STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not applicable
REFERENCE TO A “MICROFICHE APPENDIX”
Not applicable
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method and apparatus that is of particular utility in cementing operations associated with oil and gas well exploration and production. More specifically the present invention provides an improvement to cementing operations and related operations employing a plug or ball dropping head and wherein plugs can be employed to pump cement into larger diameter casing.
2. General Background of the Invention
Patents have issued that relate generally to the concept of using a plug, dart or a ball that is dispensed or dropped into the well or “down hole” during oil and gas well drilling and production operations, especially when conducting cementing operations. The following possibly relevant patents are incorporated herein by reference. The patents are listed numerically. The order of such listing does not have any significance.
TABLE
|
|
PAT. NO.
TITLE
ISSUE DATE
|
|
3,828,852
Apparatus for Cementing
Aug. 13, 1974
|
Well Bore Casing
|
4,427,065
Cementing Plug Container
Jan. 24, 1984
|
and Method of Use Thereof
|
4,624,312
Remote Cementing Plug
Nov. 25, 1986
|
Launching System
|
4,671,353
Apparatus for Releasing a
4,671,353
|
Cementing Plug
|
4,722,389
Well Bore Servicing Arrangement
Feb. 2, 1988
|
4,782,894
Cementing Plug Container with
Nov. 8, 1988
|
Remote Control System
|
4,854,383
Manifold Arrangement for use
Aug. 8, 1989
|
with a Top Drive Power Unit
|
4,995,457
Lift-Through Head and Swivel
Feb. 26, 1991
|
5,095,988
Plug Injection Method and Apparatus
Mar. 17, 1992
|
5,236,035
Swivel Cementing Head with
Aug. 17, 1993
|
Manifold Assembly
|
5,293,933
Swivel Cementing Head with
Mar. 15, 1994
|
Manifold Assembly Having
|
Remove Control Valves and
|
Plug Release Plungers
|
5,435,390
Remote Control for a Plug-
Jul. 25, 1995
|
Dropping Head
|
5,758,726
Ball Drop Head With Rotating Rings
Jun. 2, 1998
|
5,833,002
Remote Control Plug-Dropping Head
Nov. 10, 1998
|
5,856,790
Remote Control for a Plug-
Jan. 5, 1999
|
Dropping Head
|
5,960,881
Downhole Surge Pressure Reduction
Oct. 5, 1999
|
System and Method of Use
|
6,142,226
Hydraulic Setting Tool
Nov. 7, 2000
|
6,182,752
Multi-Port Cementing Head
Feb. 6, 2001
|
6,390,200
Drop Ball Sub and System of Use
May 21, 2002
|
6,575,238
Ball and Plug Dropping Head
Jun. 10, 2003
|
6,672,384
Plug-Dropping Container for
Jan. 6, 2004
|
Releasing a Plug Into a Wellbore
|
6,904,970
Cementing Manifold Assembly
Jun. 14, 2005
|
7,066,249
Plug-Dropping Container for
Jan. 6, 2004
|
Releasing a Plug into a Wellbore
|
8,256,515
Method and Apparatus for Dropping
Sep. 4, 2012
|
a Pump Down Plug or Ball
|
|
BRIEF SUMMARY OF THE INVENTION
The present invention provides an improved method and apparatus for use in cementing and like operations, employing a plug or ball dropping head of improved configuration. In one embodiment, an interlocking dart and plug arrangement enables pumping of cement into larger diameter casing.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
For a further understanding of the nature, objects, and advantages of the present invention, reference should be had to the following detailed description, read in conjunction with the following drawings, wherein like reference numerals denote like elements and wherein:
FIGS. 1A, 1B, 1C are partial sectional elevation views of the preferred embodiment of the apparatus of the present invention wherein line A-A of FIG. 1A matches line A-A of FIG. 1B, and line B-B of FIG. 1B matches line B-B of FIG. 1C;
FIG. 2 is a partial, sectional, elevation view of the preferred embodiment of the apparatus of the present invention;
FIG. 3 is a partial, sectional, elevation view of the preferred embodiment of the apparatus of the present invention;
FIG. 4 is a sectional view taken long lines 4-4 of FIG. 2;
FIG. 5 is a sectional view taken along lines 5-5 of FIG. 3;
FIG. 6 is a partial perspective view of the preferred embodiment of the apparatus of the present invention;
FIG. 7 is a sectional elevation view of the preferred embodiment of the apparatus of the present invention and illustrating a method step of the present invention;
FIG. 8 is a sectional elevation view of the preferred embodiment of the apparatus of the present invention and illustrating a method step of the present invention;
FIG. 9 is an elevation view of the preferred embodiment of the apparatus of the present invention and illustrating the method of the present invention;
FIG. 10 is a sectional elevation view illustrating part of the method of the present invention and wherein line A-A of FIG. 10 matches line A-A of FIG. 9;
FIG. 11 is a sectional elevation view illustrating part of the method of the present invention and wherein line A-A of FIG. 11 matches line A-A of FIG. 9;
FIG. 12 is a sectional elevation view illustrating part of the method of the present invention;
FIG. 13 is a sectional elevation view illustrating part of the method of the present invention;
FIG. 14 is a sectional elevation view illustrating part of the method of the present invention and wherein line A-A of FIG. 14 matches line A-A of FIG. 9;
