The invention generally relates to switches and, more particularly, the invention relates to controlling switches.
Electronic devices often use electronic switches to selectively connect two portions of a circuit. One type of switch has a movable arm that alternatively touches an electrically conductive port (often referred to as a “contact”) on a stationary surface. The arm typically moves in response to a drive signal that forces the arm toward the contact.
To operate with higher speed circuitry, it generally is desirable for a switch to make this connection with its contact in the shortest amount of time. Accordingly, many switches use a relatively high level signal that forces this connection with the contact in the shortest amount of time. For example, the drive signal may rise at a very rapid rate to a maximum voltage to electrostatically urge a micro electromechanical (“MEMS”) cantilever arm toward the stationary contact. This rapid rate undesirably can cause the arm to physically bounce off the contact and oscillate before making a stationary contact.
In response to this, one skilled in the art may produce a lower intensity signal; e.g., one that rises slower. Although it may mitigate the bouncing problem, such a solution undesirably reduces the speed of closing the switch.
In accordance with one embodiment, a method of driving a switch having a movable member and a contact first applies (to the switch) a first signal having a first level, and then applies a second signal having a second level to the switch (after applying the first signal). The first and second levels are the rate of change of the respective signals. The first level is greater than the second level. One or both of the first and second signals cause the movable member to move to electrically connect with the contact.
A method of driving a switch having a movable member may apply one or more signals simultaneously, in sequence, or for an overlapping time. In one embodiment, the one or more signals may be voltage signals. In one embodiment, the one or more signals may be current signals.
In accordance with one embodiment, a drive signal may be produced by a circuit that supplies a voltage or an electrical current to the switch. In one embodiment, a voltage output circuit applies a voltage signal to the switch that has a first level at a first time, and a voltage signal that has a second level after applying the first voltage signal, the first and second levels are the rate of change of the respective voltage signals.
In one embodiment, a current output circuit comprises a current mirror with a current input connected to at least one current source, and a current output connected to the switch. The output of the current mirror serves as a current source to provide charging current to the switch. The current output circuit provides to the switch a first signal of charging current having a first level, and then provides a second signal of charging current having a second level after applying the first signal of charging current.
The movable member illustratively moves to electrically connect with the contact when subjected to a threshold amplitude value. Accordingly, in illustrative embodiments, the first signal has a maximum amplitude that is less than the threshold amplitude value, while the second signal has a maximum amplitude that is greater than the threshold amplitude value.
The method may operate with different types of signals. For example, the first level may be a first voltage, while the second level may be a second voltage. Among other things, the first level and second level may be the rate of increase in voltage relative to time. When executed, the method causes the movable member to move in a manner that causes it to be substantially free of oscillations after electrically contacting the contact.
The signals may be provided a number of different ways. For example, a single source may provide the first and second signals. In other embodiments, a first source provides the first signal and a second source provides the second signal. In yet other embodiments, a first and second source provide one or both of the first and second signals.
In accordance with another embodiment of the invention, a switch driver circuit has a source for delivering a signal having more than one level. Specifically, the signal has a first level, and a second level that is greater than the first level. The switch driver also has an output for delivering the signal so that the signal attains the second level after it has attained the first level.
Among other things, the source may be a plurality of sources or a single source.
Those skilled in the art should more fully appreciate advantages of various embodiments of the invention from the following “Description of Illustrative Embodiments,” discussed with reference to the drawings summarized immediately below.
a),
a) is a schematic of a digital circuit for creating certain control signals.
b) is a timing diagram for certain signals of the circuit in
In illustrative embodiments, a driver applies a drive signal to a switch in a manner that substantially mitigates oscillations while, at the same time, optimizing switch-closing time. To that end, the driver first applies a first signal having a relatively high level to the switch. Before the switch closes, however, the driver applies a second signal having a lower level than that of the first signal. Among other things, the levels may be the rate of change of the signals (e.g., the rate of change of an input voltage). Details of illustrative embodiments are discussed below.
It should be noted that specific details of the switch and certain details of the driver are for illustrative purposes only. Accordingly, discussion of these details are not intended to limit the scope of various embodiments. For example, the switch may have a non-cantilevered arm, or may be formed from non-MEMS processes.
