Method and apparatus for driving plasma display panel

Information

  • Patent Grant
  • 7333075
  • Patent Number
    7,333,075
  • Date Filed
    Wednesday, March 5, 2003
    21 years ago
  • Date Issued
    Tuesday, February 19, 2008
    16 years ago
Abstract
There is explained a driving method and apparatus for a plasma display panel that can be driven stably under a high temperature environment.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to a plasma display panel, and more particularly to a driving method and apparatus for a plasma display panel that can be driven stably under a high temperature environment.


2. Description of the Related Art


A plasma display panel PDP displays a picture by having an ultraviolet ray make light emitted from a phosphorus material, the ultraviolet ray is generated when inert mixture gas is discharged. The PDP has its picture quality improved in debt to recent technology development as well as being easy to be made thin in thickness and big in size.


Referring to FIG. 1, a discharge cell of a three electrode AC surface discharge PDP includes a pair of sustain electrodes having a scan electrode 30Y and a common sustain electrode 30Z formed on an upper substrate 10, and an address electrode 20X formed on a lower substrate 18 to cross the pair of sustain electrodes perpendicularly. The sustain electrode 30Y and the sustain electrode 30Y each has a structure where transparent electrodes 12Y and 12Z and metal bus electrodes 13Y and 13Z are deposited. There are an upper dielectric layer 14 and an MgO passivation film 16 deposited on the upper substrate 10 where the scan electrode 30Y and the sustain electrode 30Z.


There are lower dielectric layer 22 and barrier ribs 24 formed on the lower substrate 18 where the address electrode 20X is formed. There is a fluorescent layer 26 spread on the lower dielectric layer 22 and surface of the barrier ribs 24.


There is inert gas such as He+Xe, Ne+Xe and He+Xe+Ne etc. interposed in a discharge space provided between the upper/lower substrates 10 and 18 and the barrier ribs 24.


In order to realize the gray level of a picture, the PDP is time-division driven by dividing one frame into several sub-fields that have their light emission frequencies different. Each sub field can be divided into an initialization period (or a reset period) to initialize a full screen, an address period to select scan lines and select cells among the selected scan lines, and a sustain period to realize gray levels in accordance with a discharge frequency. The initialization period is again divided into a setup period for which a rising ramp waveform is applied and a set-down period for which a falling ramp waveform is applied. For example, in the event of displaying a picture with 256 gray levels, the frame period (16.67 ms) corresponding to 1/60 second as in FIG. 2 is divided into 8 sub-fields (SF1 to SF8).


Each of the 8 sub-fields (SF1 to SF8), as described above, is divided into the initialization period, the address period and the sustain period. The initialization period and the address period of each sub-field are the same for each sub-field, while the sustain period increases at the rate of 2n (n=0,1,2,3,4,5,6,7) in each sub-field.



FIG. 3 illustrates a driving waveform of a PDP which is applied to two sub-fields.


In FIG. 3, Y represents a scan electrode, Z does a sustain electrode and X does an address electrode.


Referring to FIG. 3, the PDP is driven by being divided into an initialization period to initialize a full screen, an address period to select cells and a sustain period to sustain discharges of the selected cells.


In the initialization period, a rising ramp waveform Ramp-up is simultaneously applied to all scan electrodes Y for a setup period SU. The rising ramp waveform Ramp-up causes a discharge to occur within the cells of the full screen. The setup discharge causes positive wall charges to be accumulated in the address electrode X and the sustain electrode Z, and negative wall charges to be accumulated in the scan electrode Y. A falling ramp waveform Ramp-down is simultaneously applied to the scan electrodes Y for the set-down period after the rising ramp waveform Ramp-up being applied. Herein, the falling ramp waveform begins to fall at the positive voltage lower than the peak voltage of the rising ramp waveform Ramp-up.


The falling ramp waveform Ramp-down causes a weak erasure discharge within the cells so as to eliminate the wall charges formed excessively. The wall charges are uniformly sustained within the cells so that an address discharge can be stably caused by the set-down discharge.


In the address period, negative scan pulses SCAN are sequentially applied to the scan electrodes Y and at the same time positive data pulses DATA synchronized with the scan pulses SCAN are applied to the address electrodes X. When the voltage difference between the scan pulse SCAN and the data pulse DATA is added to the wall voltages generated in the initialization period, the address discharge is generated within the cell to which the data pulse DATA is applied. When sustain voltages are applied, wall charges are formed within the cells selected by the address discharge so that the discharge can be caused.


Positive DC voltage Zdc is applied to the sustain electrode Z for the set-down period and the address period. The DC voltage Zdc sets the voltage difference between the sustain electrode Z and the scan electrode Y or the sustain electrode Z and the address electrode X so as to cause the set-down discharge to occur between the sustain electrode Z and the scan electrode Y for the set-down period, and at the same time so as not to cause a discharge to be generated on a large scale between the scan electrode Y and the sustain electrode Z for the address period.


In the sustain period, sustain pulses SUS are alternately applied to the scan electrodes Y and the sustain electrodes Z. In the cells selected by the address discharge, there occurs a sustain discharge, i.e., display discharge, between the scan electrode Y and the sustain electrode Z whenever each sustain pulse SUS is applied as the wall voltage within the cell is added to the sustain pulse SUS.


Lastly, after completion of the sustain discharge, a ramp waveform ERASE with narrow pulse width and low voltage level is applied to the sustain electrode Z, thereby to erase the wall charges remaining behind within the cells of the full screen.


However, the prior art PDP has a problem that the driving is not stable, i.e., there is no discharge generated in the event that it is made to run in a high temperature environment. For instance, in a high temperature environment of 50° C. or more, when the PDP, as in FIG. 4, is divided into an upper part and a lower part so that the upper part is scanned from top downward and the lower part is scanned from bottom upward, there occurs no address discharge in a middle part 41 where it is scanned late in order. If no address discharge is generated with respect to the selected cell, because the sustain discharge is not generated in the selected cell though the sustain voltage is applied, thus it is not possible to display a picture. In the same way, when the PDP is sequentially scanned from the first line till the last line as in FIG. 5 in the high temperature of 50° C. or more, there occurs no address discharge in a lower part 51 of the screen, which is scanned late in order.


Upon the high temperature environment experiment and the analysis result thereof, the principal cause for the occurrence of mis-discharge under the high temperature environment is the scanning order, as it gets later, the amount of loss of the wall charges generated in the initialization period is increased. To describe this cause on the basis of the discharge characteristic within the cell, firstly, as the internal/external temperature of the cell increases, the insulation characteristic of a dielectric material and a passivation material within the cell is deteriorated to generate leakage current, thereby leaking the wall charges. More specifically, in the event that the wall charges of the scan electrode Y and the sustain electrode Z is made to leak, it is easy for the address discharge to be mis-discharged. Secondly, as the movement of the space charge within the cell generated by the discharge in the high temperature environment gets active, the space discharge is easily recombined with the atom that has lost electrons so that the wall charges and space charges contributing to the discharge are lost as time passes by.


SUMMARY OF THE INVENTION

Accordingly, it is an object of the present invention to provide a driving method and apparatus for a plasma display panel that can be driven stably under a high temperature environment.


In order to achieve these and other objects of the invention, a method for driving a plasma display panel according to an aspect of the present invention, wherein the plasma display panel includes a plurality of scan electrodes, a plurality of sustain electrodes and a plurality of address electrodes, the method includes steps of increasing a voltage, which is applied to at least one of the scan electrode and the sustain electrode, in accordance with their scanning order; and selecting a cell by applying data to the address electrode.


Herein, the voltage applied to at least one of the scan electrode and the sustain electrode increases as the scanning order gets later.


Herein, the high temperature is 50° C. or more.


In the step of increasing the voltage, the voltage applied to the sustain electrode is increased linearly as the scanning order gets later.


The method further includes a step of continuously applying a rising ramp waveform and a falling ramp waveform to the scan electrode to initialize the cells of a full screen.


Herein, the falling ramp waveform falls down to a designated negative voltage.


The step of increasing the voltage further includes steps of applying a designated positive voltage to the sustain electrode while the falling ramp waveform is applied to the scan electrode; and applying to the sustain electrode a voltage that rises linearly from a lower voltage level than the positive voltage.


In the step of increasing the voltage, a second positive voltage higher than the positive voltage is applied to the sustain electrode that comes late in scanning order after applying a designated positive voltage to the sustain electrode that comes early in scanning order.


The step of increasing the voltage further includes steps of applying a designated positive voltage to the sustain electrode while the falling ramp waveform is applied to the scan electrode; and applying a third positive voltage lower than the positive voltage to the sustain electrode that comes early in scanning order, and then applying a fourth positive voltage higher than the third positive voltage to the sustain electrode that comes late in scanning order.