FIG. 15 is a sectional elevation view illustrating part of the method of the present invention and wherein line A-A of FIG. 15 matches line A-A of FIG. 9;
FIG. 16 is a sectional elevation view illustrating part of the method of the present invention;
FIG. 17 is a partial perspective view of the preferred embodiment of the apparatus of the present invention;
FIG. 18 is a partial view of the preferred embodiment of the apparatus of the present invention and showing a ball valving member;
FIG. 19 is a partial side view of the preferred embodiment of the apparatus of the present invention and showing an alternate construction for the ball valving member;
FIG. 20 is a partial view of the preferred embodiment of the apparatus of the present invention and showing a ball valving member;
FIG. 21 is a partial side view of the preferred embodiment of the apparatus of the present invention and showing an alternate construction for the ball valving member;
FIG. 22 is a sectional view of the preferred embodiment of the apparatus of the present invention showing an alternate sleeve arrangement;
FIG. 23 is a sectional view of the preferred embodiment of the apparatus of the present invention showing an alternate sleeve arrangement;
FIG. 24 is a fragmentary view of the preferred embodiment of the apparatus of the present invention;
FIG. 25 is a fragmentary view of the preferred embodiment of the apparatus of the present invention;
FIG. 26 is a fragmentary view of the preferred embodiment of the apparatus of the present invention;
FIGS. 27A, 27B, 27C are sectional elevation views of an alternate embodiment of the apparatus of the present invention wherein the lines A-A are match lines and the lines B-B are match lines;
FIG. 28 is a sectional elevation view of the alternate embodiment of the apparatus of the present invention showing both valves in a closed position;
FIG. 29 is a sectional elevation view of the alternate embodiment of the apparatus of the present invention showing the upper valve in a closed position and the lower valve in an open position;
FIG. 30 is a sectional elevation view of the alternate embodiment of the apparatus of the present invention;
FIG. 31 is a sectional elevation view of the alternate embodiment of the apparatus of the present invention showing both valves in an open position;
FIG. 32 is a fragmentary sectional elevation view of the preferred embodiment of the apparatus of the present invention;
FIG. 33 is a sectional view taken along lines 33-33 of FIG. 32;
FIGS. 34A-34B are sectional elevation views of another alternate embodiment of the apparatus and method of the present invention showing deployment of an interlocking dart and plug for cementing in larger diameter casing;
FIGS. 35A-35B are sectional elevation views of another alternate embodiment of the apparatus and method of the present invention showing deployment of an interlocking dart and plug for cementing in larger diameter casing;
FIGS. 36A-36B are sectional elevation views of another alternate embodiment of the apparatus and method of the present invention showing deployment of an interlocking dart and plug for cementing in larger diameter casing;
FIG. 37 is a partial, sectional elevation view of the embodiment of FIGS. 34A-36B;
FIGS. 38A-38B are sectional elevation views of another alternate embodiment of the apparatus and method of the present invention showing deployment of an interlocking dart and plug for cementing in larger diameter casing;
FIG. 39 is a partial, sectional elevation view of the embodiment of FIGS. 34A-36B.
DETAILED DESCRIPTION OF THE INVENTION
FIG. 9 shows generally an oil well drilling structure 10 that can provide a platform 11 such as a marine platform as shown. Such platforms 11 are well known. Platform 11 supports a derrick 12 that can be equipped with a lifting device 21 that supports a top drive unit 13. Such a derrick 12 and top drive unit 13 are well known. A top drive unit 13 can be seen for example in U.S. Pat. Nos. 4,854,383 and 4,722,389 which are incorporated herein by reference.
A flow line 14 can be used for providing a selected fluid such as a fluidized cement or fluidized setable material to be pumped into the well during operations which are known in the industry and are sometimes referred to as cementing operations. Such cementing operations are discussed for example in prior U.S. Pat. Nos. 3,828,852; 4,427,065; 4,671,353; 4,782,894; 4,995,457; 5,236,035; 5,293,933; and 6,182,752, each of which is incorporated herein by reference. A tubular member 22 can be used to support plug dropping head 15 at a position below top drive unit 13 as shown in FIG. 9. String 16 is attached to the lower end portion of plug dropping head 15.
In FIG. 9, the platform 11 can be any oil and gas well drilling platform 11 such as a marine platform shown in a body of water 18 that provides a seabed or mud line 17 and water surface 19. Such a platform 11 provides a platform deck 20 that affords space for well personnel to operate and for the storage of equipment and supplies that are needed for the well drilling operation.