During operation, a driver (not shown in
a), 3(b) and 3(c) show illustrative responses of an open switch 100 to various drive signals. In the upper illustration of
One approach to avoiding the bounce is to ramp the drive signal more gradually. In the upper illustration of
A second approach to avoiding the bounce is to ramp the drive signal at varying rates. For example, the first rate might rise rapidly towards the threshold voltage to get the arm 105 moving in a short time, but then change its rate to rise more slowly so that the final speed of the arm 105 in this approach is less than the final speed of the arm 105 in the fast-rise approach. This third approach closes the switch 100 more quickly than in the slow-rise approach, while at the same time avoiding the oscillations of the fast-rise approach. This approach is shown in the upper illustration of
In accordance with illustrative embodiments, this drive signal is controlled to prevent the arm 105 from striking the stationary conductor 104 so hard that it will bounce upwardly after making initial contact, and yet to close the switch 100 relatively quickly. As illustrated above, striking the stationary conductor 104 with too much force can cause the arm 105 to oscillate in and out of physical contact with the stationary conductor 104. Of course, if it is not in physical contact with the stationary conductor 104, then the arm 105 is not in electrical contact with the stationary conductor 104. Accordingly, oscillations effectively delay the electrical contact of the arm 105 and stationary conductor 104. In addition, such oscillations may cause undesirable distortion to a signal passing through the switch 100, and may also reduce the reliability of the switch 100.
It should be noted that in addition to being considered a single, multi-level signal, these drive signal signals may also be considered to be multiple, independent signals.
a) is a schematic of a digital sub-circuit 600 for creating control signals Phi1615, Phi2616 and Phi2b 617.
In the circuit 600 of
When the user desires to close the switch, the user will cause the Switch Control signal 614 to transition to a logic high. This will cause the output of inverter 601 to go low, but the other input to nor gate 602 temporarily remains high as it was before, so the output of nor gate 602 remains low, and the downstream signals temporarily remain unchanged (including Phi2615 at logic low, and Phi2b 615 at logic high). In addition, the Switch Control input 614 transition from low to high means the output of nor gate 606 goes low, and thus the output of inverter 607 tries to go high. However, the output transition of inverter 607 is delayed by the need to charge capacitor 612. When capacitor 612 is charged, the output of inverter 607 will be high, and because sdb 611 is high, both inputs to nand gate 608 are high and thus the output of nand gate 608 (Phi1615) goes low. After Phi1615 goes low, both inputs to nor gate 602 are low, causing the output of nor gate 602 to go high. That signal causes the output of inverter 603 to start to go low, but that transition is delayed by the need to discharge capacitor 613. When capacitor 613 is discharged, the inputs to nor gate 604 will both be low, causing the output of nor gate 604 (Phi2616) to go high and thus Phi2b 617 to go low. Thus, upon a transition of the input from low to high, and after a short delay due to the charging of capacitor 612, Phi1615 goes low. Then, after a second delay due to the discharging of capacitor 613, Phi2616 goes high, and Phi2b 617 goes low. In summary, when the Switch Control input 614 changes from low to high, Phi1615 changes from high to low after a short delay, and shortly thereafter Phi2616 transitions from low to high and Phi2b 617 transitions from high to low.
When Phi2b 617 transitions to logic low, the output of inverter 701 tries to go high, but that transition is delayed by the need to charge capacitor 706, so that the output of inverter 701 momentarily stays low. As such, the output of nor gate 702 goes high, and the output of inverter 703 goes low to provide a low input to one input of nand gate 704. Consequently, the output of nand gate 704 (signal Edgeout 707) transitions from low to high. Eventually, capacitor 706 is charged and the output of inverter 701 reaches logic high. Then, the output of nor gate 702 goes back to low, the output of inverter 703 goes back to high, thereby providing a logic high to the one input of nand gate 704. At the same time, nand gate 705 will have one input high and the other input low, so that the output of nand gate 705 will be high to provide a logic high to the second input of nand gate 704. As such, the output of nand gate 704 (signal Edgeout 707) returns to logic low. In summary, upon the transition of Phi2b 617 from logic high to logic low, Edgeout 707 briefly pulses logic high. The duration of the Edgeout 707 pulse will depend on how long it takes the output of inverter 701 to charge capacitor 706. The duration of the Edgeout 707 pulse will control the duration of the current boost supplied to a current mirror by transistor MN8 and transistor MN9, as described more fully below. The width of the Edgeout pulse is key to turning on the boost current source (through transistor MN8 and transistor MN9), and hence the time during which the switch arm 105 moves most rapidly towards making contact with stationary conductor 104.
