The present invention claims the benefit of Korean Patent Application No. P2003-96706 filed in Korea on Dec. 24, 2003, which is hereby incorporated by reference.
1. Field of the Invention
The present invention relates to a liquid crystal display device, and more particularly, to a method and an apparatus for driving a liquid crystal display that perform signal processing on data having a linear characteristic and generate data signals having a linear characteristic to drive a liquid crystal display panel.
2. Discussion of the Related Art
In general, an active-matrix-type liquid crystal display (LCD) device has a switching device for selectively controlling light transmittance of liquid crystal cells in accordance with video signals to thereby display an image. The switching device for the active matrix LCD commonly uses a thin film transistor (TFT).
The signal processor 12 receives data from an input source (not shown) and performs signal processing on the data. In particular, the signal processor 12 receives data having a non-linear characteristic as shown in
The timing controller 10 re-arranges the processed data received from the signal processor 12, and applies the data to the data driver 4. In addition, the timing controller 10 receives a synchronizing signal from the input source (not shown) to generate a data control signal DCS and a gate control signal GCS for controlling the data driver 4 and the gate driver 6. Thus, the timing controller 10 also applies the data control signal DCS to the data driver 4, and the gate control signal GCS to the gate driver 6.
The data driver 4 then generates data signals using analog gamma voltages supplied from the gamma voltage supplier 8 and the data from the timing controller 10. In particular, the gamma voltage supplier 8 applies a plurality of analog gamma voltages having characteristics as shown in
Further, the gate driver 6 sequentially applies a scanning pulse to the gate lines G1 . . . Gn in response to the gate control signal GCS to thereby select horizontal lines of the liquid crystal display panel 2 to display an image.
In the LCD according to the related art, the signal processor 12 changes 2.2 gamma-corrected data as shown in
Accordingly, the present invention is directed to a method and an apparatus for driving a liquid crystal display that substantially obviate one or more of problems due to limitations and disadvantages of the related art.
An object of the present invention is to provide a driving method and apparatus for a liquid crystal display that provide signal processing on data having a linear characteristic.
Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention. The objectives and other advantages of the invention will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
To achieve these and other advantages and in accordance with the purpose of the present invention, as embodied and broadly described, the apparatus for driving a liquid crystal display device includes a signal processor receiving gamma-treated data from an input source, and performing a reverse gamma correction on the data, the reverse-gamma-corrected data having a first linear characteristic, and a liquid crystal display panel for receiving data signals generated based on the reverse-gamma-corrected data having the first linear characteristic, the data signals having a second linear characteristic.
In another aspect, the method of driving a liquid crystal display device includes receiving gamma-treated data, performing a reverse gamma correction of the data, the reverse-gamma-corrected data having a first linear characteristic, performing a signal processing of the reverse-gamma-corrected data having the first linear characteristic, performing a gamma correction of the processed data, and generating data signals based on the gamma-corrected data using analog voltage values, the data signals having a second linear characteristic.
In another aspect, the method of driving a liquid crystal display includes receiving gamma-treated data, performing a reverse gamma correction of the data, the reverse-gamma-corrected data having a linear characteristic, performing a signal processing of the reverse-gamma-corrected data having the linear characteristic, and generating data signals based on the processed data using analog voltage values corresponding to gamma values having a linear characteristic, wherein the data signals have a linear characteristic.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention. In the drawings:
Reference will now be made in detail to the preferred embodiments, examples of which are illustrated in the accompanying drawings.
The liquid crystal display panel 22 may include m data lines D1 . . . Dm and n gate lines G1 . . . Gn intersecting each other and defining m×n liquid crystal cells Clc arranged in a matrix. The liquid crystal display panel 22 may include a dummy gate line G0. In addition, the liquid crystal display panel 22 may also include thin film transistors TFT and storage capacitors Cst at the m×n liquid crystal cells Clc. The thin film transistors TFT may selectively apply a data signal from the data lines D1 . . . Dm to the respective liquid crystal cells Clc in response to a scanning signal from the gate lines G1 . . . Gn, thereby displaying an image.
In addition, the signal processor 34 may receive gamma-treated data Data having a non-linear characteristic as shown in
Further, before outputting the processed data Data1, the signal processor 34 may perform other signal processing on the reverse-gamma-corrected data, such as adjusting a gain of the data to improve display quality. In particular, types of the signal processing performed by the signal processor 34 need not be restricted because the data undergoing the signal processing have a linear characteristic and may later be converted to a different format, if needed. After performing signal processing on the data, the signal processor 34 may provide the processed data Data1 to the gamma part 32.
The gamma part 32 may provide a gamma correction to generate gamma-corrected data Data2. In particular, a gamma characteristic of the gamma part 32 may be complimentary to a gamma characteristic of the gamma voltage supplier 28. For instance, the gamma part 32 may provide a gamma correction using a 2.2 gamma and the gamma voltage supplier 28 may provide a reverse gamma correction using a reverse gamma value complimentary to the 2.2 gamma. As a result, the combination of gamma characteristics of the gamma part 32 and the gamma voltage supplier 28 may provide a linear characteristic for the data. Then, the gamma-corrected data Data2 from the gamma part 32 may be applied to the timing controller 30.