An apparatus for driving a plasma display panel under a high temperature environment according to the another aspect of the present invention, wherein the plasma display panel includes a plurality of scan electrodes, a plurality of sustain electrodes and a plurality of address electrodes, the apparatus includes a scan driver for applying a scan voltage to the scan electrode; a sustain driver for applying a voltage to the sustain electrode, the voltage is increased in accordance with a scanning order; and a data driver for applying data to the address electrode to select a cell.


Herein, the sustain driver increases the voltage applied to the sustain electrode as the scanning order gets later.


Herein, the high temperature is 50° C. or more.


Herein, the sustain driver increases the voltage applied to the sustain electrode linearly as the scanning order gets later.


Herein, the scan driver initialize the cells of a full screen by continuously applying a rising ramp waveform and a falling ramp waveform to the scan electrode.


Herein, the scan driver makes the falling rams waveform fall down to a designated negative voltage.


Herein, the sustain driver applies a designated positive voltage to the sustain electrode while the falling ramp waveform is applied to the scan electrode, and applies to the sustain electrode a voltage that rises linearly from a lower voltage level than the positive voltage.


Herein, the sustain driver applies a second positive voltage higher than the positive voltage to the sustain electrode that comes late in scanning order after applying a designated positive voltage to the sustain electrode that comes early in scanning order.


Herein, the sustain driver applies a designated positive voltage to the sustain electrode while the falling ramp waveform is applied to the scan electrode, and applies a fourth positive voltage higher than the third positive voltage to the sustain electrode that comes late in scanning order after applying a third positive voltage lower than the positive voltage to the sustain electrode that comes early in scanning order.


An apparatus for driving a plasma display panel under a high temperature environment according to still another aspect of the present invention, wherein the plasma display panel includes a plurality of scan electrodes, a plurality of sustain electrodes and a plurality of address electrodes, the apparatus includes a scan driver for applying a scan voltage to the scan electrode, the scan voltage is increased in accordance with a scanning order; a sustain driver for applying a voltage to the sustain electrode, the voltage is increased in accordance with a scanning order; and a data driver for applying data to the address electrode to select a cell.


Herein, the scan driver increases the scan voltage as the scanning order gets later.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other objects of the invention will be apparent from the following detailed description of the embodiments of the present invention with reference to the accompanying drawings, in which:



FIG. 1 is a perspective view representing a discharge cell structure of a conventional three electrode AC surface discharge PDP;



FIG. 2 illustrates a frame configuration of an 8 bit default code for realizing 256 gray levels;



FIG. 3 illustrates a driving waveform for driving a conventional PDP;



FIG. 4 is a diagram briefly representing the area where mis-discharge occurs under a high temperature environment, in the event that a FDP is divided into an upper part and a lower part and the upper and lower parts are scanned at the same time;



FIG. 5 is a diagram briefly representing the area where mis-discharge occurs under a high temperature environment, in the event that a PDP is sequentially scanned from the first line to the last line;



FIG. 6 is a block diagram representing a driving apparatus of a PDP according to an embodiment of the present invention;



FIG. 7 is a waveform diagram representing a driving method of a PDP according to the first embodiment of the present invention;



FIG. 8 is a waveform diagram representing a driving method of a PDP according to the second embodiment of the present invention;



FIG. 9 is a waveform diagram representing a driving method of a PDP according to the third embodiment of the present invention;



FIG. 10 is a waveform diagram representing a driving method of a PDP according to the fourth embodiment of the present invention;



FIG. 11 is a waveform diagram representing a driving method of a PDP according to the fifth embodiment of the present invention;



FIG. 12 is a waveform diagram representing a driving method of a PDP according to the sixth embodiment of the present invention;



FIG. 13 is a waveform diagram representing a driving method of a PDP according to the seventh embodiment of the present invention;



FIG. 14 is a waveform diagram representing a driving method of a PDP according to the eighth embodiment of the present invention;



FIG. 15 is a waveform diagram representing a driving method of a PDP according to the ninth embodiment of the present invention;



FIG. 16 is a waveform diagram representing a driving method of a PDP according to the tenth embodiment of the present invention;



FIG. 17 is a waveform diagram representing a driving method of a PDP according to the eleventh embodiment of the present invention;



FIG. 18 is a waveform diagram representing a driving method of a PDP according to the twelfth embodiment of the present invention;



FIG. 19 is a waveform diagram representing a driving method of a PDP according to the thirteenth embodiment of the present invention;



FIG. 20 is a waveform diagram representing a driving method of a PDP according to the fourteenth embodiment of the present invention;





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings.



FIG. 6 is a block diagram representing a driving apparatus of a PDP according to an embodiment of the present invention.


Referring to FIG. 6, the driving apparatus of the PDP according to the embodiment of the present invention includes a data driver 62 to apply data to data lines Xl to Xm; a scan driver 64 to apply an initialization voltage, a scan voltage and a sustain voltage to scan electrodes Yl to Yn; a sustain driver 66 to apply a high temperature compensation voltage and a sustain voltage to a sustain electrode Z; and a timing controller 60 to control each of the drivers 62, 64 and 66.


The data driver 62 latches data by one line portion under the control of the timing controller 60 and applies the latched data to the data lines Xl to Xm simultaneously, wherein the data are mapped to each of sub fields by a sub field mapping unit (not shown) after being reverse-gamma corrected and error-diffused by a reverse gamma correction circuit and an error diffusion circuit (not shown) etc.


The scan driver 64 applies a rising ramp waveform and a falling ramp waveform to the scan electrodes Yl to Yn in an initialization period, and then sequentially applies to the scan electrodes Yl to Yn a scan pulse for selecting the scan lines in the address period. Herein, as the scanning order of the scan pulse comes later under a high temperature environment of 50° C. or more, the scan pulse has its voltage level go higher linearly or non-linearly, or heighten step by step in multi-steps. This is for making an address discharge generated stably even when the wall charges are excessively lost at the line where the scanning order is late under the high temperature environment by having a scan voltage at the line where the scanning order is late set higher than a scan voltage at the line where the scanning order is early. And the scanning driver 64 applies to the sustain electrodes Yl to Yn the sustain pulse simultaneously for generating the sustain discharge with respect to the cells selected during the address period.


The sustain driver 66 applies a DC voltage in the set-down period, and then applies a high-temperature compensation voltage during the address period under a high temperature environment of 50° C. or more, wherein the high-temperature compensation voltage has its voltage level increase as the line is later in the scanning order. Herein, the voltage level of the high-temperature compensation voltage can be increased linearly or non-linearly, or can be increased step by step.


The timing controller 60 receives vertical/horizontal synchronization signals, generates timing control signals necessary for each of the drivers 62, 64 and 66, and applies the timing control signals to each of the drivers 62, 64 and 66.


The driving waveform generated from each of the drivers 62, 64 and 66 may be implemented in various forms as in FIG. 7 to 20.



FIG. 7 illustrates a driving waveform of a PDP according to the first embodiment of the present invention.


Referring to FIG. 7, the PDP according to the first embodiment of the present invention is driven by being divided into an initialization period to initialize a full screen, an address period to select cells and a sustain period to sustain discharges of the selected cells.


In the initialization period, a rising ramp waveform Ramp-up that rises up to a peak voltage higher than a sustain voltage is simultaneously applied to all scan electrodes Y for a setup period SU. The rising ramp waveform Ramp-up causes a discharge to occur within the cells of the full screen. As a result, positive wall charges are accumulated in the address electrode X and the sustain electrode Z, and negative wall charges is accumulated in the scan electrode Y. A falling ramp waveform Ramp-down that falls down to a ground voltage GND is simultaneously applied to the scan electrodes Y for the set-down period to eliminate the wall charges formed excessively within the cells. The wall charges are uniformly sustained within the cells so that an address discharge can be stably caused by the set-down discharge.


During the set-down period SD, the sustain electrode Z is supplied with a positive DC voltage Zdc so that an erasure discharge can be generated between the sustain electrode Z and the scan electrode Y.


In the address period, negative scan pulses SCAN are sequentially applied to the scan electrodes Y and at the same time positive data pulses DATA synchronized with the scan pulses SCAN are applied to the address electrodes X. The scan pulses SCAN and the data pulses DATA each have the same voltage level in all the lines. When the voltage difference between the scan pulse SCAN and the data pulse DATA is added to the wall voltages generated in the initialization period, the address discharge is generated within the cell to which the data pulse DATA is applied.