A well bore 23 extends below mud line 17. In FIGS. 10 and 11, the well bore 23 can be surrounded with a surface casing 24. The surface casing 24 can be surrounded with cement/concrete 25 that is positioned in between a surrounding formation 26 and the surface casing 24. Similarly, a liner or production casing 32 extends below surface casing 24. The production casing 32 has a lower end portion that can be fitted with a casing shoe 27 and float valve 28 as shown in FIGS. 10-16. Casing shoe 27 has passageway 30. Float valve 28 has passageway 29.
The present invention provides an improved method and apparatus for dropping balls, plugs, darts or the like as a part of a cementing operation. Such cementing operations are in general known and are employed for example when installing a liner such as liner 32. In the drawings, arrows 75 indicate generally the flow path of fluid (e.g. cement, fluidized material or the like) through the tool body 34. In that regard, the present invention provides an improved ball or plug or dart dropping head 15 that is shown in FIGS. 1-8, 10-17 and 18-33. In FIGS. 1A, 1B, 1C and 2-8, ball/plug dropping head 15 has an upper end portion 31 and a lower end portion 33. Ball/plug dropping head 15 provides a tool body 34 that can be of multiple sections that are connected together, such as with threaded connections. In FIGS. 1A-1C, the tool body 34 includes sections 35, 36, 37, 38, 39. The section 35 is an upper section. The section 39 is a lower section.
Ball/plug dropping head 15 can be pre-loaded with a number of different items to be dropped as part of a cementing operation. For example, in FIGS. 1A, 1B, 1C there are a number of items that are contained in ball/plug dropping head 15. These include an upper, larger diameter ball dart 40, 41 and smaller diameter ball 42. In FIGS. 18-26, an alternate embodiment is shown which enables very small diameter balls, sometimes referred to as “frac-balls” 102 (which can have a diameter of between about ½ and ⅝ inches) to be dispensed into the well below toll body 34.
The tool body 34 supports a plurality of valving members at opposed openings 90. The valving members can include first valving member 43 which is an upper valving member. The valving members can include a second valving member 44 which is in between the first valving member 43 and a lower or third valving member 45. Valving member 43 attaches to tool body 34 at upper opening positions 61, 62. Valving member 44 attaches to tool body 34 at middle opening positions 63, 64. Valving member 45 attaches to tool body 43 at lower opening positions 65, 66.
Threaded connections 46, 47, 48, 49 can be used for connecting the various body sections 35, 36, 37, 38, 39 together end to end as shown in FIGS. 1A, 1B, 1C. Tool body 34 upper end 31 is provided with an internally threaded portion 50 for forming a connection with tubular member 22 that depends from top drive unit 13 as shown in FIG. 9. A flow bore 51 extends between upper end 31 and lower end 33 of tool body 34.
Sleeve sections 52 are secured to tool body 34 within bore 15 as shown in FIGS. 1A, 1B, 1C. Sleeves 52 can be generally centered within bore 51 as shown in FIGS. 1A, 1B, 1C using spacers 67 that extend along radial lines from the sections 35-39.
Each valving member 43, 44, 45 is movable between open and closed positions. In FIGS. 1A, 1B, 1C each of the valving members 43, 44, 45 is in a closed position. In that closed position, each valving member 43, 44, 45 prevents downward movement of a plug, ball 40, 42, or dart 41 as shown. In FIG. 1A, the closed position of valving member 43 prevents downward movement of larger diameter ball 40. Similarly, in FIG. 1B, a closed position of valving member 44 prevents a downward movement of dart 41. In FIG. 1B, a closed position of valving member 45 prevents a downward movement of smaller diameter ball 42. In each instance, the ball, dart or plug rests upon the outer curved surface 68 of valving member 43, 44 or 45 as shown in the drawings.