The timing controller 30 may apply the gamma-corrected data Data2 to the data driver 24. In addition, the timing controller 30 may receive a synchronizing signal from the input source (not shown) and may generate a data control signal DCS and a gate control signal GCS for controlling the data driver 24 and the gate driver 26, respectively.
The data driver 24 may convert the gamma-corrected data Data2 into data signals corresponding to gray level values in response to the data control signal DCS and may apply the data signals to the data lines D1 . . . Dm. In addition, the data driver 24 may generate the data signals using an analog gamma voltage corresponding to the data of a plurality of analog gamma voltages received from the gamma voltage supplier 28.
The gamma voltage supplier 28 may apply the analog gamma voltages to the data driver 24. For example, the gamma voltage supplier 28 may supply the analog gamma voltages having a reverse gamma characteristic complimentary to a gamma characteristic of the gamma part 32, such that the gamma-corrected data from the gamma part 32 can be linearly displayed on the liquid crystal display panel 22. Thus, the data signals applied to the liquid crystal display panel 22 may have a linear characteristic.
Moreover, the gate driver 26 may sequentially apply a scanning pulse to the gate lines G1 . . . Gn in response to the gate control signal GCS to thereby selectively drive horizontal lines of the liquid crystal display panel 22.
Alternatively, as shown in
Further, a reverse gamma correction value of each data R, G and B may be adjusted based on conditions, such as a property, a color temperature, a gain or the like of the liquid crystal display panel 22, thereby improving display quality. In addition, since the LUT 36 may be stored in a memory, an operator may easily change the reverse gamma correction values stored in the LUT 36 in order to improve display quality.
Since the data signals applied to the liquid crystal display panel 22 may have a linear characteristic, an image having a linearly increasing gray level may be displayed on the liquid crystal display panel 22. Accordingly, an LCD according to the present invention has an advantage of performing reverse-gamma-correction on the data to provide corrected data having a linear characteristic and performing signal processing on the linear reverse-gamma-corrected data to thereby improve display quality. Thus, the signal processing is performed on data having a linear characteristic without considering data signals to be produced later, so that it becomes possible to make various signal processing for the purpose of improving display quality.
The liquid crystal display panel 42 may include m data lines D1 . . . Dm and n gate lines G1 . . . Gn intersecting each other and defining m×n liquid crystal cells Clc arranged in a matrix. The liquid crystal display panel 42 may include a dummy gate line G0. In addition, the liquid crystal display panel 42 may also include thin film transistors TFT and storage capacitors Cst at the m×n liquid crystal cells Clc. The thin film transistors TFT may selectively apply a data signal from the data lines D1 . . . Dm to the respective liquid crystal cells Clc in response to a scanning signal from the gate lines G1 . . . Gn, thereby displaying an image.
In addition, the signal processor 52 may receive gamma-treated data Data having a non-linear characteristic as shown in
The LUT 54 may include a ROM or an EEPROM, and may include one reverse gamma table 23 (as shown in
Further, before outputting the processed data Data1′, the signal processor 52 may perform other signal processing on the reverse-gamma-corrected data, such as adjusting a gain of the data to improve display quality. In particular, types of the signal processing performed by the signal processor 52 need not be restricted because the data undergoing the signal processing have a linear characteristic and may later be converted to a different format, if needed. After performing signal processing on the data, the signal processor 52 may provide the processed data Data1′ to the timing controller 50.
The timing controller 50 may then apply the processed data Data1′ to the data driver 44. In addition, the timing controller 30 may receive a synchronizing signal from the input source (not shown) and may generate a data control signal DCS and a gate control signal GCS for controlling the data driver 44 and the gate driver 46, respectively.
Moreover, the data driver 44 may convert the processed data Data1′ into data signals corresponding to gray level values in response to the data control signal DCS and may apply the data signals to the data lines D1 . . . Dm. In particular, the data driver 44 may generate the data signals using an analog gamma voltage corresponding to the data of a plurality of analog gamma voltages received from the gamma voltage supplier 48.
The gamma voltage supplier 48 may apply the analog gamma voltages to the data driver 44. For example, the gamma voltage supplier 48 may supply the analog gamma voltages having a linear characteristic as shown in
Further, the gate driver 46 may sequentially apply a scanning pulse to the gate lines G1 . . . Gn in response to the gate control signal GCS to thereby selectively drive horizontal lines of the liquid crystal display panel 42.
Since the data signals applied to the liquid crystal display panel 42 may have a linear characteristic, an image having a linearly increasing gray level may be displayed on the liquid crystal display panel 42. Accordingly, an LCD according to the present invention has an advantage of performing reverse-gamma-correction on the data to provide corrected data having a linear characteristic and performing signal processing on the linear reverse-gamma-corrected data to thereby improve display quality. Thus, the signal processing is performed on data having a linear characteristic without considering data signals to be produced later, so that it becomes possible to make various signal processing for the purpose of improving display quality.
It will be apparent to those skilled in the art that various modifications and variations can be made in the above-discussed method and apparatus for driving a liquid crystal display device without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
P2003-96706 | Dec 2003 | KR | national |