Method and apparatus for drug delivery to a target site

Information

  • Patent Grant
  • 9579494
  • Patent Number
    9,579,494
  • Date Filed
    Thursday, March 13, 2014
    10 years ago
  • Date Issued
    Tuesday, February 28, 2017
    7 years ago
Abstract
An ultrasound catheter with a lumen for fluid delivery and fluid evacuation, and an ultrasound source is used for the treatment of intracerebral or intraventricular hemorrhages. After the catheter is inserted into a blood clot, a lytic drug can be delivered to the blood clot via the lumen while applying ultrasonic energy to the treatment site. As the blood clot is dissolved, the liquefied blood clot can be removed by evacuation through the lumen.
Description
BACKGROUND OF THE INVENTION

Field of the Invention


The present invention relates to methods and apparatuses for increasing the efficacy of therapeutic compounds delivered to tissues affected by disease, and more specifically, to methods and apparatuses for increasing the efficacy of therapeutic compounds delivered to targeted tissue, especially brain tissue, using ultrasound.


Background of the Invention


A large number of Americans each year suffer from diseases affecting the brain such as cancer, Alzheimer's, Parkinson's Syndrome, and other illnesses. However, the efficacy of such treatments is significantly reduced as a result of the blood-brain barrier which serves as a boundary between blood and fluid from the central nervous system. The blood-brain barrier significantly reduces the ability of therapeutic compounds placed within the bloodstream to cross this boundary and effectively act upon targeted tissue. This is especially true for therapeutic compounds consisting of larger molecules. As a result, the blood-brain barrier significantly reduces the ability of therapeutic compounds delivered into the bloodstream to reach targeted tissue across the barrier thereby significantly reducing the possibility of effective treatment of the disease. As such, there is an interest in developing of targeted therapeutic compound delivery systems which can enhance the ability of these compounds to cross the blood-brain barrier.


In order to treat such diseases, some current methods deliver therapeutic compounds directly to areas of the brain affected by the disease to bypass any complications arising as a result of the blood-brain barrier. It is particularly important, especially in sensitive areas such as the brain, to increase efficacy of such compounds placed in the bloodstream by more directly targeting the affected tissue with the delivered drugs. This can reduce the need for higher concentrations of the compounds and reduce the amount any adverse effects on neighboring healthy tissue.


Current methods and devices use various fluid infusion techniques under pressure, sometimes termed convection-enhanced delivery (CED), to conduct targeted therapeutic compound delivery to targeted brain tissue. These methods involve connecting a pump to a catheter to drive fluid containing a therapeutic compound into the targeted tissue. However, since these techniques require volumetric infusion into a closed vessel (i.e., the cranium), pressures within the closed vessel increase. In highly sensitive areas, such as the brain, there is a limit to the amount of pressure increase, and therefore the amount of infusion possible, before injuries are sustained as a result of stresses and strains caused by the increased pressures. As such, limits are placed on the amount of enhancement that can be achieved using current CED techniques. Additionally, current CED techniques have been shown to oftentimes not reach the targeted location. Furthermore, other complications arise which further reduce the efficacy of this treatment method such as fluid traveling back along the catheter and away from the targeted area (i.e., backflow).


As such, while CED therapies have shown promise, there is a general desire to continue to improve the methods and apparatuses involved with such therapy.


SUMMARY OF THE INVENTIONS

Methods of activating and sequencing ultrasound radiating elements are provided which increase the efficacy of therapeutic compounds delivered to targeted tissue. In accordance with these methods, embodiments of ultrasound catheters configured to implement the above methods are also included.


An embodiment of an ultrasound catheter for increasing the efficacy of therapeutic compounds delivered to targeted tissue comprises an elongate tubular body having a distal portion, a proximal portion, and a central lumen. The catheter further comprises a plurality of ultrasound radiating elements positioned within the tubular body. A plurality of ports are located on the distal portion of the elongate tubular body, and are configured to allow a fluid to flow through the ports.


In another embodiment an ultrasound catheter assembly includes an elongate tubular body having a distal portion and a proximal portion. The elongate tubular body has material properties similar to that of standard external ventricular drainage (EVD) catheter. A lumen is formed within the elongate tubular body. The lumen includes a plurality of ports on the distal portion of the elongate tubular body configured to allow fluid to flow therethrough. An ultrasonic core is configured to be received within the lumen of the catheter. The ultrasonic core comprises a plurality of ultrasound radiating elements.


In another embodiment, an ultrasound catheter comprises an elongate tubular body having a distal portion and a proximal portion. A first drainage lumen is formed within the elongate tubular body. The drainage lumen includes a plurality of drainage ports on the distal portion of the elongate tubular body configured to allow fluid to flow therethrough. A delivery lumen is formed within the elongate tubular body. The delivery lumen includes a plurality of delivery ports on the distal portion of the elongate tubular body configured to allow fluid to flow therethrough. A plurality of ultrasound radiating elements are positioned within the elongate tubular body.


In one method of activating ultrasound radiating elements of the ultrasound catheters, activation of one or more ultrasound radiating elements is configured to increase permeability in targeted tissues thereby increasing the efficacy of a therapeutic compound. Additionally, such activation is configured to enhance mixing of the therapeutic compound via pressure waves and/or via cavitation.


In another method of activating and sequencing ultrasound radiating elements of the ultrasound catheters, activation of one or more ultrasound radiating elements is sequenced or synchronized with the timing of delivery of a therapeutic compound. This sequencing or synchronization is configured to create a flow pattern at the delivery site which can be controlled by modifying activation timing of certain ultrasound radiating elements. The flow pattern can be chosen to delivery therapeutic compounds directly to targeted tissue.


In yet another method of activating and sequencing ultrasound radiating elements of an ultrasound catheter, activation of one or more ultrasound radiating elements is sequenced or synchronized with the timing of delivery of multiple therapeutic compounds through multiple drainage or delivery ports of an ultrasound catheter. This sequencing or synchronization is configured create multiple flow patterns at the delivery site thereby allowing the multiple therapeutic compounds to be delivered to different targeted tissue.





BRIEF DESCRIPTION OF THE DRAWINGS

Exemplary embodiments of the method and apparatus for increasing the efficacy of therapeutic compounds delivered to targeted tissue are illustrated in the accompanying drawings, which are for illustrative purposes only. The drawings comprise the following figures, in which like numerals indicate like parts.



FIG. 1A is a schematic illustration of an ultrasonic catheter configured for insertion within the cranial cavity.



FIG. 1B is an enlarged detail view of the distal end of the ultrasonic catheter shown in FIG. 1A.



FIG. 1C is an enlarged detail view of the proximal end of the ultrasonic catheter shown in FIG. 1A.



FIG. 1D is a schematic illustration of a stylet that can inserted into the ultrasonic catheter shown in FIG. 1A.



FIG. 1E is a schematic illustration of ultrasonic core that can inserted into the ultrasonic catheter shown in FIG. 1A.



FIG. 1F is cross-sectional view taken through line 1F-1F of FIG. 1A.



FIG. 1G is a cross-sectional view of an ultrasonic catheter, according to an embodiment.



FIG. 1H is a cross-sectional view of an ultrasonic catheter, according to another embodiment.



FIG. 2A is a schematic illustration of an ultrasonic catheter with embedded wires.



FIG. 2B is an enlarged detail view of the distal end of the ultrasonic catheter shown in FIG. 2A.



FIG. 2C is an enlarged detail view of a medial portion of the ultrasonic catheter shown in FIG. 2A.



FIG. 2D is an enlarged detail view of the proximal end of the ultrasonic catheter shown in FIG. 2A.



FIG. 3 is a schematic illustration of an ultrasonic catheter partially inserted into the brain.