Each valving member 43, 44, 45 provides a pair of opposed generally flat surfaces 69, 70 (see FIGS. 3, 6, 17). FIG. 17 shows in more detail the connection that is formed between each of the valving members 43, 44, 45 and the tool body 34. The tool body 34 provides opposed openings 90 that are receptive the generally cylindrically shaped valve stems 54, 55 that are provided on the flat sections or flat surfaces 69, 70 of each valving member 43, 44, 45. For example, in FIGS. 6 and 17, the flat surface 69 provides valve stem 54. Openings 90 are receptive of the parts shown in exploded view in FIG. 17 that enable a connection to be formed between the valving member 43, 44 or 45 and the tool body 34. For the stem 55, fastener 91 engages an internally threaded opening of stem 55. Bushing 92 is positioned within opening 90 and the outer surface of stem 55 registers within the central bore 95 of bushing 92. Bushing 92 is externally threaded at 93 for engaging a correspondingly internally threaded portion of tool body 34 at opening 90. O-rings 60 can be used to interface between stem 55 and bushing 92. A slightly different configuration is provided for attaching stem 54 to tool body 34. Sleeve 94 occupies a position that surrounds stem 54. Sleeve 54 fits inside of bore 95 of bushing 92. The externally threaded portion 93 of bushing 92 engages correspondingly shaped threads of opening 90. Pins 99 form a connection between the stem 54 at openings 98 and the sleeve 94. Fastener 96 forms a connection between bushing 92 and an internally threaded opening 97 of stem 54. As assembled, this configuration can be seen in FIG. 1A for example. The flat surfaces 69, 70 enable fluid to flow in bore 51 in a position radially outwardly or externally of sleeve or sleeve section 52 by passing between the tool body sections 35, 36, 37, 38, 39 and sleeve 52. Thus, bore 51 is divided into two flow channels. These two flow channels 71, 72 include a central flow channel 71 within sleeves 52 that is generally cylindrically shaped and that aligns generally with the channel 53 of each valving member 43, 44, 45. The second flow channel is an annular outer flow channel 72 that is positioned in between a sleeve 52 and the tool body sections 35, 36, 37, 38, 39. The channels 71, 72 can be concentric. The outer channel 72 is open when the valving members 43, 44, 45 are in the closed positions of FIGS. 1A, 1B and 1C, wherein central flow channel 71 is closed. When the valving members 43, 44, 45 are rotated to a closed position, fins 73 become transversely positioned with respect to the flow path of fluid flowing in channel 72 thus closing outer flow channel 72 (see FIG. 5). This occurs when a valving member 43, 44, 45 is opened for releasing a ball 40 or 42 or for releasing dart 41. FIG. 4 illustrates a closed position (FIG. 4) of the valving member 45 just before releasing smaller diameter ball 42. Fins 73 are generally aligned with bore 15 and with flow channels 71, 72 when flow in channel 72 is desired (FIG. 4). In FIG. 4, valving member 45 is closed and outer flow channel 72 is open.
In FIGS. 2-3, 5 and 7-8, a tool 74 has been used to rotate valving member 45 to an open position that aligns its channel 53 with central flow channel 71 enabling smaller diameter ball 42 to fall downwardly via central flow channel 71 (FIG. 8). In FIG. 5, outer flow channel 72 has been closed by fins 73 that have now rotated about 90 degrees from the open position of FIG. 4 to the closed position. Fins 73 close channel 72 in FIG. 5. It should be understood that tool 74 can also be used to rotate valving member 44 from an open position of FIG. 1B to a closed position such as is shown in FIG. 5 when it is desired that dart 41 should drop. Similarly, tool 74 can be used to rotate upper valving member 43 from the closed position of FIG. 1A to an open position such as is shown in FIG. 5 when it is desired to drop larger diameter ball 40.
FIGS. 7-16 illustrate further the method and apparatus of the present invention. In FIG. 8, lower or third valving member 45 has been opened as shown in FIG. 5 releasing smaller diameter ball 42. In FIG. 8, smaller diameter ball 42 is shown dropping wherein it is in phantom lines, its path indicated schematically by arrows 75.
FIG. 10 shows a pair of commercially available, known plugs 76, 77. These plugs 76, 77 include upper plug 76 and lower plug 77. Each of the plugs 76, 77 can be provided with a flow passage 79, 81 respectively that enables fluid to circulate through it before ball 42 forms a seal upon the flow passage 81. Smaller diameter ball 42 has seated upon the lower plug 77 in FIG. 10 so that it can now be pumped downwardly, pushing cement 80 ahead of it. In FIG. 11, arrows 78 schematically illustrate the downward movement of lower plug 77 when urged downwardly by a pumped substance such as a pumpable cement or like material 80. Each of the plugs 76, 77 can be provided with a flow passage 79, 81 respectively that enables fluid to circulate through it before ball 42 forms a seal upon the flow passage 81 (see FIG. 11). When plug 77 reaches float valve 28, pressure can be increased to push ball 42 through plug 77, float valve 28 and casing shoe 27 so that the cement flows (see arrows 100, FIG. 11) into the space 101 between formation 26 and casing 32.
In FIG. 12, second valving member 44 is opened releasing dart 41. Dart 41 can be used to push the cement 80 downwardly in the direction of arrows 82. A completion fluid or other fluid 83 can be used to pump dart 41 downwardly, pushing cement 80 ahead of it. Once valves 44 and 45 are opened, fluid 83 can flow through openings 84 provided in sleeves 52 below the opened valving member (see FIG. 7) as illustrated in FIGS. 7 and 12. Thus, as each valving member 43 or 44 or 45 is opened, fluid moves through the openings 84 into central flow channel 71.
