 | A1 |
20170339054 | Yadav et al. | Nov 2017 | A1 |
20170339070 | Chang et al. | Nov 2017 | A1 |
20170364419 | Lo | Dec 2017 | A1 |
20170366445 | Nemirovsky et al. | Dec 2017 | A1 |
20170374174 | Evens et al. | Dec 2017 | A1 |
20180007123 | Cheng et al. | Jan 2018 | A1 |
20180014051 | Phillips et al. | Jan 2018 | A1 |
20180034668 | Mayya et al. | Feb 2018 | A1 |
20180041425 | Zhang | Feb 2018 | A1 |
20180062914 | Boutros et al. | Mar 2018 | A1 |
20180062917 | Chandrashekhar et al. | Mar 2018 | A1 |
20180063036 | Chandrashekhar et al. | Mar 2018 | A1 |
20180063233 | Park | Mar 2018 | A1 |
20180069924 | Tumuluru et al. | Mar 2018 | A1 |
20180074909 | Bishop et al. | Mar 2018 | A1 |
20180077081 | Lauer et al. | Mar 2018 | A1 |
20180077202 | Xu | Mar 2018 | A1 |
20180084081 | Kuchibhotla et al. | Mar 2018 | A1 |
20180114569 | Strachan et al. | Apr 2018 | A1 |
20180131720 | Hobson et al. | May 2018 | A1 |
20180145899 | Rao | May 2018 | A1 |
20180167378 | Kostyukov et al. | Jun 2018 | A1 |
20180176073 | Dubey et al. | Jun 2018 | A1 |
20180176082 | Katz et al. | Jun 2018 | A1 |
20180176130 | Banerjee et al. | Jun 2018 | A1 |
20180213472 | Ishii et al. | Jul 2018 | A1 |
20180219765 | Michael et al. | Aug 2018 | A1 |
20180219766 | Michael et al. | Aug 2018 | A1 |
20180234300 | Mayya et al. | Aug 2018 | A1 |
20180260125 | Botes et al. | Sep 2018 | A1 |
20180262468 | Kumar et al. | Sep 2018 | A1 |
20180270104 | Zheng et al. | Sep 2018 | A1 |
20180278541 | Wu et al. | Sep 2018 | A1 |
20180295529 | Jen et al. | Oct 2018 | A1 |
20180302286 | Mayya et al. | Oct 2018 | A1 |
20180302321 | Manthiramoorthy et al. | Oct 2018 | A1 |
20180351855 | Sood et al. | Dec 2018 | A1 |
20180351862 | Jeganathan et al. | Dec 2018 | A1 |
20180351863 | Vairavakkalai et al. | Dec 2018 | A1 |
20180351882 | Jeganathan et al. | Dec 2018 | A1 |
20180373558 | Chang et al. | Dec 2018 | A1 |
20180375744 | Mayya et al. | Dec 2018 | A1 |
20180375824 | Mayya et al. | Dec 2018 | A1 |
20180375967 | Pithawala et al. | Dec 2018 | A1 |
20190014038 | Ritchie | Jan 2019 | A1 |
20190020588 | Twitchell, Jr. | Jan 2019 | A1 |
20190020627 | Yuan | Jan 2019 | A1 |
20190028552 | Johnson et al. | Jan 2019 | A1 |
20190036810 | Michael et al. | Jan 2019 | A1 |
20190046056 | Khachaturian et al. | Feb 2019 | A1 |
20190058657 | Chunduri et al. | Feb 2019 | A1 |
20190058709 | Kempf et al. | Feb 2019 | A1 |
20190068470 | Mirsky | Feb 2019 | A1 |
20190068493 | Ram et al. | Feb 2019 | A1 |
20190068500 | Hira | Feb 2019 | A1 |
20190075083 | Mayya et al. | Mar 2019 | A1 |
20190103990 | Cidon et al. | Apr 2019 | A1 |
20190103991 | Cidon et al. | Apr 2019 | A1 |
20190103992 | Cidon et al. | Apr 2019 | A1 |
20190103993 | Cidon et al. | Apr 2019 | A1 |
20190104035 | Cidon et al. | Apr 2019 | A1 |
20190104049 | Cidon et al. | Apr 2019 | A1 |
20190104050 | Cidon et al. | Apr 2019 | A1 |
20190104051 | Cidon et al. | Apr 2019 | A1 |
20190104052 | Cidon et al. | Apr 2019 | A1 |
20190104053 | Cidon et al. | Apr 2019 | A1 |
20190104063 | Cidon et al. | Apr 2019 | A1 |
20190104064 | Cidon et al. | Apr 2019 | A1 |
20190104109 | Cidon et al. | Apr 2019 | A1 |
20190104111 | Cidon et al. | Apr 2019 | A1 |
20190104413 | Cidon et al. | Apr 2019 | A1 |
20190140889 | Mayya et al. | May 2019 | A1 |
20190140890 | Mayya et al. | May 2019 | A1 |
20190158605 | Markuze et al. | May 2019 | A1 |
20190199539 | Deng et al. | Jun 2019 | A1 |
20190238364 | Boutros et al. | Aug 2019 | A1 |
20190238449 | Michael et al. | Aug 2019 | A1 |
20190238450 | Michael et al. | Aug 2019 | A1 |
20190268421 | Markuze et al. | Aug 2019 | A1 |
20190280962 | Michael et al. | Sep 2019 | A1 |
20190280963 | Michael et al. | Sep 2019 | A1 |
20190280964 | Michael et al. | Sep 2019 | A1 |
20190313907 | Khachaturian et al. | Oct 2019 | A1 |
20190364099 | Thakkar et al. | Nov 2019 | A1 |
20190372888 | Michael et al. | Dec 2019 | A1 |
20190372889 | Michael et al. | Dec 2019 | A1 |
20190372890 | Michael et al. | Dec 2019 | A1 |
20200014615 | Michael et al. | Jan 2020 | A1 |
20200014616 | Michael et al. | Jan 2020 | A1 |
20200014661 | Mayya et al. | Jan 2020 | A1 |