FIG. 4A is a schematic illustration of an ultrasonic catheter configured for insertion within the cranial cavity.



FIG. 4B is a cross-sectional view of the ultrasonic catheter shown in FIG. 4A.



FIG. 5A is a schematic illustration of an ultrasonic catheter configured for insertion within the cranial cavity, according to yet another embodiment



FIG. 5B is a cross-sectional view of the ultrasonic catheter shown in FIG. 5A.



FIG. 6A is a perspective view of a feature for receiving an ultrasonic element.



FIG. 6B is a perspective view of another embodiment of a feature for receiving an ultrasonic element.



FIG. 7A is a schematic illustration of an ultrasonic catheter with a coaxial drain port.



FIG. 7B is an axial view of the ultrasonic catheter shown in FIG. 7A.



FIG. 7C is a perspective view of the ultrasonic catheter of FIG. 7A.



FIG. 8A is a schematic illustration of an ultrasonic catheter with drain ports proximal to the connector.



FIG. 8B is a perspective view of the ultrasonic catheter of FIG. 8A.



FIG. 9A is an exploded view of an ultrasonic catheter, according to an embodiment.



FIG. 9B is a schematic illustration of the ultrasonic catheter shown in FIG. 9A.



FIG. 9C is a cross-sectional view of the tubular body of the ultrasonic catheter shown in FIG. 9B.



FIG. 9D is an enlarged detail view of the distal end of the ultrasonic catheter shown in FIG. 9B.



FIG. 9E is a cross-sectional view of the distal extrusion of the ultrasonic catheter shown in FIG. 9D.



FIG. 9F is a perspective view of the ultrasonic catheter shown in FIG. 9B



FIG. 10A is an exploded view of an ultrasonic catheter, according to another embodiment.



FIG. 10B is a schematic illustration of the ultrasonic catheter shown in FIG. 10A.



FIG. 10C is a cross-sectional view of the ultrasonic catheter shown in FIG. 10B.



FIG. 10D is a perspective view of the spiral extrusion shown in FIG. 10A.



FIG. 11A is a schematic view of a drain, according to one embodiment.



FIG. 11B is a cross-sectional view of the drain shown in FIG. 11A.



FIG. 11C is a perspective view of the drain shown in FIG. 11A.



FIG. 11D is a schematic view of an ultrasonic core, according to one embodiment.



FIG. 11E is a perspective view of the ultrasonic core shown in FIG. 11D.



FIG. 11F is a perspective view of a catheter assembly, according to one embodiment.



FIG. 11G is a schematic view of the catheter assembly shown in FIG. 11F.



FIG. 11H is an enlarged detail view of the distal end of the drain shown in FIG. 11A.



FIG. 11I is an enlarged detail view of the distal end of the ultrasonic core shown in FIG. 11D.



FIG. 12A is a schematic view of an ultrasonic core wire, according to one embodiment.



FIG. 12B is a perspective view of an ultrasonic core wire with ultrasonic transducers affixed thereto.



FIG. 12C is a perspective view of an ultrasonic core wire with a polyimide shell surrounding ultrasonic transducers.



FIG. 13 is a schematic illustration of an ultrasonic element within a fluid-filled chamber, according to one embodiment.



FIG. 14 is a block diagram of a feedback control system for use with an ultrasonic catheter.



FIG. 15 is a table listing certain features of various embodiments of an ultrasonic catheter.



FIG. 16A is a perspective view of an ultrasonic catheter, according to another embodiment.



FIGS. 16B-D are enlarged detail views of the distal portion of the ultrasonic catheter shown in FIG. 16A. is a schematic illustration of the ultrasonic catheter shown in FIG. 10A.



FIG. 16E is a schematic illustration of wires and ultrasonic radiating members embedded within the ultrasonic catheter shown in FIG. 16A.



FIG. 17A-D illustrates potential sequencing and synchronization of activation of ultrasonic radiating elements within an ultrasound catheter.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

As set forth above, methods and apparatuses have been developed that increase the efficacy of therapeutic compounds or physician specified fluids delivered to targeted tissue using ultrasonic energy in conjunction with the therapeutic compound. Disclosed herein are several exemplary embodiments of ultrasonic catheters that can be used to enhance the efficacy of therapeutic compounds at a treatment site within a patient's body. Also disclosed are exemplary methods for using such catheters. For example, as discussed in greater detail below, the ultrasonic catheters disclosed herein can be used to deliver a therapeutic compound to a blood clot in the brain, allowing at least a portion of the blood clot to be dissolved and/or removed, thereby reducing damage to brain tissue. As an additional example, the ultrasonic catheters disclosed herein can be used to deliver therapeutic compounds, such as anti-cancer drugs and treatments, alkylating agents, antimetabolites, and anti-tumor antibiotics, to tumors and/or other drugs used to treat conditions in the brain or other portions of the body. Although described with respect to intracranial use, the embodiments disclosed herein are also suitable for intraventricular use in other applications. Accordingly, the term “intracranial use” can also include intraventricular use.


As used herein, the term “therapeutic compound” refers broadly, without limitation, and in addition to its ordinary meaning, to a drug, medicament, dissolution compound, genetic material or any other substance capable of effecting physiological functions. Additionally, a mixture including substances such as these is also encompassed within this definition of “therapeutic compound”. Examples of therapeutic compounds include thrombolytic compounds, anti-thrombosis compounds, and other compounds used in the treatment of vascular occlusions and/or blood clots, including compounds intended to prevent or reduce clot formation, neuroprotective agents, anti-apoptotic agents, and neurotoxin scavenging agents. Exemplary therapeutic compounds include, but are not limited to, heparin, urokinase, streptokinase, tPA, rtPA, BB-10153 (manufactured by British Biotech, Oxford, UK), plasmin, IIbIIa inhibitors, desmoteplase, caffeinol, deferoxamine, and factor VIIa. Other examples of therapeutic compounds include cancer drugs and treatments, alkylating agents, antimetabolites, and anti-tumor antibiotics and any other drug used to treat any ailment or disease such as for example, cancer (e.g., brain cancer), Parkinson's Syndrome, Alzheime etc. Other examples include cancer and/or oncological drugs, e.g., sonodynamic drugs, used to treat to tumors and gliomas in the brain. The methods and apparatus described above can be used to treat tumors and gliomas.


As used herein, the terms “ultrasonic energy”, “ultrasound” and “ultrasonic” refer broadly, without limitation, and in addition to their ordinary meaning, to mechanical energy transferred through longitudinal pressure or compression waves. Ultrasonic energy can be emitted as continuous or pulsed waves, depending on the parameters of a particular application. Additionally, ultrasonic energy can be emitted in waveforms having various shapes, such as sinusoidal waves, triangle waves, square waves, or other wave forms. Ultrasonic energy includes sound waves. In certain embodiments, the ultrasonic energy referred to herein has a frequency between about 20 kHz and about 20 MHz. For example, in one embodiment, the ultrasonic energy has a frequency between about 500 kHz and about 20 MHz. In another embodiment, the ultrasonic energy has a frequency between about 1 MHz and about 3 MHz. In yet another embodiment, the ultrasonic energy has a frequency of about 2 MHz. In certain embodiments described herein, the average acoustic power of the ultrasonic energy is between about 0.01 watts and 300 watts. In one embodiment, the average acoustic power is about 15 watts.