When valve 44 is opened, dart 41 can be pumped downwardly to engage upper plug 76, registering upon it and closing its flow passage 79, pushing it downwardly as illustrated in FIGS. 14 and 15. Upper plug 79 and dart 41 are pumped downwardly using fluid 83 as illustrated in FIGS. 14 and 15. In FIG. 16, first valving member 43 is opened so that larger diameter ball 40 can move downwardly, pushing any remaining cement 80 downwardly.
The ball 40 can be deformable, so that it can enter the smaller diameter section 86 at the lower end portion of tool body 34. During this process, cement or like mixture 80 is forced downwardly through float collar 28 and casing shoe 27 into the space that is in between production casing 32 and formation 26. This operation helps stabilize production casing 32 and prevents erosion of the surrounding formation 26 during drilling operations.
During drilling operations, a drill bit is lowered on a drill string using derrick 12, wherein the drill bit simply drills through the production casing 32 as it expands the well downwardly in search of oil.
FIGS. 18-26 show an alternate embodiment of the apparatus of the present invention, designated generally by the numeral 110 in FIGS. 22-23. In FIGS. 18-26, the flow openings 84 in sleeves 52 of ball/plug dropping head 110 of FIGS. 1-17 have been eliminated. Instead, sliding sleeves 111 are provided that move up or down responsive to movement of a selected valving member 112, 113. It should be understood that the same tool body 34 can be used with the embodiment of FIGS. 18-26, connected in the same manner shown in FIGS. 1-17 to tubular member 22 and string 16. In FIGS. 18-26, valving members 112, 113 replace the valving members 43, 44, 45 of FIGS. 1-17. In FIGS. 18-26, sleeves 111 replace sleeves 52. While two valving members 112, 113 are shown in FIGS. 22, 23, it should be understood that three such valving members (and a corresponding sleeve 111) could be employed, each valving member 112, 113 replacing a valving member 43, 44, 45 of FIGS. 1-17.
In FIGS. 18-26, tool body 34 has upper and lower end portions 31, 33. As with the preferred embodiment of FIGS. 1-17, a flow bore 51 provides a central flow channel 71 and outer flow channel 72. Each valving member 112, 113 provides a valve opening 114. Each valving member 112, 113 provides a flat surface 115 (see FIG. 20). Each valving member 112, 113 provides a pair of opposed curved surfaces 116 as shown in FIG. 20 and a pair of opposed flat surfaces 117, each having a stem 119 or 120.
An internal, generally cylindrically shaped surface 118 surrounds valve opening 114 as shown in FIG. 20. Each valving member 112, 113 provides opposed stems 119, 120. Each valving member 112, 113 rotates between opened and closed positions by rotating upon stems 119, 120. Each of the stems 119, 120 is mounted in a stem opening 90 of tool body 34 at positions 61, 62 and 63, 64 as shown in FIG. 22.
In FIG. 19, valving member 122, 123 is similar in configuration and in sizing to the valving members 43, 44, 45 of the preferred embodiment of FIGS. 1-17, with the exception of a portion that has been removed which is indicated in phantom lines in FIG. 19. The milled or cut-away portion of the valving member 112, 113 is indicated schematically by the arrow 121. Reference line 122 in FIG. 19 indicates the final shape of valving member 112, 113 after having been milled or cut. In FIGS. 20 and 21, a beveled edge at 123 is provided for each valving member 112, 113.
When a valving member 112, 113 is in the closed position of FIG. 22, flow arrows 124 indicate the flow of fluid through the tool body 34 bore 51 and more particularly in the outer channel 72 as indicated in FIG. 22.
In FIG. 23, the lower valving member 113 has been rotated to an open position as indicated schematically by the arrow 134, having been rotated with tool 74. In this position, fins 73 now block the flow of fluid in outer channel 72. Flat surface 115 now faces upwardly. In this position, the cut-away portion of valving member 113 that is indicated schematically by the arrow 121 in FIG. 19 now faces up. Sliding sleeve 111 drops downwardly as indicated schematically by arrows 130 when a valving member 112 or 113 is rotated to an open position (see valving member 113 in FIG. 23). In FIG. 22, a gap 129 was present in between upper valve 112 and sleeve 111 that is below the valve 112. The sleeve 111 that is in between the valves 112,113 is shown in FIG. 22 as being filled with very small diameter balls or “frac-balls” 102.
When valving member 113 is rotated to the open position of FIG. 23, the gap is now a larger gap, indicated as 135. Gap 135 (when compared to smaller gap 129) has become enlarged an amount equal to the distance 121 illustrated by arrow 121 in FIG. 19. The frac-balls 102 now drop through valving member 113 as illustrated by arrows 127 in FIG. 23. Arrows 125, 126 in FIG. 23 illustrate the flow of fluid downwardly through gap 135 and in central channel 71.