During such an address period, the sustain electrode Z is supplied with the high-temperature compensation voltage LHTC, the voltage level of which is increased linearly in proportion to the scanning order. The high-temperature compensation voltage LHTC increases the voltage of the sustain electrode Z at the line where wall charges and space charges are excessively lost, i.e., the line where its scanning order is late, to increase the amount of positive wall charges which are accumulated in the scan electrode Y and of negative wall charges accumulated in the sustain electrode Z. If the sustain voltage is applied even to the line with late scanning order by the high-temperature compensation voltage LHTC, the wall charges that can cause a discharge are formed within the cell.


In the sustain period, sustain pulses SUS are alternately applied to the scan electrodes Y and the sustain electrodes Z. In the cells selected by the address discharge, there occurs a sustain discharge, i.e., display discharge, between the scan electrode Y and the sustain electrode Z whenever each sustain pulse SUS is applied as the wall voltage within the cell is added to the sustain pulse SUS. More specifically, in the prior art, because of low wall voltages due to the wall charges excessively lost at the line where its scanning order is late, the discharge is not generated even though the sustain voltage is applied to the cell, however, the driving method and apparatus of the PDP according to the embodiment of the present invention increases the wall voltages sufficiently enough at the line having late scanning order in use of the high-temperature compensation voltage, thus the sustain discharge can be generated stably even at the line having late scanning order. After the completion of the sustain discharge, a small ramp waveform ERASE applied to the sustain electrode Z removes the wall charges generated upon the sustain discharge.



FIG. 8 illustrates a driving waveform of a PDP according to the second embodiment of the present invention.


Referring to FIG. 8, in the setup period SU of the initialization period, a rising ramp waveform Ramp-up that rises up to a peak voltage higher than a sustain voltage is simultaneously applied to all scan electrodes Y. The rising ramp waveform Ramp-up causes a discharge to occur within the cells of the full screen. Subsequently, a falling ramp waveform Ramp-down that falls down to a negative voltage level lower than a ground voltage GND is simultaneously applied to the scan electrodes Y for the set-down period to eliminate the wall charges formed excessively within the cells. The wall charges are uniformly sustained within the cells so that an address discharge can be stably caused by the set-down discharge.


During the set-down period SD, the sustain electrode Z is supplied with a positive DC voltage Zdc so that an erasure discharge can be generated between the sustain electrode Z and the scan electrode Y.


In the address period, negative scan pulses SCAN are sequentially applied to the scan electrodes Y and at the same time positive data pulses DATA synchronized with the scan pulses SCAN are applied to the address electrodes X. The scan pulses SCAN and the data pulses DATA each have the same voltage level in all the lines. When the voltage difference between the scan pulse SCAN and the data pulse DATA is added to the wall voltages generated in the initialization period, the address discharge is generated within the cell to which the data pulse DATA is applied.


During the address period, the sustain electrode Z is supplied with the high-temperature compensation voltage LHTC, which rises from a voltage level lower than the positive DC voltage Zdc applied during the set-down period in view of the voltage level of the scan electrode Y that dropped to a designated negative potential in the set-down period. In other words, the start voltage of the high temperature compensation voltage LHTC is lower than the DC voltage Zdc of the set-down period SD by Vza. The reason why the high-temperature compensation voltage LHTC rises from the voltage level lower than the positive DC voltage Zdc is that the negative wall voltages in the scan electrode Y gets lower than the falling ramp waveform Ramp-down which falls down to the ground voltage because the falling ramp waveform Ramp-down drops down to the designated negative voltage level in the set-down period SD. That is, for the high-temperature compensation voltage LHTC to rise from the voltage level lower than the positive DC voltage Zdc is to prevent a mis-discharge between the scan electrode Y and the sustain electrode Z by lowering the voltage in the sustain electrode Z as much as the wall voltage in the scan electrode Y is decreased.


The high-temperature compensation voltage LHTC having its voltage level rise linearly in proportion to the scanning order increases the voltage of the sustain electrode Z at the line where its scanning order is late, to increase the amount of positive wall charges which are accumulated in the scan electrode Y and of negative wall charges accumulated in the sustain electrode Z. If the sustain voltage is applied even to the line with late scanning order by the high-temperature compensation voltage LHTC, the wall charges that can cause a discharge are formed within the cell.


In the sustain period, sustain pulses SUS are alternately applied to the scan electrodes Y and the sustain electrodes Z. In the cells selected by the address discharge, there occurs a sustain discharge between the scan electrode Y and the sustain electrode Z whenever each sustain pulse SUS is applied as the wall voltage within the cell is added to the sustain pulse SUS.


In the address period, because of the high temperature compensation voltage LHTC applied to the sustain electrode Z, the wall charges are increased sufficiently at the line having late scanning order, thus the sustain discharge can be generated stably even at the line having late scanning order. After the completion of the sustain discharge, a small ramp waveform ERASE applied to the sustain electrode Z removes the wall charges generated upon the sustain discharge.


In FIGS. 7 and 8, the gradient of the high temperature compensation voltage LHTC that is applied to the sustain electrode Z can be adjusted in accordance with an RC time constant determined by a resistance value or a capacitance value in the sustain driver 66.



FIG. 9 illustrates a driving waveform of a PDP according to the third embodiment of the present invention.


Referring to FIG. 9, in the setup period SU of the initialization period, a rising ramp waveform Ramp-up that rises up to a peak voltage higher than a sustain voltage is simultaneously applied to all scan electrodes Y. Subsequently, a falling ramp waveform Ramp-down that falls down to a ground voltage GND is simultaneously applied to the scan electrodes Y for the set-down period to eliminate the wall charges formed excessively within the cells.


In the address period, negative scan pulses SCAN are sequentially applied to the scan electrodes Y and at the same time positive data pulses DATA synchronized with the scan pulses SCAN are applied to the address electrodes X. When the voltage difference between the scan pulse SCAN and the data pulse DATA is added to the wall voltages generated in the initialization period, the address discharge is generated within the cell to which the data pulse DATA is applied.


After being supplied with the positive DC voltage Zdc during the set-down period SD and the first half of the address period, the sustain voltage Z is supplied with a second positive DC voltage 2Zdc higher than the positive DC voltage Zdc during the second half of the address period The second positive DC voltage 2Zdc increases the voltage of the sustain electrode Z at the line where its scanning order is relatively late, so as to increase the amount of the positive wall charges accumulated in the scan electrode Y and the negative wall charges accumulated in the sustain electrode Z. The wall voltages that can cause a discharge are formed within the cell if the sustain voltage is applied even at the line scanned in the second half by the second positive DC voltage 2Zdc.


In the sustain period, sustain pulses SUS are alternately applied to the scan electrodes Y and the sustain electrodes Z. In the cells selected by the address discharge, there occurs a sustain discharge between the scan electrode Y and the sustain electrode Z whenever each sustain pulse SUS is applied as the wall voltage within the cell is added to the sustain pulse SUS. Because of the second positive DC voltage 2Zdc, the wall voltages are increased sufficiently at the line where its scanning order is late, thus the sustain discharge is generated stably even at the line where the scanning order is late. After the completion of the sustain discharge, a small ramp waveform ERASE applied to the sustain electrode Z eliminates the wall charges generated upon the sustain discharge.



FIG. 10 illustrates a driving waveform of a PDP according to the fourth embodiment of the present invention.


Referring to FIG. 10, in the setup period SU of the initialization period, a rising ramp waveform Ramp-up that rises up to a peak voltage higher than a sustain voltage is simultaneously applied to all scan electrodes Y. Subsequently, a falling ramp waveform Ramp-down that falls down to a negative voltage level lower than a ground voltage GND is simultaneously applied to the scan electrodes Y for the set-down period.


In the address period, negative scan pulses SCAN are sequentially applied to the scan electrodes Y and at the same time positive data pulses DATA synchronized with the scan pulses SCAN are applied to the address electrodes X. When the voltage difference between the scan pulse SCAN and the data pulse DATA is added to the wall voltages generated in the initialization period, the address discharge is generated within the cell to which the data pulse DATA is applied.


The sustain electrode Z is supplied with the positive DC voltage Zdc during the set-down period SD. And after the sustain voltage Z is supplied with a third positive DC voltage 3Zdc lower than the positive DC voltage Zdc during the first half of the address period, a fourth positive DC voltage 4Zdc equal to or higher than the positive DC voltage Zdc is applied during the second half of the address period. The reason why the third and fourth positive DC voltage 3Zdc, 4Zdc are lower than that of the third embodiment of the present invention is that a mis-discharge between the scan electrode Y and the sustain electrode Z is to be prevented by lowering the voltage in the sustain electrode Z as much as the wall voltage in the scan electrode Y is reduced more because or the falling ramp waveform Ramp-down that falls down to the negative voltage level. The fourth positive DC voltage 4Zdc increases the voltage in the sustain electrode Z at the lines where their scanning order are relatively late, thereby increasing the amount of positive wall charges accumulated in the scan electrode Y and of negative wall charges accumulated in the sustain electrode Z. This fourth positive DC voltage 4Zdc causes the wall charges to be formed within the cell even at the lines that are scanned in the second half of the address period, wherein the wall charges are capable of generating the discharge when the sustain voltage is applied.