As used herein, the term “ultrasound radiating element” or “ultrasound or ultrasonic element” refers broadly, without limitation, and in addition to its ordinary meaning, to any apparatus capable of producing ultrasonic energy. An ultrasonic transducer, which converts electrical energy into ultrasonic energy, is an example of an ultrasound radiating element. An exemplary ultrasonic transducer capable of generating ultrasonic energy from electrical energy is a piezoelectric ceramic oscillator. Piezoelectric ceramics typically comprise a crystalline material, such as quartz, that changes shape when an electrical voltage is applied to the material. This change in shape, made oscillatory by an oscillating driving signal, creates ultrasonic sound waves. In other embodiments, ultrasonic energy can be generated by an ultrasonic transducer that is remote from the ultrasound radiating element, and the ultrasonic energy can be transmitted, via, for example, a wire that is coupled to the ultrasound radiating element. In such embodiments, a “transverse wave” can be generated along the wire. As used herein is a wave propagated along the wire in which the direction of the disturbance at each point of the medium is perpendicular to the wave vector. Some embodiments, such as embodiments incorporating a wire coupled to an ultrasound radiating element for example, are capable of generating transverse waves. See e.g., U.S. Pat. Nos. 6,866,670, 6,660,013 and 6,652,547, the entirety of which are hereby incorporated by reference herein. Other embodiments without the wire can also generate transverse waves along the body of the catheter.


In certain applications, the ultrasonic energy itself provides a therapeutic effect to the patient. Examples of such therapeutic effects include blood clot disruption; promoting temporary or permanent physiological changes in intracellular or intercellular structures; rupturing micro-balloons or micro-bubbles for therapeutic compound delivery; and increasing the permeability of the targeted cells. Increasing the permeability of the targeted cells can thereby enhance the efficacy of therapeutic compounds on those targeted cells. Further information about such methods can be found in U.S. Pat. Nos. 5,261,291 and 5,431,663.



FIGS. 1A to 1C and FIG. 1F schematically illustrate one arrangement of an ultrasonic catheter 10 that can be used to increase the efficacy of therapeutic compounds delivered to targeted tissue. FIG. 1B shows an enlarged detail view of a distal portion 12 of the catheter 10 and FIG. 1C illustrates an enlarged detail view of a proximal portion 14 of the catheter 10. In the illustrated arrangement, the ultrasonic catheter 10 generally includes a multi-component, elongate flexible tubular body 16 having a proximal region 14 and a distal region 12. The tubular body 16 includes a flexible energy delivery section 18 located in the distal region 12. Within the distal region 12 are located a plurality of holes 20, through which fluid may flow into or out of a central lumen 22 (FIG. 1F) that extends though the catheter 10. Although the drainage holes 20 are shown as circular, the shape of the holes may be varied. For instance, the drainage holes may be oval, polygonal, or irregular. FIGS. 1G and 1H illustrate modified embodiments of the catheter which include separate lumens for fluid delivery and for fluid evacuation.


The catheter 10 defines the hollow lumen 22 which allows for the free flow of liquids between the drainage holes 20 and the proximal port 24. For instance, blood may flow from an area external to the ultrasonic catheter through the drainage holes 20 and into the lumen 22. The blood may then flow proximally in the lumen 22 towards the proximal region 14 of the ultrasonic catheter, where it may be collected via the drainage kit. In certain embodiments, any number of therapeutic compounds may be introduced into the ultrasonic catheter through the proximal end 14. The compounds, which may be dissolved or suspended within a liquid carrier, may flow through the lumen 22 and towards the distal end 12 of the ultrasonic catheter, ultimately exiting the catheter through drainage holes 20 and entering a treatment site.


In certain embodiments, negative pressure may be applied to the lumen 22 of the catheter to facilitate the flow of blood from the drainage holes 20 towards the proximal end 14. In other embodiments, no external pressure is applied, and the conditions present at the treatment site are sufficient to cause the blood to flow proximally through the lumen 22. In some embodiments, a positive pressure may be applied to the lumen 22 of the catheter 10 in order for therapeutic compounds or other liquids to pass distally through the lumen 22 towards the drainage holes 20. In other embodiments, no external pressure is applied, and the liquid is permitted to independently flow distally and exit the drainage ports 20.


The tubular body 16 and other components of the catheter 10 can be manufactured in accordance with a variety of techniques known to an ordinarily skilled artisan. Suitable materials and dimensions can be readily selected based on the natural and anatomical dimensions of the treatment site and on the desired access site. In addition, the surface of the catheter 10 can be coated with an antimicrobial material, such as silver or a silver based compound. In certain embodiments, the catheter may be biocompatible for use in the brain or other organs and tissue for up to 7 days, for up to 15 days, up to 29 days, or for up to 30 days. In one arrangement, the catheter can be coated with a hydrophilic material.


In some embodiments, the tubular body 16 can be between about 23 and 29 centimeters in length. In certain arrangements, the lumen 22 has a minimum inner diameter of about 2 millimeters and the catheter body has a maximum outer diameter of about 6 mm.


In one particular embodiment, the tubular body 16 has material properties similar to that of standard external ventricular drainage (EVD) catheters. For example, the tubular body can be formed of radiopaque polyurethane or silicone, which can be provided with antimicrobial features. In such embodiments, the catheter 10 by itself may not have sufficient flexibility, hoop strength, kink resistance, rigidity and structural support to push the energy delivery section 18 through an opening in the skull and then, in turn, through the patient's brain tissue to a treatment site (e.g., one of the ventricles). Accordingly, the catheter 10 can be used in combination with a stylet 26 (FIG. 1D), which can be positioned within the tubular body 10. In one embodiment, the device is configured to be compatible with Neuronavigation systems by easily accommodating the Neuronavigation system stylet. The stylet 26 can provide additional kink resistance, rigidity and structural support to the catheter 10 such that it can be advanced through the patients' brain tissue to the target site. In certain embodiments, the stylet 26 can be configured to be used in combination with a standard image guided EVD placement system. As described below, after placement, the stylet 26 can then be removed to allow drainage through the tubular body 16. In a modified arrangement, the tubular body 16 can be reinforced by braiding, mesh or other constructions to provide increased kink resistance and ability to be pushed with or without a stylet.


In one embodiment, the tubular body energy delivery section 18 can comprise a material that is thinner than the material comprising the tubular body proximal region 14. In another exemplary embodiment, the tubular body energy delivery section 18 comprises a material that has a greater acoustic transparency than the material comprising the tubular body proximal region 14. In certain embodiments, the energy delivery section 18 comprises the same material or a material of the same thickness as the proximal region 14.



FIG. 1C shows an enlarged detail view of the proximal portion 14 of the ultrasonic catheter 10. The proximal portion 14 includes a connector 28. In the embodiment shown, the connector 28 comprises a series of annular rings 30 aligned in parallel. The connector 28 permits the catheter 10 to be joined to a drainage kit. For example, in one arrangement, the connector 28 is configured to connect to a standard EVD drainage kit that can include an attachment fitting that slides over the connector 28 or can include a buckle or joint that is fastened around connector 28. Specific length and configuration of the connector 28 can vary according to the needs of the particular application, and to facilitate connection with various drainage kits. Additionally, the number of annular rings 30 may vary in certain embodiments.


In the illustrated arrangement of FIGS. 1A-D and 1F, the catheter 10 can be use in combination with an inner core 32 (FIG. 1E) which can be inserted into the lumen 22 after the stylet 26 has been removed to deliver ultrasound energy to the target site. The core 32 can include proximal hub 34 fitted on one end of the inner core 32 proximal region. One or more ultrasound radiating members 36 are positioned within a distal region of the core and are coupled by wires 38 to the proximal hub 34. In some embodiments, the inner core 32 can be inserted into the lumen 22 and/or along a side of the catheter 10. In yet another arrangement, the core 32 can be inserted into the lumen 22 with the distal end including the ultrasound radiating members extending outside one of the holes positioned on the distal region of the catheter 10.