A sleeve 111 above a valving member 112 or 113 thus move up and down responsive to a rotation of that valving member 112 or 113. Spacers 28 can be employed that extend from each sleeve 111 radially to slidably engage tool body 34. In FIGS. 20 and 21, each stem 119, 120 can be provided with one or more annular grooves 131 that are receptive of o-rings 60 or other sealing material. As with the preferred embodiment of FIGS. 1-17, openings 132 in each stem 119, 120 are receptive of pins 99. Likewise, each stem 119, 120 provides internally threaded openings 133. Thus, the same connection for attaching a valving member 112, 113 to tool body 34 can be the one shown in FIGS. 1-17.
FIGS. 27A-33 show another embodiment of the apparatus of the present invention wherein the tool body 136 provides an upper sleeve 140 that differs in construction from the sleeve of the embodiments of FIGS. 1-26. Further, the tool body 136 of FIGS. 27A-33 provides an indicator 147 that indicates to a user whether or not a ball or dart 145, 146 has in fact been discharged from the tool body 136. Further, the embodiment of FIGS. 27A-33 provides specially configured inserts or sleeves 160, 163 that are positioned below the lower valve 113, this additional sleeve or insert 160 is configured to prevent a build-up of material within the flow bore 51 below lower valving member 113.
In FIGS. 27A-33, tool body 136 provides upper end portion 137 and lower end portion 138. As with the embodiments of FIGS. 1-26, the tool body 136 can be formed similarly to the tool body 34, having multiple sections 35, 36, 37, 38 and 139. The section 139 is similar to the section 39 of FIGS. 1-26. However, the section 139 is configured to accept sleeve or insert 160 and sleeve or insert 163.
Sleeve 140 is similar to the sleeves 111 of FIGS. 18-26. The sleeve 140 provides a cap 141 that can be connected to the sleeve 140 using threaded connection 142. Cap 141 provides one or more longitudinally extending and circumferentially spaced apart openings 143. The cap 141 can also provide a tool receptive socket 144 that enables rotation of cap 141, relative to sleeve 140, using a tool (e.g. allen wrench) during assembly of cap 141 to sleeve 140.
In FIGS. 27B, 28-33 indicator 147 is shown. The indicator 147 indicates to a user whether or not a dart 145, 146 has passed the indicator 147, thus indicating a discharge of the dart 145, 146 from the tool body 136.
In FIGS. 27B and 28-33, indicator 147 provides a shaft 148 that extends horizontally relative to flow bore 51 of tool body 136. Lever arm 149 moves between an extended position as shown in FIG. 27B and a collapsed position as shown in FIG. 29. The lever arm 149 is initially set in the extended position of FIG. 27B by placing pin 150 behind spring 151 upper end 154 as shown in FIG. 27B. Spring 151 thus holds the pin 150 in a generally vertical position by rotating shaft 148 so that arm 149 extends into flow bore 51.
In FIG. 28, upper valve 112 is shown supporting a first dart 145. Lower valve 113 is shown supporting a second dart 146. Operation is the same as was described with respect to FIGS. 1-26. Lower valve 113, is rotated to an open position as shown in FIG. 29 by rotating the valve 113 through about ninety degrees. Dart 146 then drops as indicated by arrow 164 in FIG. 29. As the dart 146 travels downwardly, leaving valve 113 and moving toward lower end portion 138 of tool body 136, the dart 146 engages lever arm 149. The dart 146 continues to move downwardly, pushing the arm 149 to the retracted position of FIG. 29 as illustrated by arrow 165 in FIG. 29. In this position, the pin 150 deflects spring 151 until pin 150 assumes the position shown in phantom lines in FIG. 32.
The spring 151 upper end portion 154 prevents the pin 150 from returning to the position of FIG. 28, as the pin is now being held in the position shown in FIG. 29. Arrow 152 in FIG. 32 illustrates the travel of arm 149 from the extended position to the retracted position. An operator can then reset the indicator 147 by rotating the pin 150 to the position shown in FIG. 30 as illustrated by arrow 153 in FIG. 30. This procedure can then be repeated for the upper and second dart 145 as illustrated in FIGS. 30 and 31. In FIG. 31, the upper valve 112 is moved to an open position. A working fluid is pumped into tool body 136 at upper end 137. Flow moves downwardly in the tool body 136 as illustrated by arrows 166. Flow travels through openings 143 in cap 141 as illustrated by arrows 167 in FIG. 31. This downward flow moves the darts 145, 146 downwardly.
Indicator 147 can be attached to tool body 136 as shown in FIG. 33. A pair of recesses 155, 156 on tool body 136 enable attachment of shaft 148. The shaft 148 can be held in position using fasteners such as bolts, for example. Spring 151 can then be attached to tool body 136 at recess 156 using fasteners 158 such as bolts. Curved arrow 157 in FIG. 33 illustrates rotation of shaft 148 for moving arm 149 and pin 150 between the extended position of FIG. 30 and the retracted position of FIG. 31. Arm 149 extends through slot 159 in the extended position of FIGS. 30, 32, 33.