In the sustain period, sustain pulses SUS are alternately applied to the scan electrodes Y and the sustain electrodes Z. In the cells selected by the address discharge, there occurs a sustain discharge between the scan electrode Y and the sustain electrode Z whenever each sustain pulse SUS is applied as the wall voltage within the cell is added to the sustain pulse SUS. Because of the fourth positive DC voltage 4Zdc, the wall voltages are increased sufficiently at the line where its scanning order is late, thus the sustain discharge is generated stably even at the line where the scanning order is late. After the completion of the sustain discharge, a small ramp waveform ERASE applied to the sustain electrode Z eliminates the wall charges generated upon the sustain discharge.


In FIGS. 9 and 10, the DC voltage of two-step form applied to the sustain electrode Z can be implemented only by adding a switch device that switches an individual voltage source and its voltage to the sustain driver 66. The DC voltage applied to the sustain electrode Z, in FIGS. 9 and 10, is divided into two steps, but it can also be divided into multi-steps.



FIG. 11 illustrates a driving waveform of a PDP according to the fifth embodiment of the present invention.


Referring to FIG. 11, in the setup period SU of the initialization period, a rising ramp waveform Ramp-up that rises up to a peak voltage higher than a sustain voltage is simultaneously applied to all scan electrodes Y. Subsequently, a falling ramp waveform Ramp-down that falls down to a ground voltage GND is simultaneously applied to the scan electrodes Y for the set-down period.


In the address period, scan pulses VSCAN are sequentially applied to the scan electrodes Y, wherein the scan pulses VSCAN has a higher voltage level in a negative direction as their scanning order gets later. Positive data pulses DATA synchronized with the scan pulses VSCAN are applied to the address electrodes X. When the voltage difference between the scan pulse VSCAN and the data pulse DATA is added to the wall voltages generated in the initialization period, the address discharge is generated within the cell to which the data pulse DATA is applied. The scan pulses VSCAN has its voltage level increase linearly in a negative direction in proportion to the scanning order to increase the voltage in the scan electrode Y at the line where its scanning order is late, thereby increasing the amount of positive wall charges accumulated in the scan electrode Y and of negative wall charges accumulated in the sustain electrode Z. This scan pulse VSCAN causes the wall voltages to be formed within the cell even at the line where its scanning order is late, wherein the wall voltages are capable of generating the discharge when the sustain voltage is applied.


The sustain electrode Z is supplied with the positive DC voltage Zdc during the set-down period and the address period. The DC voltage Zdc sets the voltage difference between the sustain electrode Z and the scan electrode Y or the sustain electrode Z and the address electrode X so as to cause a set-down discharge to occur between the sustain electrode Z and the scan electrode Y for the set-down period, and at the same time so as not to cause a discharge to be generated on a large scale between the scan electrode Y and the sustain electrode Z for the address period.


In the sustain period, sustain pulses SUS are alternately applied to the scan electrodes Y and the sustain electrodes Z. In the cells selected by the address discharge, there occurs a sustain discharge between the scan electrode Y and the sustain electrode Z whenever each sustain pulse SUS is applied as the wall voltage within the cell is added to the sustain pulse SUS. During the address period, because of the scan pulse VSCAN applied to the scan electrode Y, the wall voltages are increased sufficiently at the line where its scanning order is late, thus the sustain discharge is generated stably even at the line where the scanning order is late. After the completion of the sustain discharge, a small ramp waveform ERASE applied to the sustain electrode Z eliminates the wall charges generated upon the sustain discharge.



FIG. 12 illustrates a driving waveform of a PDP according to the sixth embodiment of the present invention.


Referring to FIG. 12, in the setup period SU of the initialization period, a rising ramp waveform Ramp-up that rises up to a peak voltage higher than a sustain voltage is simultaneously applied to all scan electrodes Y. Subsequently, a falling ramp waveform Ramp-down that falls down to a ground voltage GND is simultaneously applied to the scan electrodes Y for the set-down period.


In the address period, scan pulses VSCAN are sequentially applied to the scan electrodes Y, wherein the scan pulses VSCAN has a higher voltage level in a negative direction as their scanning order gets later. Positive data pulses DATA synchronized with the scan pulses VSCAN are applied to the address electrodes X. When the voltage difference between the scan pulse VSCAN and the data pulse DATA is added to the wall voltages generated in the initialization period, the address discharge is generated within the cell to which the data pulse DATA is applied. During the address period, the sustain electrode Z is supplied with a high-temperature compensation voltage LHTC that has its voltage level increase linearly in proportion to the scanning order. The scan pulse VSCAN and the high-temperature compensation voltage LHTC increase the voltage of the sustain electrode Z at the line where its scanning order is late, thereby increasing the amount of the positive wall charges accumulated in the scan electrode Y and of the negative wall charges accumulated in the sustain electrode Z. The scan pulse VSCAN and the high-temperature compensation voltage LHTC cause the wall voltages to be formed within the cell even at the line where its scanning order is late, wherein the wall voltages are capable of generating the discharge when the sustain voltage is applied. In each of the scan pulse VSCAN and the high-temperature compensation voltage LHTC, because both the scan pulse VSCAN and the high-temperature compensation voltage LHTC have their voltage level increase in proportion to the scanning order, the difference between the minimum voltage and the maximum voltage is smaller than that in the scan pulse VSCAN and the high-temperature compensation voltage LHTC shown in FIGS. 7 and 11.


In the sustain period, sustain pulses SUS are alternately applied to the scan electrodes Y and the sustain electrodes Z. In the cells selected by the address discharge, there occurs a sustain discharge between the scan electrode Y and the sustain electrode Z whenever each sustain pulse SUS is applied as the wall voltage within the cell is added to the sustain pulse SUS. During the address period, because of the scan pulse VSCAN and the high-temperature compensation voltage LHTC applied to the scan electrode Y and the sustain electrode Z respectively, the wall voltages are increased sufficiently at the line where its scanning order is late, thus the sustain discharge is generated stably even at the line where the scanning order is late. After the completion of the sustain discharge, a small ramp waveform ERASE applied to the sustain electrode Z eliminates the wall charges generated upon the sustain discharge.



FIG. 13 illustrates a driving waveform of a PDP according to the seventh embodiment of the present invention.


Referring to FIG. 13, in the setup period SU of the initialization period, a rising ramp waveform Ramp-up that rises up to a peak voltage higher than a sustain voltage is simultaneously applied to all scan electrodes Y. Subsequently, a falling ramp waveform Ramp-down that falls down to a negative voltage level lower than a ground voltage GND is simultaneously applied to the scan electrodes Y for the set-down period.


During the set-down period SD, the sustain electrode Z is supplied with a positive DC voltage Zdc so that an erasure discharge can be generated between the sustain electrode Z and the scan electrode Y.


In the address period, scan pulses VSCAN are sequentially applied to the scan electrodes Y, wherein the scan pulses VSCAN has a higher voltage level in a negative direction as their scanning order gets later. Positive data pulses DATA synchronized with the scan pulses VSCAN are applied to the address electrodes X. When the voltage difference between the scan pulse VSCAN and the data pulse DATA is added to the wall voltages generated in the initialization period, the address discharge is generated within the cell to which the data pulse DATA is applied. During the address period, the sustain electrode Z is supplied with a high-temperature compensation voltage LHTC that rises from a voltage level lower than the positive DC voltage Zdc applied for the set-down period SD in consideration of the voltage level of the scan electrode Y, which has been dropped to a designated negative potential for the set-down period. The scan pulse VSCAN and the high-temperature compensation voltage LHTC increase the voltage of the sustain electrode Z at the line where its scanning order is late, thereby increasing the amount of the positive wall charges accumulated in the scan electrode Y and of the negative wall charges accumulated in the sustain electrode Z. The scan pulse VSCAN and the high-temperature compensation voltage LHTC cause the wall voltages to be formed within the cell even at the line where its scanning order is late, wherein the wall voltages are capable of generating the discharge when the sustain voltage is applied. In each of the scan pulse VSCAN and the high-temperature compensation voltage LHTC, because both the scan pulse VSCAN and the high-temperature compensation voltage LHTC have their voltage level increase in proportion to the scanning order, the difference between the minimum voltage and the maximum voltage is smaller than that in the scan pulse VSCAN and the high-temperature compensation voltage LHTC shown in FIGS. 8 and 11.