In other embodiments, the catheter 10 can include separate lumens for drainage and for drug delivery. FIGS. 1G and 1H show cross-sectional views of two embodiments of a catheter with multiple lumens. With reference to FIG. 1G, a fluid-delivery lumen 23 is located within the wall of the catheter 10, between the outer surface and the inner lumen 22, which may be used for fluid evacuation. In other embodiments, a plurality of fluid-delivery lumens 23 may be arranged within the catheter 10. Although shown as substantially circular in cross-section, any number of shapes may be employed to provide for optimal fluid flow through the fluid-delivery lumen 23. With reference to FIG. 1H, a separate fluid-delivery lumen 23 is located within a separate tube running longitudinally within the inner lumen 22. In certain embodiments, a plurality of fluid-delivery lumens 23 may be arranged within inner lumen 22. The size of fluid-delivery lumen 23 may be small enough so as to not interfere with the function of inner lumen 23 in evacuating fluid from the treatment site.


These separate lumens connect drainage and drug delivery holes positioned generally at the distal end of the catheter with drug delivery and drainage ports positioned at the proximal end of the catheter. In one embodiment, the device can include separate lumens for the drug and drain delivery such that the holes and ports for drug delivery and drainage are separated from each other. In some embodiments, the device can include multiple lumens for delivery of multiple drug types and/or multiple drug concentrations. The multiple drug lumens can also be used to target drug delivery along different lengths of the catheter. In some embodiments, the treatment zone (defined as the distance between the distal most and proximal most ultrasound transducer) can be about 1 to 4 cm. In other embodiments, the treatment zone may extend as far as 10 cm. The drug and drain ports can include luer type fittings. The ultrasound transducers can be positioned near or between the drain and drug delivery holes.



FIGS. 2A-D are schematic illustrations of an ultrasonic catheter according to another embodiment. The catheter 10 contains components similar to that shown in FIGS. 1A-C and FIG. 1F-H. However, in this embodiment, includes wires 38 embedded within the wall of the tube. As will be explained below, the wires can activate and control ultrasonic radiating elements located within the distal region 12 of the catheter 10. Additionally, the catheter 10 may include thermocouples for monitoring temperature of the treatment zone, the catheter, or surrounding areas. In some embodiments, each ultrasound radiating element is associated with a temperature sensor that monitors the temperature of the ultrasound radiating element. In other embodiments, the ultrasound radiating element itself is also a temperature sensor and can provide temperature feedback. In certain embodiments, one or more pressure sensors are also positioned to monitor pressure of the treatment site or of the liquid within the lumen of the catheter.


In the embodiment shown, the wires 38 are bundled and embedded within the wall of the tubular body 16. In other embodiments, the wires may not be bundled, but may, for example, each be spaced apart from one another. Additionally, in certain embodiments the wires may not be embedded within the wall of the tubular body 16, but may rather run within the lumen 22. The wires 38 may include protective and/or insulative coating.


The wires may be advantageously configured such that they can withstand tension applied to the catheter. For example, the wires may be able to withstand at least 3 pounds of tension. In other embodiments, the wires may be able to withstand at least 3.6 pounds, at least 4 pounds, or at least 4.5 pounds of tension.


The wires may also be configured such that they increase the stiffness of the tubular body 16 as little as possible. The flexibility of the tubular body 16 facilitates the introduction of the catheter 10 into body cavities such as the cranial cavity. It may therefore be advantageous to select wires that only minimally contribute to the stiffness of the catheter. The wires chosen may be between 30 and 48 gauge. In other embodiments, the wires may be between 33 and 45 gauge, between 36 and 42 gauge, or between 38 and 40 gauge. The number of wires within the catheter is determined by the number of elements and thermocouples in a particular device.


In certain embodiments, the drainage holes 20 include radii on the outside of the holes, as can be seen in FIG. 2B. Applying a larger external radius to each drainage hole may improve the flow of blood into the drainage holes 20 and through the lumen of the catheter and may reduce damage to brain tissue during insertion and withdrawal. Although the drainage holes 20 are depicted as arranged in regular rows, the pattern may vary considerably. The length of the region in which the holes are located may be between 2 and 4 cm. In certain embodiments, the length may be between 2.5 and 3.5 cm, or the length may be about 3 cm.


In the embodiment shown, the annular rings 30 located within in the proximal region 14 of the catheter 10 may be connected to the wires 38. In certain embodiments, a wire may be soldered to each annular ring 30. An electrical contact may then be exposed on the outer diameter of the annular ring 30 to provide for an electrical connection to an individual wire. By virtue of this design, each wire, and therefore each thermocouple or element, may be addressed independently. In alternative embodiments, two or more wires may be soldered to an annular ring, thereby creating a single electrical connection. In other embodiments, the wires may meet electrical contacts at other points within the catheter 10. Alternatively, the wires may pass through the wall of the tubular body 16 and connect directly to external apparatuses.



FIG. 3 is a schematic illustration of an ultrasonic catheter partially inserted into the brain. The catheter 10 may be positioned against the external surface of the skull, with the distal portion inserted through bore 40. The bore 40 creates an access path through the skull 42, dura 44, and into the brain tissue 46. Once in the brain tissue 46, excess blood resulting from hemorrhaging may be accepted into the drainage holes 20 located on the distal region of the catheter. Due to the angle of entry into the brain, the tubular body 16 of the catheter 10 is advantageously kink resistant, in particular around a bend. Kink resistance is advantageous at the distal region 12 of the catheter 10. As the catheter 10 is withdrawn from the brain tissue 46 and begins to straighten, excess stiffness of the catheter can result in the distal tip migrating into the brain tissue 46. The presence of the drainage holes 20 contributes to the flexibility at the distal region 12 of the catheter 10.


In one embodiment, the device can be placed using a tunneling technique which involves pulling the device under the scalp away from the point of entry in the brain to reduce the probability of catheter-initiated infections. In one embodiment, the catheter is made (at least partially) of a soft and pliant silicone material (and/or similar material) which will move with the brain matter during therapy without causing injury.


Dimensions of an ultrasonic catheter may vary according to different embodiments. For example, the Wall Factor is defined as the ratio of the outer diameter of the tube to the wall thickness. The inventors have discovered that a Wall Factor of 4 is useful in preventing kinking of the catheter. In particular, a Wall Factor of 4 may prevent kinking of the catheter around a 10 mm diameter bend, with the bend measured through the centerline of the catheter. The area of the tubular body 16 in which kink resistance is most advantageous is between 5 and 12 cm from the distal end of the device.


Various methods may be employed to impart kink resistance to the catheter 10. For instance, the tubular body 16 may be reinforced with coil to prevent kinking of the catheter around bends. In other embodiments, the tubular body has a wall thickness that is chosen (in light of the material) sufficient to prevent kinking as the catheter is placed through a bend.



FIGS. 4A-B illustrates one arrangement of the ultrasonic radiating elements 36. FIG. 4B is an enlarged detailed view of a cross-section of the ultrasonic catheter shown in FIG. 4A. As shown, in one arrangement, the ultrasonic radiating elements 36 can be disposed in the distal region 12 of the ultrasonic catheter 10. In other embodiments, thermocouples, pressure sensors, or other elements may also be disposed within the distal region 12. The distal region 12 may be composed of silicone or other suitable material, designed with drainage holes 20 as discussed above. Ultrasonic radiating elements 36 may be embedded within the wall of the distal region 12, surrounded by the silicone or other material. In addition to the ultrasonic radiating elements 36, the catheter may include wiring embedded within the wall of the flexible tubular body, as discussed in more detail above with reference to FIGS. 2A-2D. The ultrasonic radiating elements 36 can include connective wiring, discussed in greater detail below. In various embodiments, there may be as few as one and as many as 10 ultrasonic radiating elements 36 can be embedded with the distal region 12 of the device. The elements 36 can be equally spaced in the treatment zone. In other embodiments, the elements 36 can be grouped such that the spacing is not uniform between them. Spacing and location of the ultrasonic radiating elements can be based on multiple factors such as, but not limited to, the desired control over flow characteristics and the number of drug delivery lumen. In an exemplary embodiment, the catheter 10 includes two ultrasonic radiating elements 36. In this two-element configuration, the elements can be spaced apart approximately 1 cm axially, and approximately 180 degrees circumferentially. In another embodiment, the catheter 10 includes three ultrasonic radiating elements 36. In this three-element configuration, the elements 36 can be spaced approximately 1 cm apart axially, and approximately 120 degrees apart circumferentially. As will be apparent to the skilled artisan, various other combinations of ultrasonic radiating elements are possible.