FIGS. 27C and 32 illustrate placement of insert/sleeves 160, 163. The sleeve 160 provides an upper end portion that is conically shaped or tapered. This tapered section 161 is placed just below lower valve 113 and aids in the efficient flow of fluid downwardly in the tool body 136 eliminating unnecessary accumulation of material such as cement. Annular shoulder 162 on tool body 136 enables support of lower insert 163 which is placed below upper insert 160 as shown in FIGS. 27B and 27C.
FIGS. 34A-39 show another alternate embodiment of the apparatus of the present invention, designated generally by the numeral 170. Plug dropping apparatus 170 provides an apparatus that can be used for launching plugs into casing 171. Casing 171 is typically larger diameter and can have a diameter as large as about 20 inches. Examples of casing diameters are: 9⅝ inches, 10¾ inches, 13⅜ inches and 20 inches. The casing 171 shown in FIGS. 34-37 has a casing bore or annulus 172. The casing bore or annulus 172 is defined by casing 171 inside surface 173, which is typically generally cylindrically shaped.
The apparatus 170 of the present invention is designed to launch larger diameter (e.g. between about nine (9) and nineteen (19) inches) plugs such as the plugs 176, 177 shown into a section of casing 171 having a casing bore or annulus 172. This is accomplished using a tool body (e.g. 34) having a pair or more of valving members and a pair of more smaller darts of one or more of the embodiments shown in FIGS. 1-33 in combination with the connectors 174, 175 and casing 171. For example, in FIGS. 34-37, a tool body 34 is shown having a lower section 39 that connects to a smaller connector 174. In order to launch one of the larger diameter plugs 176, 177 that are a larger diameter which is larger than the diameter of tool body 34, a pair of connectors 174,175 are used. These include a smaller connector 174 that is attached to section 39 of tool body 34 and a larger connector 175 that forms a connection between the first, smaller connector 174 and the casing 171. Other connectors can be used as an interface between tool body 34 and casing 171.
In order to launch the larger diameter plugs 176, 177, a smaller diameter dart 199 is launched from the tool body 34 as shown and described in the embodiments of FIGS. 1-33. The dart 199 is configured to pass through the central channel or bore 184 of an upper or first plug 176 and connect with a sleeve 194 of the second or lower casing plug 177. This connection of the first dart 199 with the second or lower casing plug 177 can be seen in FIG. 35B. In FIG. 36B, arrow 200 illustrates a downward movement of the combination of second casing plug 177 and dart 199 followed by pumped cement 203.
In FIG. 3A, cement 203 is pumped downwardly through tool body 34 to first casing plug 176, passing through channel or bore 184. Pumping of cement through tool body 34 and its valving members is described in more detail with respect to FIGS. 1-33.
The sleeve 194 of the second casing plug 177 provides a beveled annular surface 197 at the sleeve enlarged lower end 195. The sleeve upper end 196 can be generally cylindrically shaped, enabling the dart 199 to easily enter and lodge inside the sleeve 194 and the channel or bore 193 (see FIG. 35B). The dart 199 provides a domed or beveled annular surface 201 that seals and latches upon the beveled annular surface 197 as shown in FIGS. 35B, 36B. In this position, fluid pressure and the downwardly flowing cement 203 can be used to shear pin 208 and force the combination of dart 199 and plug 177 down into the casing 171 bore or annulus 172 (see FIG. 36B).
Once the combination of dart 199 and second casing plug 177 move downwardly as indicated by arrow 200 in FIG. 36B, cement can follow. A volume of cement 203 or cement mixture 203 can be a part of the driving force that moves the plug and dart combination 177, 179 downwardly as shown in FIG. 36B. For cementing operations in a casing 171, the combination of second casing plug 177 and dart 199 move down followed by the volume of cement 203 followed by the combination of casing plug 176 and another dart 202 (see FIGS. 38B, 39). When the selected volume of cement 203 has been transmitted into the casing bore 172 behind second casing plug 177 and dart 199, the dart 202 is launched from tool body 34 and connects with (e.g. seals and latches with) casing plug 177 (see FIGS. 38A, 39). The dart 202 has a lower beveled annular surface or domed or hemispherical surface 204 that registers upon a beveled annular surface 205 of sleeve 206 (see arrow 207 in FIG. 38B). In FIGS. 36B, 37, 38B, and 39 the mass cement or cement mixture 203 has been injected in between the plugs 176, 177.
The second dart 202 has a domed or hemispherical or beveled annular surface 204 that seals and latches with beveled annular surface 205 of sleeve 206 of casing plug 176 (see FIG. 38B). Arrow 207 in FIG. 38B represent fluid pressure applied to the assembly of dart 202 and casing plug 176 which can be used to shear pin 208, forcing plug 176 and dart 202 downwardly behind cement 203 (see FIG. 39). Shear pin 208 can be used to hold the sleeves 194, 206 prior to launch. Fluid pressure applied to a dart and plug 199, 177 or 202, 176 can be used to shear pin 208.