In the sustain period, sustain pulses SUS are alternately applied to the scan electrodes Y and the sustain electrodes Z. In the cells selected by the address discharge, there occurs a sustain discharge between the scan electrode Y and the sustain electrode Z whenever each sustain pulse SUS is applied as the wall voltage within the cell is added to the sustain pulse SUS. During the address period, because of the scan pulse VSCAN and the high-temperature compensation voltage LHTC applied to the scan electrode Y and the sustain electrode Z respectively, the wall voltages are increased sufficiently at the line where its scanning order is late, thus the sustain discharge is generated stably even at the line where the scanning order is late. After the completion of the sustain discharge, a small ramp waveform ERASE applied to the sustain electrode Z eliminates the wall charges generated upon the sustain discharge.



FIG. 14 illustrates a driving waveform of a PDP according to the eighth embodiment of the present invention.


Referring to FIG. 14, in the setup period SC of the initialization period, a rising ramp waveform Ramp-up that rises up to a peak voltage higher than a sustain voltage is simultaneously applied to all scan electrodes Y. Subsequently, a falling ramp waveform Ramp-down that falls down to a ground voltage GND is simultaneously applied to the scan electrodes Y for the set-down period.


In the address period, scan pulses VSCAN are sequentially applied to the scan electrodes Y, wherein the scan pulses VSCAN has a higher voltage level in a negative direction as their scanning order gets later. Positive data pulses DATA synchronized with the scan pulses VSCAN are applied to the address electrodes X. When the voltage difference between the scan pulse VSCAN and the data pulse DATA is added to the wall voltages generated in the initialization period, the address discharge is generated within the cell to which the data pulse DATA is applied. After a positive DC voltage being applied during the set-down period SD and the first half of the address period, a second positive DC voltage 2Zdc higher than the positive DC voltage Zdc is applied during the second half of the address period. The scan pulse VSCAN and the second positive DC voltage 2Zdc increase the voltage of the sustain electrode Z at the line where its scanning order is relatively late, thereby increasing the amount of the positive wall charges accumulated in the scan electrode Y and of the negative wall charges accumulated in the sustain electrode Z. The scan pulse VSCAN and the second positive DC voltage 2Zdc cause the wall voltages to be formed within the cell even at the line that is scanned in the second half of the address period, wherein the wall voltages are capable of generating the discharge when the sustain voltage is applied. The difference between the minimum voltage and the maximum voltage in the scan pulse VSCAN and the difference between the positive DC voltage Zdc and the second positive DC voltage 2Zdc are smaller than that in the scan pulse VSCAN and the high-temperature compensation voltage LHTC shown in FIGS. 9 and 11 because both the scan pulse VSCAN and the second positive DC voltage 2Zdc have their voltage level increase in proportion to the scanning order.


In the sustain period, sustain pulses SUS are alternately applied to the scan electrodes Y and the sustain electrodes Z. In the cells selected by the address discharge, there occurs a sustain discharge between the scan electrode Y and the sustain electrode Z whenever each sustain pulse SUS is applied as the wall voltage within the cell is added to the sustain pulse SUS. During the address period, because of the scan pulse VSCAN and the second positive DC voltage 2Zdc applied to the scan electrode Y and the sustain electrode Z respectively, the wall voltages are increased sufficiently at the line where its scanning order is late, thus the sustain discharge is generated stably even at the line where the scanning order is late. After the completion of the sustain discharge, a small ramp waveform ERASE applied to the sustain electrode Z eliminates the wall charges generated upon the sustain discharge.



FIG. 15 illustrates a driving waveform of a PDP according to the ninth embodiment of the present invention.


Referring to FIG. 15, in the setup period SU of the initialization period, a rising ramp waveform Ramp-up that rises up to a peak voltage higher than a sustain voltage is simultaneously applied to all scan electrodes Y. Subsequently, a falling ramp waveform Ramp-down that falls down to a negative voltage level lower than a ground voltage GND is simultaneously applied to the scan electrodes Y for the set-down period.


In the address period, scan pulses VSCAN are sequentially applied to the scan electrodes Y, wherein the scan pulses VSCAN has a higher voltage level in a negative direction as their scanning order gets later. Positive data pulses DATA synchronized with the scan pulses VSCAN are applied to the address electrodes X. When the voltage difference between the scan pulse VSCAN and the data pulse DATA is added to the wall voltages generated in the initialization period, the address discharge is generated within the cell to which the data pulse DATA is applied.


The sustain electrode Z is supplied with the positive DC voltage Zdc for the set-down period SD. And in the first half of the address period, the sustain electrode Z is supplied with a third positive DC voltage 3Zdc, which has a lower voltage level than the positive DC voltage Zdc, and then in the second half of the address period, supplied with a fourth positive DC voltage 4dc, which has a higher voltage level than the third positive DC voltage 3Zdc.


During the address period, the scan pulse VSCAN and the fourth positive DC voltage 4Zdc increase the voltage of the sustain electrode Z at the line where its scanning order is relatively late, thereby increasing the amount of the positive wall charges accumulated in the scan electrode Y and of the negative wall charges accumulated in the sustain electrode Z. The scan pulse VSCAN and the second positive DC voltage 2Zdc cause the wall voltages to be formed within the cell even at the line that is scanned in the second half of the address period, wherein the wall voltages are capable of generating the discharge when the sustain voltage is applied. The difference between the minimum voltage and the maximum voltage in the scan pulse VSCAN and the third and fourth positive DC voltages 3Zdc, 4Zdc are smaller than that in the scan pulse VSCAN and the third and Fourth positive DC voltages 3Zdc, 4Zdc shown in FIGS. 10 and 11.


In the sustain period, sustain pulses SUS are alternately applied to the scan electrodes Y and the sustain electrodes Z. In the cells selected by the address discharge, there occurs a sustain discharge between the scan electrode Y and the sustain electrode Z whenever each sustain pulse SUS is applied as the wall voltage within the cell is added to the sustain pulse SUS. During the address period, because of the scan pulse VSCAN and the fourth positive DC voltage 4Zdc applied to the scan electrode Y and the sustain electrode Z respectively, the wall voltages are increased sufficiently at the line where its scanning order is late, thus the sustain discharge is generated stably even at the line where the scanning order is late After the completion of the sustain discharge, a small ramp waveform ERASE applied to the sustain electrode Z eliminates the wall charges generated upon the sustain discharge.



FIG. 16 illustrates a driving waveform of a PDP according to the tenth embodiment of the present invention.


Referring to FIG. 16, in the setup period SU of the initialization period, a rising ramp waveform Ramp-up that rises up to a peak voltage higher than a sustain voltage is simultaneously applied to all scan electrodes Y. Subsequently, a falling ramp waveform Ramp-down that falls down to a ground voltage GND is simultaneously applied to the scan electrodes Y for the set-down period.


In the first half of the address period, a first scan pulse SCAN1 of designated voltage level is sequentially applied to the scan electrodes Y, which come relatively earlier in scanning order. In the second half of the address period, a second scan pulse SCAN2 is sequentially applied to the scan electrodes Y, which come relatively later in scanning order, wherein the second scan pulse SCAN2 has a higher voltage level in a negative direction as compared with the first scan pulse SCAN1. For instance, assuming that the number of scan electrodes Y is ‘n’ as in FIG. 6, the first scan pulse SCAN1 is applied to the first scan electrode Y1 to the (n/2)th scan electrode Yn/2 and the second scan pulse SCAN2 is applied to the Y(n/2+1)th scan electrode Yn/2+1 to the nth scan electrode Yn. Positive data pulses DATA synchronized with the scan pulses SCAN1, SCAN2 are applied to the address electrodes X. When the voltage difference between the scan pulses SCAN1, SCAN2 and the data pulse DATA is added to the wall voltages generated in the initialization period, the address discharge is generated within the cell to which the data pulse DATA is applied. The second scan pulse SCAN2 increases the voltage of the sustain electrode Z at the line where its scanning order is late, thereby increasing the amount of the positive wall charges accumulated in the scan electrode Y and of the negative wall charges accumulated in the sustain electrode Z. The second scan pulse SCAN2 causes the wall voltages to be formed within the cell even at the line where its scanning order is late, wherein the wall voltages are capable of generating the discharge when the sustain voltage is applied.