FIGS. 5A-B illustrates another arrangement of the distal region of an ultrasonic catheter 10. FIG. 5B is an enlarged detail view of a cross-section of the ultrasonic catheter shown in FIG. 5A. In the configuration shown, two elements are spaced approximately 180 degrees apart circumferentially, and are equidistant from the distal tip of the catheter 10. The catheter can include only two ultrasonic radiating elements 36 in the distal region 12, or alternatively it may include four, six, eight, or more, with each pair arranged in the configuration shown. In embodiments containing more than one pair, the pairs may be aligned axially. Alternatively, each pair may be rotated slightly with respect to another pair of elements. In certain embodiments, each pair of radiating elements 36 are spaced apart axially approximately 1 cm. As will be described in greater detail below, the circumferential spacing of multiple ultrasonic radiating elements can advantageously enhance the degree of control over flow patterns and the uniformity of these flow patterns.


Still referring to FIG. 5B, an epoxy housing 48 is shown, surrounded by an external layer of silicone 50. In the embodiment shown, the ultrasonic radiating elements 36 are potted in the epoxy housing 48. The epoxy may be flush with the outer diameter of silicone 50. The epoxy housing 48 may have an axial length less than the length of the distal region 12. In embodiments including multiple pairs of ultrasonic radiating elements 36, each pair of elements may be confined to a separate epoxy housing 48. In one embodiment, the epoxy housing 48 may have an axial length of between 0.75 and 0.2 inches. In other embodiments, the epoxy housing 48 may have an axial length of between 0.1 and 0.15 inches, between 0.11 and 0.12 inches, or approximately 0.115 inches.



FIGS. 6A-B show two embodiments of epoxy housings 48 in which an ultrasonic radiating element 36 may be housed. Although the housing depicted is made from epoxy, any suitable material may be used. For instance, the housing may be made from rubber, polyurethane, or any polymer of suitable flexibility and stiffness. In embodiments employing epoxy, the housing may be formed by filling a polyimide sleeve with epoxy followed by curing.


In some embodiments, epoxy housings 48 may be embedded in the silicone layer with the assistance of chemical adhesives. In other embodiments, the housings 48 may additionally contain structural designs to improve the stability of the housing within the silicone. For instance, the housing 48 shown in FIG. 6A contains a notch 52 which, when fitted with a complementary structure of a silicone layer, may improve the stability of the housing 48 within the silicone layer. Such structural designs may be used in conjunction with or independently of chemical adhesives. FIG. 6B shows another embodiment of an epoxy housing 48. In this embodiment, the raised ridge 54 is designed such that the top surface may lie flush with a silicone layer that surrounds the epoxy housing 48. The presence of ridge 54, when positioned with a complementary silicone layer structure, may help to maintain the position of the housing, and therefore of the ultrasonic radiating element, with respect to the ultrasonic catheter.



FIGS. 7A-C show an ultrasonic catheter with a modified connector 28 that can be used in combination with the arrangements and embodiments described above. The catheter 10 includes flexible tubular body. Distal to the connector 28 is the proximal port 24, which is in communication with the lumen of the tubular body 16. In the embodiment shown, the proximal port 24 is coaxial with the lumen of the tubular body 16. In use, blood from the treatment site may enter the lumen through the drainage holes 20 located on the distal region 12 of the catheter 10. Blood may then flow through the lumen and exit through proximal port 24 into a drainage kit. In some embodiments, a negative pressure is applied to the lumen of the catheter 10 to facilitate movement of the blood or other liquids at the treatment site proximally along the lumen and out the proximal port 24. In other embodiments, no external pressure is applied, and the blood or other liquid is permitted to flow from the treatment site to the proximal port 24, unaided by external pressure. In certain types of treatment, the treatment site will possess relatively high pressure such that the natural pressure of the treatment site may cause blood or other liquids to flow from the treatment site proximally along the lumen, and out the proximal port 24.


Blood or other liquids may be drained at defined time intervals or continuously throughout the treatment. Additionally, in treatments involving intracranial hemorrhaging, by continuously draining fluid, the clot, under compression, may move towards the ultrasonic transducers for optimum ultrasound enhancement. In treatment of other diseases, continuous drainage can remove potentially toxic or other unwanted fluids from the treatment site. Additionally, such drainage can also be used to reduce pressure at the treatment site. Such reduction in pressure can be particularly important in highly sensitive areas such as the brain. Additionally, therapeutic agents may pass in the opposite direction. Such agents may enter the proximal port 24, pass distally through the lumen, and exit the catheter 10 through the drainage holes 20. In some embodiments, a positive pressure is applied to facilitate movement of the therapeutic agent or other liquid distally through the lumen and out the drainage holes 20. In other embodiments, no external pressure is applied, and the liquid is permitted to flow independently through the lumen. Therapeutic agents may be delivered in the form of a bolus within defined time intervals or continuously throughout the treatment. In order to allow for an exit path through the proximal port 24, the connector 28 is oriented at an angle with respect to the tubular body 16. In some embodiments, the connector lies at an angle between 10 and 90 degrees. In other embodiments, the connector 28 lies at an angle between 10 and 60 degrees, between 12 and 45 degrees, between 20 and 30 degrees, or approximately 22.5 degrees.


As described above with respect to other embodiments, the connector 28 may be configured to provide electrical connections to the ultrasound radiating elements. In the embodiments shown, however, the connector 28 may lie at an angle with respect to the tubular body 16. In certain embodiments, a wire may be soldered to a contact point on the inner portion of connector 28. An electrical contact may then be exposed on the outer surface of the connector 28 to provide for an electrical connection to an individual wire. By virtue of this design, each wire, and therefore each thermocouple or element, may be addressed independently. In alternative embodiments, two or more wires may be soldered to a single contact, thereby creating a single electrical connection. In other embodiments, the wires may meet electrical contacts at other points within the catheter 10. Alternatively, the wires may pass through the wall of the tubular body 16 and connect directly to external apparatuses.


The catheter 10 may be advanced until distal region 12 reaches the desired treatment site. For instance, the catheter 10 may be advanced through the cranial cavity until it is proximate to a treatment site near the target tissue. Therapeutic agents may then be delivered to the treatment site by the path described above. For instance, thrombolytic agents may be delivered to the treatment site, in order to dissolve the blood clot. In other instances, alkylating agents, antimetabolites, and anti-tumor drugs and/or antibiotics, may be delivered to the treatment site in order to penetrate into tumors. In certain embodiments, ultrasonic energy may then be applied to the treatment site, as discussed above. Ultrasonic energy, alone or in combination with therapeutic compounds, may advantageously expedite penetration into the target area. The ultrasonic energy may be applied continuously, periodically, sporadically, or otherwise.