The following is a list of parts and materials suitable for use in the present invention.
|
PARTS LIST
|
Part Number
Description
|
|
10
oil well drilling structure
|
11
platform
|
12
derrick
|
13
top drive unit
|
14
flow line
|
15
ball/plug dropping head
|
16
string
|
17
sea bed/mud line
|
18
body of water
|
19
water surface
|
20
platform deck
|
21
lifting device
|
22
tubular member
|
23
well bore
|
24
surface casing
|
25
cement/concrete
|
26
formation
|
27
casing shoe
|
28
float valve
|
29
passageway
|
30
passageway
|
31
upper end
|
32
liner/production casing
|
33
lower end portion
|
34
tool body
|
35
section
|
36
section
|
37
section
|
38
section
|
39
section
|
40
larger diameter ball
|
41
dart
|
42
smaller diameter ball
|
43
first valving member
|
44
second valving member
|
45
third valving member
|
46
threaded connection
|
47
threaded connection
|
48
threaded connection
|
49
threaded connection
|
50
threaded portion
|
51
flow bore
|
52
sleeve
|
53
channel
|
54
stem
|
55
stem
|
56
sleeve
|
57
sleeve
|
58
plug
|
59
plug
|
60
o-ring
|
61
opening position
|
62
opening position
|
63
opening position
|
64
opening position
|
65
opening position
|
66
opening position
|
67
spacer
|
68
outer curved surface
|
69
flat surface
|
70
flat surface
|
71
central flow channel
|
72
outer flow channel
|
73
fin
|
74
tool
|
75
arrow
|
76
upper plug
|
77
lower plug
|
78
arrows
|
79
flow passage
|
80
cement
|
81
flow passage
|
82
arrow
|
83
fluid
|
84
opening
|
85
opening
|
86
smaller diameter section
|
87
arrow-fluid flow path
|
88
fastener
|
89
internally threaded opening
|
90
opening
|
91
fastener
|
92
bushing
|
93
external threads
|
94
sleeve
|
95
passageway/bore
|
96
fastener
|
97
internally threaded opening
|
98
opening
|
99
pin
|
100
arrows
|
101
space
|
102
frac-ball
|
110
ball/plug dropping head
|
111
sleeve
|
112
valving member
|
113
valving member
|
114
valve opening
|
115
flat surface
|
116
curved surface
|
117
flat surface
|
118
internal surface
|
119
stem
|
120
stem
|
121
arrow
|
122
reference line
|
123
beveled edge
|
124
arrow
|
125
arrow
|
126
arrow
|
127
arrow
|
128
spacer
|
129
smaller gap
|
130
arrow sleeve movement
|
131
annular groove
|
132
opening
|
133
internally threaded opening
|
134
arrow
|
135
larger gap
|
136
tool body
|
137
upper end portion
|
138
lower end portion
|
139
section
|
140
sleeve
|
141
cap
|
142
threaded connection
|
143
opening
|
144
tool receptive socket
|
145
dart
|
146
dart
|
147
indicator
|
148
shaft
|
149
lever arm
|
150
pin
|
151
spring
|
152
arrow
|
153
arrow
|
154
spring upper end
|
155
recess
|
156
recess
|
157
curved arrow
|
158
fastener
|
159
slot
|
160
insert/sleeve
|
161
conical/tapered section
|
162
annular shoulder
|
163
insert/sleeve
|
164
arrow
|
165
arrow
|
166
arrow
|
167
arrow
|
170
plug dropping apparatus
|
171
casing
|
172
casing bore/annulus
|
173
inside surface
|
174
smaller connector
|
175
larger connector
|
176
first casing plug
|
177
second casing plug
|
178
plug outer surface
|
179
annular rib
|
180
annular rib
|
181
annular rib
|
182
annular groove
|
183
annular groove
|
184
channel/bore
|
185
annular projection
|
186
annular shoulder
|
187
beveled annular surface
|
188
annular rib
|
189
annular rib
|
190
annular rib
|
191
annular groove
|
192
annular groove
|
193
channel/bore
|
194
sleeve
|
195
sleeve enlarged lower end
|
196
sleeve upper end
|
197
beveled annular surface
|
198
arrow
|
199
dart
|
200
arrow
|
201
beveled annular surface
|
202
dart
|
203
cement
|
204
domed/hemispherical/beveled
|
lower end
|
205
beveled annular surface
|
206
sleeve
|
207
arrow
|
208
shear pin
|
|
All measurements disclosed herein are at standard temperature and pressure, at sea level on Earth, unless indicated otherwise. All materials used or intended to be used in a human being are biocompatible, unless indicated otherwise.
The foregoing embodiments are presented by way of example only; the scope of the present invention is to be limited only by the following claims.