Oil and gas wells commonly bypass significant productive formations that may be uneconomic to complete at the time the well was drilled. These formations may be relatively thin and low pressure so simply perforating the zone does not provide significant new production. However, lateral drilling into such thin, horizontal oil bearing formations can result in substantial new oil production. The lateral well should be drilled at an angle as close as possible to 90 degrees relative to the vertical well to ensure that the lateral drilling tools stay within the productive zone. This objective can be accomplished by feeding a flexible lance equipped with a compact rotary jet drill though a shoe incorporating a curved passage that deflects the drill at a high angle into the formation. This approach is referred to as zero-radius lateral drilling, since the angle is defined entirely within the wellbore, as opposed to drilling a curved hole in the formation.
Conventional mechanical drilling requires high thrust and torque to penetrate rock. Applying high torque and thrust though a tight radius curve is extremely difficult. A rotary jet drill of the type described in U.S. Pat. No. 7,198,456 provides the ability to penetrate a range of underground formations with very low thrust load and no torque. The rotary jet drill includes a reaction-turbine jet rotor that spins a pair of forward facing jets that erode the formation. The jet drill face has a gage ring which, provided that the drill is kept pressed against the rock face, ensures drilling of a close tolerance circular section borehole.
It would be desirable to provide improved method and apparatus for zero-radius lateral drilling, for example, by using the rotary jet drill in a system that can apply the required torque and thrust through the tight curve defined within a borehole.
This application specifically incorporates by reference the disclosures and drawings of each patent application and issued patent identified above.
This disclosure describes a jet drilling lance assembly that is capable of providing high-pressure fluid to power a rotary jet drill while providing sufficient thrust to maintain face contact while drilling and sufficient lateral stiffness to prevent the lance from buckling and diverting from a straight lateral trajectory. The invention further discloses a method for deploying the lance and drilling the lateral.
This Summary has been provided to introduce a few concepts in a simplified form that are further described in detail below in the Description. However, this Summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
Various aspects and attendant advantages of one or more exemplary embodiments and modifications thereto will become more readily appreciated as the same becomes better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
Figures and Disclosed Embodiments Are Not Limiting
Exemplary embodiments are illustrated in referenced Figures of the drawings. It is intended that the embodiments and Figures disclosed herein are to be considered illustrative rather than restrictive. No limitation on the scope of the technology and of the claims that follow is to be imputed to the examples shown in the drawings and discussed herein. Further, it should be understood that any feature of one embodiment disclosed herein can be combined with one or more features of any other embodiment that is disclosed, unless otherwise indicated.
Referring to
The jet drilling assembly may be lowered into and raised out of the well with a winch 126, a cable 130, and a block assembly 134 that is supported on a frame 132. Pressurized fluid is supplied to the swivel from a pump 128. The use of swivel 102 enables rotation of the jet drilling assembly, which is suspended below in the bore, to orient the drilling assembly as desired. For example, the tubing string may be rotated with a pipe wrench that is applied to the string on the surface.
Those skilled in the art will understand that various types of weight indicators are available and well known to observe the weight of the jet drilling assembly and high-pressure tubing. The weight is commonly calculated with an accuracy of about ±100 lbf. After the jet drill passes though the shoe and window in the well casing, it will tag the rock face, and the indicated weight of the jet drilling assembly and high-pressure tubing will drop. In one exemplary embodiment, the face of the jet drill is covered with a plastic cap that mechanically protects the jet drill during deployment and prevents wellbore fluid from flowing up into the assembly. Once the face of the jet drill with the cap in place tags the formation, fluid is pumped to the tool at high pressure. The jet of high pressure fluid at the drill will remove the cap and initiate drilling into the formation. The assembly is then fed into the formation, while maintaining nominal weight to ensure that the jet drill stays in contact with the formation.
In one embodiment, jet drill 122 is a rotary type, such as disclosed in U.S. Pat. No. 7,198,456, and shown in
The jet drill is coupled to a distal end of flexible jet lance 116, which is coupled to a distal end of tensioner assembly 114, as shown in
High-pressure hose 500 can be of a multilayer wire-wrap or wire mesh reinforcement wrapped around an impermeable inner liner. Those skilled in the art will recognize that these types of hoses are capable of withstanding high pressure, while maintaining flexibility, without significant changes in diameter or length due to the applied fluid pressure. In one exemplary embodiment, a 6-layer hose capable of withstanding continuous operation at 20,000 psi is used.