A modified embodiment of an ultrasonic catheter with a proximal port is shown in FIGS. 8A-B. In the embodiment shown, the proximal port 24 is located on the flexible tubular body 16 and is in communication with the lumen of the tubular body 16. In this configuration, the proximal port 24 is perpendicular to the axis of the tubular body 16, as opposed to the configuration depicted in FIGS. 7A-C, in which the proximal port 24 is coaxial with the tubular body 16. Positioning the proximal port 24 on the wall of the tubular body 16 removes the need for the connector to lie at an angle with respect to the tubular body 16.


As discussed above, therapeutic agents may flow through proximal port 24, distally through the lumen, and may exit the catheter 10 through the drainage holes 20 in distal region 12. Additionally, blood or other liquid may flow in the opposite direction, entering the catheter through drainage holes 20, flowing proximally through the lumen, and exiting the catheter 10 through proximal port 24 and into a drainage kit or other disposal means. Ultrasonic energy may also be applied periodically, continuously, sporadically, or otherwise throughout the process as desired. In certain embodiments, external pressure, negative or positive, may be applied in order to facilitate movement of liquids from the proximal port 24 through the lumen and out drainage holes 20, or in the opposite direction. In other embodiments, liquids are permitted to flow through the lumen, unaided by external pressure.



FIGS. 9A-F illustrate another arrangement for arranging the wires of an ultrasonic catheter. This arrangement can be used with the embodiments and arrangements described above. In this arrangement, a spiral groove extrusion 56 provides structural support to the tubular body 16. In certain embodiments, the groove extrusion 56 may be replaced by a similar structure formed by molding or any other method. The spiral groove design can provide improved kink resistance compared to a solid structure. The spiral groove extrusion 56 may be formed of a variety of different materials. For example, in one arrangement, metallic ribbons can be used because of their strength-to-weight ratios, fibrous materials (both synthetic and natural). In certain embodiments, stainless steel or tungsten alloys may be used to form the spiral groove extrusion 56. In certain embodiments, more malleable metals and alloys, e.g. gold, platinum, palladium, rhodium, etc. may be used. A platinum alloy with a small percentage of tungsten may be preferred due to its radiopacity. A sleeve 58 is arranged to slide over the spiral groove extrusion 56. The material for sleeve 58 may be formed of almost any biocompatible material, such as polyvinyl acetate or any biocompatible plastic or metal alloy. Distal extrusion 60 can house ultrasonic elements as well as drainage holes 20. The distal extrusion 60 can be formed of materials such as those described above with respect to spiral groove extrusion 56. Wires 38 are affixed to the distal extrusion 60 and connected to thermocouple or ultrasound radiating elements. A distal tip 62 is fitted to the end of distal extrusion 60. of the tubular body of the ultrasonic catheter shown in



FIG. 9C shows a cross-sectional view of the tubular body 16 of the ultrasonic catheter shown in FIG. 9B. Outer diameter 64 may be approximately 0.2 inches. In other embodiments, the outer diameter 64 may be approximately 0.213 inches. The inner diameter 66 may be approximately 0.1 inches. In other embodiments, the inner diameter may be approximately 0.106 inches. As will be apparent, the dimensions of the inner and outer diameters will be selected according to the application intended based on, e.g., the diameter of the access path through the skull, the treatment site, the volume of therapeutic agent delivered, and anticipated volume of blood to be drained.


In the embodiment shown, the distal extrusion 60 may contain a window 68 in which an ultrasound radiating element may be affixed. In other embodiments, multiple ultrasonic radiating elements, each with a corresponding window 68, may be employed. As discussed above, the number, orientation, and relation of the ultrasonic radiating elements 36 may vary widely.



FIG. 9E shows a cross-sectional view of distal extrusion 60 shown in FIG. 9D. The drainage holes 20 are, in the embodiment shown, longitudinal gaps in the external surface of the distal extrusion 60. As can be seen in FIG. 9E, the distal extrusion 60 contains four drainage holes 20, each positioned approximately 90 degrees apart circumferentially. In other embodiments, two or three longitudinal drainage holes may be employed. In exemplary embodiments, five or more longitudinal drainage holes may be used.



FIGS. 10A-D show another embodiment of an ultrasonic catheter. As with FIGS. 9A-F, a spiral groove extrusion 56 provides the structural support to the flexible tubular body 16. Sleeve 58 is dimensioned to fit over the spiral extrusion 56. In the embodiment shown, the distal extrusion 60 has been excluded. Instead, the spiral extrusion 56 includes at its distal end drainage holes 20. Additionally, sleeve 58 also contains holes 70 designed to align with the drainage holes 20 of the spiral groove extrusion 56. In some embodiments, the spiral extrusion 56 and sleeve 58 may be joined before drainage holes 20 are drilled through both layers. Wires 38 are connected to ultrasound radiating elements 36. In the embodiment shown, the ultrasound radiating elements 36 and wires 38 are arranged to lie between the spiral extrusion 56 and the sleeve 58. As discussed above, the wires may be arranged in various other configurations. In certain embodiments, the wires may be arranged to lie within the spiral groove.



FIG. 10C shows a cross-sectional view of the proximal region of the ultrasonic catheter shown in FIG. 10B. The outer diameter 64 of the flexible tubular body 16 may be approximately 0.2 inches. In certain embodiments, the outer diameter 64 may be approximately 0.197 inches. The inner diameter 66 of the flexible tubular body 16 may be approximately 0.01 inches. In certain embodiments, the inner diameter 66 may be approximately 0.098 inches. As described above, the dimensions of the inner and outer diameters may vary based on the intended application.


As can be seen in FIG. 10D, in certain embodiments the spiral groove may become straight at the distal region 12 of the catheter. In this arrangement, the straightened region permits drainage holes 20 to be drilled in an arrangement of rows. Additionally, ultrasonic radiating elements 36 and wires 38 may be arranged to lie within the straight portion of the groove.



FIG. 11A-I show an ultrasonic catheter assembly according to one embodiment, in which a coaxial ultrasonic core is introduced into a separate external drain.



FIGS. 11A-C illustrate one embodiment of a drain 96. The distal portion 98 of the drain 96 includes drainage holes 100. In a preferred embodiment, the drainage holes 100 may span approximately 3 cm along the distal portion 98. In other embodiments, the drainage holes 100 may span shorter or longer distances, as desired. The drain 96 comprises an elongate tubular body 102, and may include distance markers 104. Distance markers 104 may be, for instance, colored stripes that surround the drain. In other embodiments, the distance markers 104 may be notches, grooves, radiopaque material, or any other material or structure that allows the regions to be visualized. The distance markers 104 may be spaced apart at regular intervals, for instance, every 2 cm, 5 cm, or other distance. In other embodiments they may be spaced in gradually increasing intervals, gradually decreasing intervals, irregularly, or in any other manner. In some embodiments, the distance between each marker will be written onto external surface of the drain. The presence of distance markers 104 may advantageously facilitate careful placement of the drain at a treatment site. In modified embodiments, a suture wing may be positioned at about 6 inches along the length of the catheter. Allowing a physician to visually observe the distance that the drain is advanced may improve control and placement precision.


The drain 96 includes a central lumen 106 which allows for the free flow of liquids from the drainage holes 100 towards the proximal portion 108 of the drain. As will be discussed in more detail below, in certain embodiments, any number of therapeutic compounds may be passed through the lumen 106 and out the drainage holes 100, where they then enter a treatment site. The diameter of the lumen may be approximately 2.2 mm, with an approximate outer diameter of 4.4 mm. In other embodiments, these diameters may be larger or smaller, as desired. As will be apparent to one of skill in the art, the inner and outer diameters of the drain 96 will be chosen based on desired treatment site, fluid flow rate through the lumen, the material used to construct the drain, and the size of the ultrasonic core or any other element intended to pass therethrough. In one arrangement, the drain may operate at a flow rate of approximately 20 ml per hour, at a pressure of 10 mmHg.