20200021514 | Michael et al. | Jan 2020 | A1 |
20200021515 | Michael et al. | Jan 2020 | A1 |
20200036624 | Michael et al. | Jan 2020 | A1 |
20200059459 | Abraham et al. | Feb 2020 | A1 |
20200092207 | Sipra et al. | Mar 2020 | A1 |
20200106696 | Michael et al. | Apr 2020 | A1 |
20200106706 | Mayya et al. | Apr 2020 | A1 |
20200119952 | Mayya et al. | Apr 2020 | A1 |
20200127905 | Mayya et al. | Apr 2020 | A1 |
20200153736 | Liebherr et al. | May 2020 | A1 |
20200218558 | Sreenath et al. | Jul 2020 | A1 |
20200235990 | Janakiraman et al. | Jul 2020 | A1 |
20200235999 | Mayya | Jul 2020 | A1 |
20200236046 | Jain et al. | Jul 2020 | A1 |
20200244721 | S et al. | Jul 2020 | A1 |
20200267184 | Vera-Schockner | Aug 2020 | A1 |
20200296026 | Michael et al. | Sep 2020 | A1 |
20200366530 | Mukundan et al. | Nov 2020 | A1 |
20200366562 | Mayya et al. | Nov 2020 | A1 |
Number | Date | Country |
---|---|---|
1912381 | Apr 2008 | EP |
3041178 | Jul 2016 | EP |
3509256 | Jul 2019 | EP |
03073701 | Sep 2003 | WO |
2012167184 | Dec 2012 | WO |
2017083975 | May 2017 | WO |
2019070611 | Apr 2019 | WO |
2019094522 | May 2019 | WO |
2020018704 | Jan 2020 | WO |
2020101922 | May 2020 | WO |
Entry |
---|
Del Piccolo, Valentin, et al., “A Survey of Network Isolation Solutions for Multi-Tenant Data Centers,” IEEE Communications Society, Apr. 20, 2016, vol. 18, No. 4, 37 pages, IEEE. |
Fortz, Bernard, et al., “Internet Traffic Engineering by Optimizing OSPF Weights,” Proceedings IEEE INFOCOM 2000, Conference on Computer Communications, Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, Mar. 26-30, 2000, 11 pages, IEEE, Tel Aviv, Israel, Israel. |
Francois, Frederic, et al., “Optimizing Secure SDN-enabled Inter-Data Centre Overlay Networks through Cognitive Routing,” 2016 IEEE 24th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS), Sep. 19-21, 2016, 10 pages, IEEE, London, UK. |
Michael, Nithin, et al., “HALO: Hop-by-Hop Adaptive Link-State Optimal Routing,” IEEE/ACM Transactions on Networking, Dec. 2015, 14 pages, vol. 23, No. 6, IEEE. |
Mishra, Mayank, et al., “Managing Network Reservation for Tenants in Oversubscribed Clouds,” 2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems, Aug. 14-16, 2013, 10 pages, IEEE, San Francisco, CA, USA. |
Mudigonda , Jayaram, et al., “NetLord: A Scalable Multi-Tenant Network Architecture for Virtualized Datacenters,” Proceedings of the ACM SIGCOMM 2011 Conference, Aug. 15-19, 2011, 12 pages, ACM, Toronto, Canada. |
Non-Published Commonly Owned U.S. Appl. No. 16/945,700, filed Jul. 31, 2020, 37 pages, Nicira, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/945,867, filed Aug. 1, 2020, 30 pages, Nicira, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 17/068,603, filed Oct. 12, 2020, 37 pages, Nicira, Inc. |
Non-Published Commonly Owned Related U.S. Appl. No. 15/803,964 with similar specification, filed Nov. 6, 2017, 15 pages, The Mode Group. |
Non-Published Commonly Owned U.S. Appl. No. 16/818,862, filed Mar. 13, 2020, 198 pages, The Mode Group. |
Ray, Saikat, et al., “Always Acyclic Distributed Path Computation,” University of Pennsylvania Department of Electrical and Systems Engineering Technical Report, May 2008, 16 pages, University of Pennsylvania ScholarlyCommons. |
Webb, Kevin C., et al., “Blender: Upgrading Tenant-Based Data Center Networking,” 2014 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS), Oct. 20-21, 2014, 11 pages, IEEE, Marina del Rey, CA, USA. |
Yap, Kok-Kiong, et al., “Taking the Edge off with Espresso: Scale, Reliability and Programmability for Global Internet Peering,” SIGCOMM '17: Proceedings of the Conference of the ACM Special Interest Group on Data Communication, Aug. 21-25, 2017, 14 pages, Los Angeles, CA. |
Huang, Cancan, et al., “Modification of Q.SD-WAN,” Rapporteur Group Meeting—Doc, Study Period 2017-2020, Q4/11-DOC1 (190410), Study Group 11, Apr. 10, 2019, 19 pages, International Telecommunication Union, Geneva, Switzerland. |
Number | Date | Country | |
---|---|---|---|
Parent | 15803964 | Nov 2017 | US |
Child | 16216235 | US |