Spacers 502 are arc shaped and are disposed between the high-pressure hose and the outer thrust liner 300 to form a slip fit. In one exemplary embodiment, four spacers are provided and disposed so that they are equally spaced apart around the hose. Alternate arrangements with more or fewer spacer segments can instead be used. The spacer can be constructed of a high-shear-strength polymer, such as nylon or acrylonitrile-butadiene-styrene (ABS), which is capable of withstanding immersion in water and oil and heating to temperatures of 100° C. or more. Longitudinally reinforced polymer with transverse flexibility, but high transverse shear strength, may also be used for the spacers.
Thrust liner 300 can be fabricated from heavy gage steel wire with a quadrilateral cross section, i.e., wire having a roughly square or rectangular cross section, which is wound as a helical spring having coils in solid contact. The winding pitch can be small, and adjacent surfaces of the wire coils should be in solid and continuous contact along the longitudinal axis of the thrust liner when the hose is straight. The square wire section can thus support a high compression load. As long as the helical spring of thrust liner 300 is straight and in compression as shown in
As shown in
In an exemplary embodiment, the thrust liner has an outer diameter of 1-inch and is capable of withstanding 2000 lbf of thrust, without buckling or shearing. In this example, the jet drill has a gage diameter of about 1.125 inches and can drill a hole that is about 1.13-inches in diameter. The flexible jet lance in this example is 50-feet long. Those skilled in the art will recognize that maintaining a relatively low ratio between the hole diameter and the thrust enables the application of high thrust before the column becomes elastically unstable.
Tension cables 400 are disposed in gaps between the spacers, within the annulus between thrust liner 300 and pressurized hose 500. The spacers prevent the cables from all slipping to one side of the annulus and causing the lance to become asymmetric and unstable with respect to compressive or tensile loading. These tension cables are constructed of multi-wire steel, providing high flexibility and tensile strength. Further, the cables have sufficient tensile elasticity to accommodate relative changes in length as the lance assembly is bent though a radius, as shown in
As shown in
A hose spacer 414 is threadably engaged with liner 408 to accommodate variability in the length of hose protruding from thrust liner 300. A crimped hose fitting 410 connects the hose to an inlet adaptor 306 of the tensioner assembly with a nut 412.
To summarize, flexible jet lance assembly 116 and tensioner assembly 114 provide a number of functions required for drilling a zero radius lateral bore, including: (1) transmitting high pressure fluid to the jet drill; (2) transmitting thrust to push the flexible jet lance assembly though the deflection shoe and to react the thrust of jet drilling and contact forces without shearing or buckling; (3) transmitting tension to pull the flexible jet lance out from the borehole; and, (4) providing sufficient transverse flexibility to pass though the deflection shoe passage as shown, with minimal thrust.
Referring to
Jet drill 122 is shown approaching the deflection shoe in
A curved passage through deflection shoe 120 is smaller in diameter than the centralizer, so that the centralizer stops at a point immediately proximal to deflection shoe, as shown in
Those skilled in the art will recognize that the weight (or applied thrust) on the jet drill may be monitored by a sensor (not shown) on the surface and maintained as the assembly is fed into the well. In one exemplary method, lengths of high-pressure tubing 104 are added so that a block assembly 134 is at the top of its travel when initiating jet drilling as shown in
Although the concepts disclosed herein have been described in connection with the preferred form of practicing them and modifications thereto, those of ordinary skill in the art will understand that many other modifications can be made thereto within the scope of the claims that follow. Accordingly, it is not intended that the scope of these concepts in any way be limited by the above description, but instead be determined entirely by reference to the claims that follow.
This application is based on a prior provisional application Ser. No. 61/426,357, filed on Dec. 22, 2010, the benefit of the filing date of which is hereby claimed under 35 U.S.C. §119(e).
Number | Name | Date | Kind |
---|---|---|---|
5911283 | Cousins et al. | Jun 1999 | A |
6220372 | Cherry | Apr 2001 | B1 |
6578636 | Mazorow et al. | Jun 2003 | B2 |
6755249 | Robison et al. | Jun 2004 | B2 |
7686101 | Belew et al. | Mar 2010 | B2 |
20050252688 | Head et al. | Nov 2005 | A1 |
20060000644 | Adam et al. | Jan 2006 | A1 |
20090288884 | Jelsma | Nov 2009 | A1 |
20100108384 | Byreddy et al. | May 2010 | A1 |
20100187012 | Belew et al. | Jul 2010 | A1 |
20120067647 | Savage | Mar 2012 | A1 |
Entry |
---|
PCT Search Report and Written Opinion mailed Sep. 12, 2012 for PCT Application No. PCT/US11/66162, 12 pages. |
Number | Date | Country | |
---|---|---|---|
20120160567 A1 | Jun 2012 | US |
Number | Date | Country | |
---|---|---|---|
61426357 | Dec 2010 | US |