FIGS. 11D-E show one embodiment of an ultrasonic core 110. The ultrasonic core 110 comprises an elongate shaft 112 and hub 114. Ultrasonic elements 36 are positioned coaxially with the elongate shaft 112. In certain embodiments, the ultrasonic core includes between one and four ultrasonic elements 36. In other embodiments, five or more ultrasonic elements 36 may be included. The elongate shaft 112 is dimensioned so as to be removably received within drain 96. Accordingly, in certain embodiments, the outer diameter of the elongate shaft is approximately 0.8 mm, and the length of the elongate shaft is approximately 31 cm.


The hub 114 is attached to elongate shaft 112 through a tapered collar 116. A proximal fluid port 118 is in fluid communication with the hub. Fluids, such as therapeutic drugs, may be injected down the core through proximal fluid port 118 towards the treatment zone. Introducing fluids in this manner may permit the use of a smaller bolus of therapeutic drug as compared to introducing fluids through the drain as discussed above. Alternatively, fluids may be injected into the lumen 106 of drain 96 through use of a Tuohy-Borst adapter attached thereto. Injecting fluids through the lumen 106 of the drain 96 may require lower injection pressure, although a larger bolus of therapeutic drug may be necessary. In either configuration, the therapeutic drug ultimately flows out of drainage holes 100 located in the distal region 98 of drain 96.



FIGS. 11F-I illustrate the catheter assembly 120 in which ultrasonic core 110 is inserted within lumen 106 of drain 96. In certain embodiments, the drain 96 may be advanced to the treatment site, followed by insertion of the ultrasonic core 110 within the drain. For instance, the drain may be tunneled under the scalp, through a bore in the skull, and into the brain. Then the ultrasonic core 110 may be inserted into the drain 96, and advanced until the elongate shaft 112 reaches the distal region 98 of drain 96.


Upon insertion, ultrasonic elements 36 may be positioned near the drainage holes 100, allowing for the application of ultrasonic energy to the treatment site. As can be seen in FIGS. 11H and 11I, the distal end of the elongate shaft 112 of ultrasonic core 110 may include one or more ultrasonic elements 36. When advanced into the distal region 98 of drain 96, the ultrasonic radiating element 36 would be located within the region containing drainage holes 100. As discussed in more detail above, application of ultrasonic energy to a treatment site may aid in dissolution of a blood clot or in penetration of therapeutic compounds to a tumor or other targeted tissue.


With reference now to FIGS. 12A and 12B, in alternative embodiments two separate lumens may be included, one for fluid evacuation and one for fluid delivery. In certain embodiments, continuous fluid flow may be possible. For example, application of positive pressure at the drug delivery port and simultaneous application of vacuum at the drainage port may provide for continuous removal of toxic blood components. Alternatively, influx and efflux could be accomplished separately and intermittently to allow drugs to have a working dwell time. In certain embodiments, the catheter design could spatially separate drainage holes from drug delivery holes and inlet ports, with the ultrasound transducers in between. The ultrasound radiating radially may prevent influx from going directly to efflux.



FIG. 12A-C illustrate one embodiment of an ultrasonic element and core wire. The ultrasonic core wire 114 comprises locking apertures 116 and pad 118. When integrated within a completed ultrasonic core or ultrasonic catheter, the ultrasonic core wire 114 may be embedded in silicone. The two locking apertures 116 allow for silicone to flow through the opening, thereby providing for a mechanical lock that secures the element into the silicone. The locking apertures need not be circular, but may be any shape that permits silicone to flow therethrough to create a mechanical lock. Additionally, in certain embodiments there may be one locking aperture 116. In other embodiments, there may be two, three, four, or more locking apertures 116, as desired. Ultrasonic transducers 120 are affixed to either side of pad 118. RF wires 122 are then mounted to be in communication with ultrasonic transducers 120. A polyimide shell 124 may be formed around the assembly of the pad 118, ultrasonic transducers 120, and RF wires 122, as shown in FIG. 12C. The polyimide shell may be oval-shape to aid in correct orientation of the ultrasonic element, and to minimize the use of epoxy in manufacturing.



FIG. 13 illustrates an ultrasonic element suspended in a fluid-filled chamber. The fluid-filled chamber 126 is bounded circumferentially by a polyimide shell 124, with plugs 128 defining the ends of the fluid-filled chamber. Ultrasonic core wire 114 and RF wires 122 penetrate one of the plugs 128 to enter the fluid-filled chamber 126. A fluid-tight seal is provided at the point of penetration to ensure that the chamber retains its fluid. Within the fluid-filled chamber 126 are the ultrasonic transducers 120 affixed to the ultrasonic core wire 114 and in communication with RF wires 122. This design may provide for several advantages over other configurations. For instance, potting ultrasonic elements in epoxy may lead to absorption of water by the epoxy, potentially causing delamination of an ultrasonic element from the potting material. Delamination of an element reduces the ability of the ultrasonic energy to be transferred from the ultrasonic element to the surrounding tissue. Suspending an ultrasonic element within a fluid-filled chamber may advantageously avoid this problem. The ultrasonic energy emitted by the ultrasonic elements transfers easily in fluid, and there is no risk of delamination. In addition, suspending ultrasonic elements within a fluid-filled chamber may advantageously reduce the number of components needed for an ultrasonic core, as well as potentially reducing assembly time.



FIG. 14 schematically illustrates one embodiment of a feedback control system 72 that can be used with the catheter 10. The feedback control system 72 allows the temperature at each temperature sensor 76 to be monitored and allows the output power of the energy source 78 to be adjusted accordingly. In some embodiments, each ultrasound radiating element 36 is associated with a temperature sensor 76 that monitors the temperature of the ultrasound radiating element 36 and allows the feedback control system 72 to control the power delivered to each ultrasound radiating element 36. In some embodiments, the ultrasound radiating element 36 itself is also a temperature sensor 76 and can provide temperature feedback to the feedback control system 72. In addition, the feedback control system 72 allows the pressure at each pressure sensor 80 to be monitored and allows the output power of the energy source 78 to be adjusted accordingly. A physician can, if desired, override the closed or open loop system.


In an exemplary embodiment, the feedback control system 72 includes an energy source 78, power circuits 82 and a power calculation device 84 that is coupled to the ultrasound radiating elements 36 and a pump 86. A temperature measurement device 88 is coupled to the temperature sensors 76 in the tubular body 16. A pressure measurement device 90 is coupled to the pressure sensors 80. A processing unit 94 is coupled to the power calculation device 84, the power circuits 82 and a user interface and display 92.


In an exemplary method of operation, the temperature at each temperature sensor 76 is determined by the temperature measurement device 88. The processing unit 94 receives each determined temperature from the temperature measurement device 88. The determined temperature can then be displayed to the user at the user interface and display 92.


In an exemplary embodiment, the processing unit 94 includes logic for generating a temperature control signal. The temperature control signal is proportional to the difference between the measured temperature and a desired temperature. The desired temperature can be determined by the user (as set at the user interface and display 92) or can be preset within the processing unit 94.


In such embodiments, the temperature control signal is received by the power circuits 82. The power circuits 82 are configured to adjust the power level, voltage, phase and/or current of the electrical energy supplied to the ultrasound radiating elements 36 from the energy source 78. For example, when the temperature control signal is above a particular level, the power supplied to a particular group of ultrasound radiating elements 36 is reduced in response to that temperature control signal. Similarly, when the temperature control signal is below a particular level, the power supplied to a particular group of ultrasound radiating elements 36 is increased in response to that temperature control signal. After each power adjustment, the processing unit 94 monitors the temperature sensors 76 and produces another temperature control signal which is received by the power circuits 82.