The operation of the circuit 500 as partially illustrated in
When the user wants to close the switch, the user causes the input Switch Control signal 614 to go high. As discussed above, this causes certain changes in control signals Phi1615, Phi2616, and Phi2b 617, and causes Edgeout 707 to pulse. The operation of the circuit 500 as partially illustrated in
As also discussed above, the transition of the Switch Control 614 signal to logic high will cause Edgeout 707 to pulse to logic high. This will cause transistor MN9 to turn on (conducting), which will allow transistor MN8 to mirror a portion of the current in transistor MN4; preferably 2.5 micro-Amperes. The current in transistor MN8 will supplement the current in transistor MN3 that flows through transistor MN2, and the combined currents (preferably 3 micro-Amperes) will ultimately be amplified and mirrored by transistor MP4 to provide a current burst of 12 micro-Amperes to the output node 501. In turn, this causes the voltage on the switch gate 102 to ramp quickly toward the threshold voltage. Preferably the duration of Edgeout 707 is set to maintain this current flow until the voltage on the switch gate approaches the threshold voltage.
As further discussed above, the Edgeout 707 pulse will end, thereby turning off transistor MN9 (non-conducting). The operation of the circuit 500 as partially illustrated in
In accordance with the foregoing, the voltage on the switch gate electrode increases rapidly at the beginning, but then the voltage ramp slows. The voltage quickly reaches a point where it is strong enough to move the MEMS switch cantilever downward, which is important so that there is minimal lag time between the changing of the Switch Control 614 signal that commands the circuit to close the switch, and the actual closing of the switch. Later, the voltage on the switch gate increases more slowly, up to an ultimate voltage that is strong enough to hold the switch arm securely in the downward, closed position. Preferably the operation of the drive circuit will cause the arm to contact the drain electrode without bouncing or damaging the arm.
When the user desires to open the switch, the user will cause the Switch Control signal 614 to go low. The digital circuit discussed above will cause the driver circuit 500 to revert to the state discussed above in connection with
Although the above discussion discloses various exemplary embodiments of the invention, it should be apparent that those skilled in the art can make various modifications that will achieve some of the advantages of the invention without departing from the true scope of the invention. The described embodiments are to be considered in all respects only as illustrative and not restrictive.
This application claims priority from the following United States provisional patent application, which is hereby incorporated herein by reference in its entirety: Application No. 60/871,619 filed on Dec. 22, 2006.
Number | Name | Date | Kind |
---|---|---|---|
2664618 | Kleis | Jan 1954 | A |
4674180 | Zavracky et al. | Jun 1987 | A |
4764244 | Chitty et al. | Aug 1988 | A |
4959515 | Zavracky et al. | Sep 1990 | A |
5245501 | Locher et al. | Sep 1993 | A |
5638946 | Zavracky | Jun 1997 | A |
6091125 | Zavracky | Jul 2000 | A |
6153839 | Zavracky et al. | Nov 2000 | A |
6483395 | Kasai et al. | Nov 2002 | B2 |
7202764 | Deligianni et al. | Apr 2007 | B2 |
7256669 | Morrison, Jr. et al. | Aug 2007 | B2 |
20020088112 | Morrison, Jr. et al. | Jul 2002 | A1 |
20040040828 | Ivanciw et al. | Mar 2004 | A1 |
20040151032 | Polansky et al. | Aug 2004 | A1 |
20040201556 | Oomori et al. | Oct 2004 | A1 |
20050212597 | Tsuchi | Sep 2005 | A1 |
20050258458 | Wang et al. | Nov 2005 | A1 |
20060120004 | Thiery et al. | Jun 2006 | A1 |
Number | Date | Country |
---|---|---|
1679130 | Oct 2005 | CN |
1 146 532 | Oct 2001 | EP |
645681 | Nov 1950 | GB |
2001-179699 | Jul 2001 | JP |
2005-536854 | Dec 2005 | JP |
10-2005-0039867 | Apr 2005 | KR |
543292 | Jul 2003 | TW |
WO 2005006372 | Jan 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20080151464 A1 | Jun 2008 | US |
Number | Date | Country | |
---|---|---|---|
60871619 | Dec 2006 | US |