1. Technical Field
This invention in general relates to semiconductor circuits. More specifically, this invention relates to circuits for driving STN liquid crystal displays.
2. Description of the Related Art
In order to display a frame of data, voltages must be applied to all the individual electrodes so that all the pixels are addressed. In conventional sequential driving methods, each row electrode is selected sequentially (also called “scanning electrode”) and the pixel data values corresponding to the selected scanning electrode are applied to the corresponding column electrode. Each frame needs to be displayed repeatedly to maintain a certain RMS value of each pixel so that the frames can be recognized by human eyes without any flickering.
In the cases where the display data needs to be changed very fast such as in displaying moving pictures, the conventional sequential driving methods suffers so-called a “frame response phenomenon.” In order to drive a high-speed or large-panel liquid crystal, driving pulses of high-amplitude and short pulse width are required, which causes uneven brightness of the LCD panel.
Multi-line addressing (MLA) methods have been suggested for driving flat panel devices as alternatives to sequential driving methods. According to the MLA methods, multiple row electrodes are selected simultaneously to enable multiple selection of row electrodes within a frame cycle to increase the effective duty cycle of the row voltage application. Typically, orthogonal signals are applied to a set of row electrodes so that the individual electrodes can maintain the same effective RMS values within a frame.
When orthogonal row signals are simultaneously applied to a set of row electrodes, new column signals must be determined to maintain the correct pixel data. In other words the voltage levels to column electrodes should be recalculated, taking into account of simultaneous driving of multiple row electrodes.
Because the conventional MLA driver uses data and output latches, it requires a large chip area in its implementation, which adversely affect the performance of the driver. Therefore, there is a need for a new driver that requires less number of circuit components and chip area to improve the performance.
It is an object of the present invention to provide an efficient LCD driver optimized in the chip area to improve the performance.
The foregoing and other objects are accomplished by a virtual-line MLA using multiple-output display data RAM. A preferred embodiment comprises a 3-line output display data for storing display data, an XOR block for finding mismatches between each 3-line output set of the stored display and orthogonal function signals, a decoder block for calculating mismatch numbers, a level shifter block for shifting the data level of the mismatch numbers to another level, and a voltage selector block for selecting a voltage level from 2 levels of voltage. Because data latches and output latches are not necessary, the driver of the present invention achieves a significant reduction in the circuit components and chip size without compromising the display quality.
The present invention employs a virtual-line MLA, where a “virtual” row signal is additionally provided after every three “real” row signals. The virtual row signal is not used in accessing stored data. Instead, the virtual row signal is used only for the purpose of simplifying calculation of mismatch numbers and thereby facilitating calculation of column signals. Three real row signals and one virtual row signal constitute a set of 4-line orthogonal signals that combine with display data to produce column signals that would produce the correct display when multiple row electrodes are simultaneously driven.
The following table compares the method of calculating mismatch numbers using the orthogonal function of the present invention with the convention method. By employing 3 real lines and a virtual line, only 2 kinds of mismatch numbers may be used, namely, “1” and “3”, compared to the conventional 4-line MLA using 5 kinds of mismatch numbers of “0”, “1”,“2”, “3”, “4”.
For column 0, the first line outputs at each scan I (0,0), I (3,0), I (6,0), . . . I(3×(block number), 0). The second line outputs at each scan I(1,0), I(4,0), I(5,0), . . . I(3×(block number)+1, 0) The third line outputs at each scan I(2,0), I(5,0), I(6,0), . . . , I(3×(block number)+2, 0). At the first scan, for example, the three lines output I(0,0), I(1,0), and I(2,0) simultaneously, which are combined with orthogonal function signals.
Similarly, for column 1, the first line outputs at each scan: I(0,1), I(3,1), I(6,1), . . . I(3×(block number) 1). The second line outputs at each scan: I(1,1), I(4,1), I(5,1), . . . I(3×(block number)+1, 1) The third line outputs at each scan: I(2, 1), I(5,1), I(6,1), . . . , I(3×(block number)+2, 1). At the first scan, for example, the three lines output I(0,1), I(1,1), and I(2,1) simultaneously, which are combined with orthogonal function signals.
Each individual voltage selector 264 selects +Vx1 for a mismatch number of “1” and −Vx1 for a mismatch number of “3”. Since a voltage level is selected from 2 voltage levels, the construction is simpler than that of the conventional method of selecting one voltage level from 5 voltage levels of −Vx2 , −Vx1 , Vc, +Vx1 , and +Vx2.
As mentioned above, there is no need for display data latches and output data latches that were essential in the implementation of the conventional MLA methods. With the use of the multi-line output type RAM of the present invention, the circuit components of a column driver are reduced, resulting a smaller chip size.
When a scan block, such as scan block 325, is activated, three bits for Red in the first row, such as 322, 323 and 324, are combined to select a gray level Red by making use of a multiplexer, such as 326, which selects one gray level as an output, such as R(0,0) 327 out of 8 predetermined gray levels, Gray0 through Gray 7. Three bits for Red in the second row within the activated scan block 325 are combined by a multiplexer to produce a gray-level output R(1,0). Similarly, three bits for Red in the third row within the activated scan block are combined by a multiplexer to produce a gray-level output R(2,0). Each three gray level colors in the adjacent rows along the same column, such as R(0,0), R(1,0), and R(2,0), are then combined with the orthogonal functions to calculate the mismatch numbers.
While the invention has been described with reference to preferred embodiments, it is not intended to be limited to those embodiments. It will be appreciated by those of ordinary skilled in the art that many modifications can be made to the structure and form of the described embodiments without departing from the spirit and scope of this invention.
This application claims the benefit of co-pending U.S. Provisional Application Ser. No. 60/271452, filed Feb. 27, 2001, entitled “Method and Apparatus for Driving STN LCD.”
Number | Name | Date | Kind |
---|---|---|---|
5420604 | Scheffer et al. | May 1995 | A |
5684502 | Fukui et al. | Nov 1997 | A |
5689280 | Asari et al. | Nov 1997 | A |
5754157 | Kuwata et al. | May 1998 | A |
5764212 | Nishitani et al. | Jun 1998 | A |
5786799 | Matsui et al. | Jul 1998 | A |
5818409 | Furuhashi et al. | Oct 1998 | A |
5852429 | Scheffer et al. | Dec 1998 | A |
5877738 | Ito et al. | Mar 1999 | A |
5900856 | Iino et al. | May 1999 | A |
6252572 | Kurumisawa et al. | Jun 2001 | B1 |
6483497 | Iino et al. | Nov 2002 | B1 |
6611246 | Ito et al. | Aug 2003 | B1 |
Number | Date | Country |
---|---|---|
2000-172236 | Jun 2000 | JP |
2000-258751 | Sep 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20020158832 A1 | Oct 2002 | US |
Number | Date | Country | |
---|---|---|---|
60271452 | Feb 2001 | US |