The sustain electrode Z is supplied with the positive DC voltage Zdc during the set-down period and the address period. The DC voltage Zdc sets the voltage difference between the sustain electrode Z and the scan electrode Y or the sustain electrode Z and the address electrode X so as to cause a set-down discharge to occur between the sustain electrode Z and the scan electrode Y for the set-down period, and at the same time so as not to cause a discharge to be generated on a large scale between the scan electrode Y and the sustain electrode Z For the address period.


In the sustain period, sustain pulses SUS are alternately applied to the scan electrodes Y and the sustain electrodes Z. In the cells selected by the address discharge, there occurs a sustain discharge between the scan electrode Y and the sustain electrode Z whenever each sustain pulse SUS is applied as the wall voltage within the cell is added to the sustain pulse SUS. During the address period, because of the second scan pulse SCAN2 applied to the scan electrode Y, the wall voltages are increased sufficiently at the line where its scanning order is late, thus the sustain discharge is generated stably even at the line where the scanning order is late. After the completion of the sustain discharge, a small ramp waveform ERASE applied to the sustain electrode Z eliminates the wall charges generated upon the sustain discharge.


In FIG. 16, the voltage level of the scan pulses SCAN1, SCAN2 applied to the scan electrodes Y is set to be two, but it is possible to further subdivide the voltage level into three or more and to apply a scan pulse of higher voltage level as the scan electrode Y gets late in scanning order.



FIG. 17 illustrates a driving waveform of a PDP according to the eleventh embodiment of the present invention.


Referring to FIG. 17, in the setup period SU of the initialization period, a rising ramp waveform Ramp-up that rises up to a peak voltage higher than a sustain voltage is simultaneously applied to all scan electrodes Y. Subsequently, a falling ramp waveform Ramp-down that falls down to a ground voltage GND is simultaneously applied to the scan electrodes Y for the set-down period.


In the first half of the address period, a first scan pulse SCAN1 of designated voltage level is sequentially applied to the scan electrodes Y, which come relatively earlier in scanning order. In the second half of the address period, a second scan pulse SCAN2 is sequentially applied to the scan electrodes Y, which come relatively later in scanning order, wherein the second scan pulse SCAN2 has a higher voltage level in a negative direction as compared with the first scan pulse SCAN1. Positive data pulses DATA synchronized with the scan pulses SCAN1, SCAN2 are applied to the address electrodes X. When the voltage difference between the scan pulses SCAN1, SCAN2 and the data pulse DATA is added to the wall voltages generated in the initialization period, the address discharge is generated within the cell to which the data pulse DATA is applied. During the address period, the sustain electrode Z is supplied with a high-temperature compensation voltage LHTC, which has its voltage level increase linearly in proportion to the scanning order.


The second scan pulse SCAN2 and the high-temperature compensation voltage LHTC increase the voltage of the scan electrode Y and the sustain electrode Z at the line where its scanning order is late, thereby increasing the amount of the positive wall charges accumulated in the scan electrode Y and of the negative wall charges accumulated in the sustain electrode Z. The second scan pulse SCAN2 and the high-temperature compensation voltage LHTC cause the wall voltages to be formed within the cell even at the line where its scanning order is late, wherein the wall voltages are capable of generating the discharge when the sustain voltage is applied. The difference between the minimum voltage and the maximum voltage in the high-temperature compensation voltage LHTC and the voltage of the second scan pulse SCAN2 become smaller as compared with the high-temperature compensation voltage LHTC and the second scan pulse SCAN2 shown in FIGS. 7 and 16.


In the sustain period, sustain pulses SUS are alternately applied to the scan electrodes Y and the sustain electrodes Z. In the cells selected by the address discharge, there occurs a sustain discharge between the scan electrode Y and the sustain electrode Z whenever each sustain pulse SUS is applied as the wall voltage within the cell is added to the sustain pulse SUS. During the address period, because of the second scan pulse SCAN2 and the high-temperature compensation voltage LHTC applied to the scan electrode Y and the sustain electrode Z respectively, the wall voltages are increased sufficiently at the line where its scanning order is late, thus the sustain discharge is generated stably even at the line where the scanning order is late. After the completion of the sustain discharge, a small ramp waveform ERASE applied to the sustain electrode Z eliminates the wall charges generated upon the sustain discharge.



FIG. 18 illustrates a driving waveform of a PDP according to the twelfth embodiment of the present invention.


Referring to FIG. 18, in the setup period SU of the initialization period, a rising ramp waveform Ramp-up that rises up to a peak voltage higher than a sustain voltage is simultaneously applied to all scan electrodes Y. Subsequently, a falling ramp waveform Ramp-down that falls down to a negative voltage level lower than a ground voltage GND is simultaneously applied to the scan electrodes Y for the set-down period.


During the set-down period SD, the sustain electrode Z is supplied with a positive DC voltage Zdc so that an erasure discharge can be generated between the sustain electrode Z and the scan electrode Y.


In the first half of the address period, a first scan pulse SCAN1 of designated voltage level is sequentially applied to the scan electrodes Y, which come relatively earlier in scanning order. In the second half of the address period, a second scan pulse SCAN2 is sequentially applied to the scan electrodes Y, which come relatively later in scanning order, wherein the second scan pulse SCAN2 has a higher voltage level in a negative direction as compared with the first scan pulse SCAN1. Positive data pulses DATA synchronized with the scan pulses SCAN1, SCAN2 are applied to the address electrodes X. When the voltage difference between the scan pulses SCAN1, SCAN2 and the data pulse DATA is added to the wall voltages generated in the initialization period, the address discharge is generated within the cell to which the data pulse DATA is applied. During the address period, the sustain electrode Z is supplied with a high-temperature compensation voltage LHTC that rises from a voltage level lower than the positive DC voltage Zdc, wherein the positive DC voltage Zdc has been applied for the set-down period SD in consideration of the voltage level of the scan electrode Y that fell to the designated negative potential for the set-down period SD. The second scan pulse SCAN2 and the high-temperature compensation voltage LHTC increase the voltage of the scan electrode Y and the sustain electrode Z at the line where its scanning order is late, thereby increasing the amount of the positive wall charges accumulated in the scan electrode Y and of the negative wall charges accumulated in the sustain electrode Z. The second scan pulse SCAN2 and the high-temperature compensation voltage LHTC cause the wall voltages to be formed within the cell even at the line where its scanning order is late, wherein the wall voltages are capable of generating the discharge when the sustain voltage is applied. The difference between the minimum voltage and the maximum voltage in the high-temperature compensation voltage LHTC and the voltage of the second scan pulse SCAN2 become smaller as compared with the high-temperature compensation voltage LHTC and the second scan pulse SCAN2 shown in FIGS. 8 and 16.


In the sustain period, sustain pulses SUS are alternately applied to the scan electrodes Y and the sustain electrodes Z. In the cells selected by the address discharge, there occurs a sustain discharge between the scan electrode Y and the sustain electrode Z whenever each sustain pulse SUS is applied as the wall voltage within the cell is added to the sustain pulse SUS. During the address period, because of the second scan pulse SCAN2 and the high-temperature compensation voltage LHTC applied to the scan electrode Y and the sustain electrode Z respectively, the wall voltages are increased sufficiently at the line where its scanning order is late, thus the sustain discharge is generated stably even at the line where the scanning order is late. After the completion of the sustain discharge, a small ramp waveform ERASE applied to the sustain electrode Z eliminates the wall charges generated upon the sustain discharge.



FIG. 19 illustrates a driving waveform of a PDP according to the thirteenth embodiment of the present invention.


Referring to FIG. 19, in the setup period SU of the initialization period, a rising ramp waveform Ramp-up that rises up to a peak voltage higher than a sustain voltage is simultaneously applied to all scan electrodes Y. Subsequently, a falling ramp waveform Ramp-down that falls down to a ground voltage GND is simultaneously applied to the scan electrodes Y for the set-down period.


In the first half of the address period, a first scan pulse SCAN1 of designated voltage level is sequentially applied to the scan electrodes Y, which come relatively earlier in scanning order. In the second half of the address period, a second scan pulse SCAN2 is sequentially applied to the scan electrodes Y, which come relatively later in scanning order, wherein the second scan pulse SCAN2 has a higher voltage level in a negative direction as compared with the first scan pulse SCAN1. Positive data pulses DATA synchronized with the scan pulses SCAN1, SCAN2 are applied to the address electrodes X. When the voltage difference between the scan pulses SCAN1, SCAN2 and the data pulse DATA is added to the wall voltages generated in the initialization period, the address discharge is generated within the cell to which the data pulse DATA is applied. During the set-down period SD and the first half of the address period, the sustain electrode Z is supplied with a positive DC voltage Zdc, and then during the second half of the address period, there is applied a second positive DC voltage 2Zdc higher than the positive DC voltage Zdc. The second scan pulse SCAN2 and the second DC voltage 2Zdc increase the voltage of the scan electrode Y and the sustain electrode Z at the lines where their scanning order is relatively late, thereby increasing the amount of the positive wall charges accumulated in the scan electrode Y and of the negative wall charges accumulated in the sustain electrode Z. The second scan pulse SCAN2 and the second positive DC voltage 2Zdc cause the wall voltages to be formed within the cell even at the lines where their scanning order is late, wherein the wall voltages are capable of generating the discharge when the sustain voltage is applied. The second positive DC voltage 2Zdc and the voltage of the second scan pulse SCAN2 become smaller as compared with the second positive DC voltage 2Zdc and the second scan pulse SCAN2 shown in FIGS. 9 and 16.


In the sustain period, sustain pulses SUS are alternately applied to the scan electrodes Y and the sustain electrodes Z. In the cells selected by the address discharge, there occurs a sustain discharge between the scan electrode Y and the sustain electrode Z whenever each sustain pulse SUS is applied as the wall voltage within the cell is added to the sustain pulse SUS. During the address period, because of the second scan pulse SCAN2 and the second positive DC voltage 2Zdc applied to the scan electrode Y and the sustain electrode Z respectively, the wall voltages are increased sufficiently at the line where its scanning order is late, thus the sustain discharge is generated stably even at the line where the scanning order is late. After the completion of the sustain discharge, a small ramp waveform ERASE applied to the sustain electrode Z eliminates the wall charges generated upon the sustain discharge.



FIG. 20 illustrates a driving waveform of a PDP according to the fourteenth embodiment of the present invention.


Referring to FIG. 20, in the setup period SU of the initialization period, a rising ramp waveform Ramp-up that rises up to a peak voltage higher than a sustain voltage is simultaneously applied to all scan electrodes Y. Subsequently, a falling ramp waveform Ramp-down that falls down to a negative voltage level lower than a ground voltage GND is simultaneously applied to the scan electrodes Y for the set-down period.


In the first half of the address period, a first scan pulse SCAN1 of designated voltage level is sequentially applied to the scan electrodes Y, which come relatively earlier in scanning order. In the second half of the address period, a second scan pulse SCAN2 is sequentially applied to the scan electrodes Y, which come relatively later in scanning order, wherein the second scan pulse SCAN2 has a higher voltage level in a negative direction as compared with the first scan pulse SCAN1. Positive data pulses DATA synchronized with the scan pulses SCAN1, SCAN2 are applied to the address electrodes X. When the voltage difference between the scan pulses SCAN1, SCAN2 and the data pulse DATA is added to the wall voltages generated in the initialization period, the address discharge is generated within the cell to which the data pulse DATA is applied.


During the set-down period SD, the sustain electrode Z is supplied with a positive DC voltage Zdc. And in the first half of the address period, the sustain electrode Z is supplied with a third positive DC voltage 3Zdc that has a lower voltage level than the positive DC voltage Zdc, and then supplied with a fourth positive DC voltage 4Zdc that has a higher voltage level than the third positive DC voltage 3Zdc in the second half of the address period.


During the address period, the second scan pulse SCAN2 and the fourth DC voltage 4Zdc increase the voltage of the scan electrode Y and the sustain electrode Z at the lines where their scanning order is relatively late, thereby increasing the amount of the positive wall charges accumulated in the scan electrode Y and of the negative wall charges accumulated in the sustain electrode Z. The second scan pulse SCAN2 and the second positive DC voltage 2Zdc cause the wall voltages to be formed within the cell even at the lines where their scanning order is late, wherein the wall voltages are capable of generating the discharge when the sustain voltage is applied. The second scan pulse SCAN2 and the third and fourth positive DC voltages 3Zdc, 4Zdc become smaller as compared with the second scan pulse SCAN2 and the third and fourth positive DC voltages 3Zdc, 4Zdc shown in FIGS. 10 and 16.


In the sustain period, sustain pulses SUS are alternately applied to the scan electrodes Y and the sustain electrodes Z. In the cells selected by the address discharge, there occurs a sustain discharge between the scan electrode Y and the sustain electrode Z whenever each sustain pulse SUS is applied as the wall voltage within the cell is added to the sustain pulse SUS. During the address period, because of the second scan pulse SCAN2 and the third and fourth positive DC voltages 3Zdc, 4Zdc applied to the scan electrode Y and the sustain electrode Z respectively, the wall voltages are increased sufficiently at the line where its scanning order is late, thus the sustain discharge is generated stably even at the line where the scanning order is late. After the completion of the sustain discharge, a small ramp waveform ERASE applied to the sustain electrode Z eliminates the wall charges generated upon the sustain discharge.


On the other hand, the foregoing embodiments increase the voltage of the scan electrode Y and the common sustain electrode Z as their scanning order gets later, so as to compensate the mis-discharge caused under the high temperature environment, however it is possible to obtain the same effect by increasing a data voltage or the voltage of the scan electrode and/or the voltage of the sustain electrode together with the data voltage as their scanning order gets later.


As described above, the driving method and apparatus of the PDP according to the present invention, during the address period, can drive the PDP stably under the high temperature environment because the mis-discharge, which occurs under the high temperature environment at the lines where their scanning order is late, can be prevented by increasing the voltage of the scan electrode or the voltage of the sustain electrode as their scanning order gets later.


Although the present invention has been explained by the embodiments shown in the drawings described above, it should be understood to the ordinary skilled person in the art that the invention is not limited to the embodiments, but rather that various changes or modifications thereof are possible without departing from the spirit of the invention. Accordingly, the scope of the invention shall be determined only by the appended claims and their equivalents.

Claims
  • 1. A method for driving a plasma display panel, which includes a plurality of scan electrodes, a plurality of sustain electrodes and a plurality of address electrodes, the method comprising: increasing a voltage magnitude applied to each one of the scan electrodes based on a scanning order of the scan electrodes, the voltage magnitude increasing in a negative direction;changing a common voltage applied to all the sustain electrodes during an address period based on the scanning order of the scan electrodes and such that the common voltage applied to all the sustain electrodes remains positive over a portion of the address period while the scan electrodes are being scanned in the scanning order, wherein changing the common voltage includes increasing the common voltage applied to all the sustain electrodes linearly as the scanning order gets later; andselecting at least one cell by applying data to at least one of the address electrodes.
  • 2. The method according to claim 1, wherein the common voltage applied to all the sustain electrodes increases in a positive direction as the scanning order gets later.
  • 3. The method according to claim 1, wherein the method is applied under 50° C. or more.
  • 4. The method according to claim 1, further comprising: applying a gradually increasing voltage waveform and a gradually decreasing voltage waveform to the scan electrodes.
  • 5. The method according to claim 4, wherein the gradually decreasing voltage waveform decreases down to a ground voltage level or a designated negative voltage.
  • 6. A method for driving a plasma display panel, which includes a plurality of scan electrodes, a plurality of sustain electrodes and a plurality of address electrodes, the method comprising: applying a gradually increasing voltage waveform and a gradually decreasing waveform to the scan electrodes;increasing a voltage magnitude applied to each one of the scan electrodes based on a scanning order of the scan electrodes, the voltage magnitude increasing in a negative direction,changing a common voltage applied to all the sustain electrodes during an address period based on the scanning order of the scan electrodes and such that the common voltage applied to all the sustain electrodes remains positive over a portion of the address period while the scan electrodes are being scanned in the scanning order, andselecting at least one cell by applying data to at least one of the address electrodes, wherein changing the common voltage includes: applying a designated positive voltage to all the sustain electrodes while the gradually decreasing voltage waveform is applied to the scan electrodes; andapplying to all the sustain electrodes a voltage that rises linearly from a lower voltage level than the positive voltage.
  • 7. The method according to claim 1, wherein changing the common voltage involves applying a second positive voltage higher than a first positive voltage to all the sustain electrodes later in the scanning order after applying the first positive voltage to all the sustain electrodes earlier in the scanning order.
  • 8. A method for driving a plasma display panel, which includes a plurality of scan electrodes, a plurality of sustain electrodes and a plurality of address electrodes, the method comprising: applying a gradually increasing voltage waveform and a gradually decreasing waveform to the scan electrodes,increasing a voltage magnitude applied to each one of the scan electrodes based on a scanning order of the scan electrodes, the voltage magnitude increasing in a negative direction,changing a common voltage applied to all the sustain electrodes during an address period based on the scanning order of the scan electrodes and such that the common voltage applied to all the sustain electrodes remains positive over a portion of the address period while the scan electrodes are being scanned in the scanning order, andselecting at least one cell by applying data to at least one of the address electrodes, wherein changing the common voltage includes: applying a designated positive voltage to all the sustain electrodes while the gradually decreasing voltage waveform is applied to the scan electrodes; andapplying a third positive voltage lower than the designated positive voltage to all the sustain electrodes early in the scanning order, and then applying a fourth positive voltage higher than the third positive voltage to all the sustain electrodes later in the scanning order.
  • 9. An apparatus for driving a plasma display panel, which includes a plurality of scan electrodes, a plurality of sustain electrodes and a plurality of address electrodes, the apparatus comprising: a scan driver for applying a scan voltage to the scan electrodes in association with a scanning order of the scan electrodes;a sustain driver for applying a common voltage to at least three of the sustain electrodes, the common voltage applied to the at least three of the sustain electrodes being increased during an address period in association with the scanning order and such that a magnitude of the applied voltage is positive without decreasing over a time period associated with the scan voltage being applied to first, second and third ones of the scan electrodes; anda data driver for applying data to the address electrode to select a cell.
  • 10. The apparatus according to claim 9, wherein the sustain driver increases the common voltage applied to the at least three of the sustain electrodes as the scanning order of the scan electrodes gets later.
  • 11. The apparatus according to claim 9, wherein the method is applied under 50° or more.
  • 12. The apparatus according to claim 9, wherein the sustain driver increases the common voltage applied to the at least three of the sustain electrodes linearly without decreasing as the scanning order of the scan electrodes gets later.
  • 13. The apparatus according to claim 9, wherein the scan driver applies a gradually increasing voltage waveform and a gradually decreasing voltage waveform to each of the scan electrodes.
  • 14. The apparatus according to claim 13, wherein the scan driver applies the gradually decreasing voltage waveform so as to decrease to a ground voltage level or a designated negative voltage.
  • 15. The apparatus according to claim 14, wherein the sustain driver applies a designated positive voltage to the at least three of the sustain electrodes while the gradually decreasing voltage waveform is applied to at least one of the scan electrodes, and applies the common voltage to the at least three of the sustain electrodes that rises linearly without decreasing from a lower voltage level than the positive voltage.
  • 16. The apparatus according to claim 9, wherein the sustain driver applies a second positive voltage higher than a first positive voltage to the at least three of the sustain electrodes later in the scanning order of the scan electrodes after applying the first positive voltage to at least one of the sustain electrodes earlier in the scanning order of the scan electrodes.
  • 17. The apparatus according to claim 13, wherein the sustain driver applies a designated positive voltage to the at least three of the sustain electrodes while the gradually decreasing voltage waveform is applied to at least one of the scan electrodes, and applies a fourth positive voltage higher than the third positive voltage to the at least three of the sustain electrodes later in the scanning order of the scan electrodes after applying a third positive voltage lower than the designated positive voltage to the sustain electrodes earlier in the scanning order of the scan electrodes.
  • 18. An apparatus for driving a plasma display panel, which includes a plurality of scan electrodes, a plurality of sustain electrodes and a plurality of address electrodes, the apparatus comprising: a scan driver for applying a scan voltage to the scan electrodes, a magnitude of the applied scan voltage increasing in a negative direction in association with a scanning order of the scan electrodes;a sustain driver for simultaneously applying a voltage to at least three of the sustain electrodes, a magnitude of the voltage simultaneously applied to the at least three of the sustain electrodes increasing in a positive direction during an address period in association with the scanning order of the scan electrodes, the magnitude of the voltage applied to the at least three sustain electrodes being positive without decreasing during a time period over which a first one of the scan electrodes receives the scan voltage until two additional ones of the scan electrodes receive the scan voltage; anda data driver for applying data to at least one of the address electrodes to select a cell.
  • 19. The apparatus according to claim 18, wherein the scan driver increases the magnitude of the applied scan voltage applied to the respective scan electrodes as the scanning order of the scan electrodes gets later.
  • 20. The apparatus according to claim 18, wherein the sustain driver increases the magnitude of the voltage applied to the at least three sustain electrodes linearly without decreasing as the scanning order of the scan electrodes gets later.
  • 21. The apparatus according to claim 18, wherein the scan driver initialize cells of a full screen by applying a gradually increasing voltage waveform and a gradually decreasing voltage waveform to each of the scan electrodes.
  • 22. A method of driving a plasma display comprising: applying a first scan waveform to a first scan electrode at a first address time;applying a second scan waveform to a second scan electrode at a second address time after the first address time, the first and second address times being during an address period; andapplying a common voltage value to at least three sustain electrodes at the first address time, the second address time and a third address time immediately after the second address time, the applied common voltage value to the at least three sustain electrodes at the second address time being greater than the applied common voltage value to the at least three sustain electrodes at the first address time and the applied common voltage value to the at least three sustain electrodes at the third address time being greater than the applied common voltage value to the at least three sustain electrodes at the first address time.
  • 23. The method of claim 22, wherein the second scan waveform has a different voltage value than said first scan waveform.
  • 24. The method of claim 22, wherein a voltage level of the first scan waveform is lower than a voltage level of the second scan waveform.
  • 25. The method of claim 24, wherein the first scan waveform is applied earlier to the first scan electrode than the second scan waveform.
  • 26. The method of claim 22, wherein the common voltage applied to the at least three of the sustain electrodes increases linearly over time based on a scanning order of scan electrodes.
  • 27. An apparatus for driving a plasma display panel, which includes a plurality of scan electrodes, a plurality of sustain electrodes and a plurality of address electrodes, the apparatus comprising: a scan driver for applying a scan voltage to the scan electrodes, the applied scan voltage having a first voltage level for first ones of the scan electrodes and having a second voltage level for second ones of the scan electrodes, the second voltage being different than the first voltage;a sustain driver for applying a common voltage to all the sustain electrodes during an address period, the voltage applied to all the sustain electrodes remaining positive and increasing without decreasing in association with the scanning order of the scan electrodes; anda data driver for applying data to at least one of the address electrodes.
  • 28. The apparatus according to claim 27, wherein the sustain driver increases the common voltage applied to all the sustain electrodes linearly as the scanning order of the scan electrodes gets later.
  • 29. The apparatus according to claim 27, wherein the scan driver applies a gradually increasing voltage waveform and a gradually decreasing voltage waveform to each of the scan electrodes.
  • 30. The apparatus according to claim 29, wherein the scan driver applies the gradually decreasing voltage waveform so as to decrease to a ground voltage level or a designated negative voltage.
  • 31. The apparatus according to claim 29, wherein the sustain driver applies a designated positive voltage to all the sustain electrodes while the gradually decreasing voltage waveform is applied to at least one of the scan electrodes, and applies the common voltage to all the sustain electrodes that rises linearly from a lower voltage level than the designated positive voltage.
  • 32. The apparatus according to claim 29, wherein the sustain driver applies a second positive voltage higher than a first positive voltage to all the sustain electrodes later in the scanning order of the scan electrodes after applying the first positive voltage to at least one of the sustain electrodes earlier in the scanning order of the scan electrodes.
  • 33. The apparatus according to claim 29, wherein the sustain driver applies a designated positive voltage to all the sustain electrodes while the gradually decreasing voltage waveform is applied to at least one of the scan electrodes, and applies a fourth positive voltage higher than the third positive voltage to all the sustain electrodes later in the scanning order of the scan electrodes after applying a third positive voltage lower than the designated positive voltage to all the sustain electrodes earlier in the scanning order of the scan electrodes.
  • 34. The apparatus according to claim 27, wherein the second ones of the scan electrodes occur later in a scanning order than the first ones of the scan electrodes.
  • 35. The apparatus according to claim 27, wherein the voltage applied to all sustain electrodes remains positive and increases without decreasing during a time within the address period that first, second and third scan pulses are applied by the scan driver to the scan electrodes.
Priority Claims (1)
Number Date Country Kind
10-2002-0012001 Mar 2002 KR national
US Referenced Citations (5)
Number Name Date Kind
6492776 Rutherford Dec 2002 B2
6680717 Tanaka Jan 2004 B2
6833823 Sakita Dec 2004 B2
6995735 Mizobata Feb 2006 B2
20020021265 Ishii et al. Feb 2002 A1
Foreign Referenced Citations (4)
Number Date Country
11065516 Mar 1999 JP
11-242460 Sep 1999 JP
20000034676 Jun 2000 KR
2000-0053573 Aug 2000 KR
Related Publications (1)
Number Date Country
20030169216 A1 Sep 2003 US