In an exemplary method of operation, the pressure at each pressure sensor 80 is determined by the pressure measurement device 90. The processing unit 94 receives each determined pressure from the pressure measurement device 90. The determined pressure can then be displayed to the user at the user interface and display 92.


In an exemplary embodiment, the processing unit 94 includes logic for generating a pressure control signal. The pressure control signal is proportional to the difference between the measured pressure and a desired pressure. The desired pressure can be determined by the user (as set at the user interface and display 92) or can be preset within the processing unit 94.


As noted above, it is generally desirable to provide low negative pressure to the lumen in order to reduce the risk of sucking solid material, such as brain matter, into the lumen. Furthermore, because reduction of intracranial pressure is often desirable in highly sensitive areas such as the brain, it is often desirable to deliver fluids with little pressure differential between the delivery pressure and the intracranial pressure around the catheter to prevent any injury to sensitive tissue as a result of shear and strain caused by this pressure differential. Accordingly, the processing unit 94 can be configured to monitor the pressure and modify or cease the delivery of fluid and/or increase evacuation of fluid to the treatment site if intracranial pressure increases beyond a specified limit.


In other embodiments, the pressure control signal is received by the power circuits 82. The power circuits 82 are configured to adjust the power level, voltage, phase and/or current of the electrical energy supplied to the pump 86 from the energy source 78. For example, when the pressure control signal is above a particular level, the power supplied to a particular pump 86 is reduced in response to that pressure control signal. Similarly, when the pressure control signal is below a particular level, the power supplied to a particular pump 86 is increased in response to that pressure control signal. After each power adjustment, the processing unit 94 monitors the pressure sensors 80 and produces another pressure control signal which is received by the power circuits 82.


In an exemplary embodiment, the processing unit 94 optionally includes safety control logic. The safety control logic detects when the temperature at a temperature sensor 76 and/or the pressure at a pressure sensor 80 exceeds a safety threshold. In this case, the processing unit 94 can be configured to provide a temperature control signal and/or pressure control signal which causes the power circuits 82 to stop the delivery of energy from the energy source 78 to that particular group of ultrasound radiating elements 36 and/or that particular pump 86.


Consequently, each group of ultrasound radiating elements 36 can be identically adjusted in certain embodiments. For example, in a modified embodiment, the power, voltage, phase, and/or current supplied to each group of ultrasound radiating elements 36 is adjusted in response to the temperature sensor 76 which indicates the highest temperature. Making voltage, phase and/or current adjustments in response to the temperature sensed by the temperature sensor 76 indicating the highest temperature can reduce overheating of the treatment site.


The processing unit 94 can also be configured to receive a power signal from the power calculation device 84. The power signal can be used to determine the power being received by each group of ultrasound radiating elements 36 and/or pump 86. The determined power can then be displayed to the user on the user interface and display 92.


As described above, the feedback control system 72 can be configured to maintain tissue adjacent to the energy delivery section 18 below a desired temperature. For example, in certain applications, tissue at the treatment site is to have a temperature increase of less than or equal to approximately 6 degrees C. As described above, the ultrasound radiating elements 36 can be electrically connected such that each group of ultrasound radiating elements 36 generates an independent output. In certain embodiments, the output from the power circuit maintains a selected energy for each group of ultrasound radiating elements 36 for a selected length of time.


The processing unit 94 can comprise a digital or analog controller, such as a computer with software. In embodiments wherein the processing unit 94 is a computer, the computer can include a central processing unit (“CPU”) coupled through a system bus. In such embodiments, the user interface and display 92 can include a mouse, a keyboard, a disk drive, a display monitor, a nonvolatile memory system, and/or other computer components. In an exemplary embodiment, program memory and/or data memory is also coupled to the bus.


In another embodiment, in lieu of the series of power adjustments described above, a profile of the power to be delivered to each group of ultrasound radiating elements 36 can be incorporated into the processing unit 94, such that a preset amount of ultrasonic energy to be delivered is pre-profiled. In such embodiments, the power delivered to each group of ultrasound radiating elements 36 is provided according to the preset profiles.


In an exemplary embodiment, the ultrasound radiating elements are operated in a pulsed mode. For example, in one embodiment, the time average power supplied to the ultrasound radiating elements is between about 0.1 watts and about 2 watts. In another embodiment, the time average power supplied to the ultrasound radiating elements is between about 0.5 watts and about 1.5 watts. In yet another embodiment, the time average power supplied to the ultrasound radiating elements is approximately 0.6 watts or approximately 1.2 watts. In an exemplary embodiment, the duty cycle is between about 1% and about 50%. In another embodiment, the duty cycle is between about 5% and about 25%. In yet another embodiment, the duty cycles is approximately 7.5% or approximately 15%. In an exemplary embodiment, the pulse averaged power is between about 0.1 watts and about 20 watts. In another embodiment, the pulse averaged power is between approximately 5 watts and approximately 20 watts. In yet another embodiment, the pulse averaged power is approximately 8 watts or approximately 16 watts. The amplitude during each pulse can be constant or varied.


In an exemplary embodiment, the pulse repetition rate is between about 5 Hz and about 150 Hz. In another embodiment, the pulse repetition rate is between about 10 Hz and about 50 Hz. In yet another embodiment, the pulse repetition rate is approximately 30 Hz. In an exemplary embodiment, the pulse duration is between about 1 millisecond and about 50 milliseconds. In another embodiment, the pulse duration is between about 1 millisecond and about 25 milliseconds. In yet another embodiment, the pulse duration is approximately 2.5 milliseconds or approximately 5 milliseconds.


For example, in one particular embodiment, the ultrasound radiating elements are operated at an average power of approximately 0.6 watts, a duty cycle of approximately 7.5%, a pulse repetition rate of approximately 30 Hz, a pulse average electrical power of approximately 8 watts and a pulse duration of approximately 2.5 milliseconds.


In an exemplary embodiment, the ultrasound radiating element used with the electrical parameters described herein has an acoustic efficiency greater than approximately 50%. In another embodiment, the ultrasound radiating element used with the electrical parameters described herein has an acoustic efficiency greater than approximately 75%. As described herein, the ultrasound radiating elements can be formed in a variety of shapes, such as, cylindrical (solid or hollow), flat, bar, triangular, and the like. In an exemplary embodiment, the length of the ultrasound radiating element is between about 0.1 cm and about 0.5 cm, and the thickness or diameter of the ultrasound radiating element is between about 0.02 cm and about 0.2 cm.


With reference now to FIG. 15, in one embodiment of a treatment protocol, patients can be taken to an operating room and placed under general anesthesia for ultrasound and drainage catheter insertion. Patients can be registered using electromagnetic (EM) stealth, based on CT parameters for stereotactic placement of catheters using the Medtronic EM Stealth navigation system. However, as described above, in modified embodiments, other navigation techniques and tools could be used. Using such navigation systems, an entry point for the burr hole and hemorrhage target location for the catheter tips can be chosen. It should be appreciated that the location of the burr-hole or drill hole can be selected to reduce the path length between the target tissue and the hole in the patient's skull. In addition, it may be desirable in some cases to approach the targeted tissue from an angle that avoids certain portions of the brain.


In the illustrated embodiment, a Stealth guidance system (or other guidance system or technique) can used to place a 12 French peel-away introducer through the burr hole into the desired location in the hemorrhage, to accommodate placement of the ultrasonic catheter 10. In modified arrangements, a different size and/or type of introducer could be used and/or the ultrasonic catheter can be inserted without an introducer.


As shown in FIG. 15, the catheter 10 can be with the peel away introducer and the position confirmed by neuro-navigation or other navigation technique. In one embodiment, the two catheters can then be tunneled out through a separate stab wound in the skin and secured to the patient. A portable CT scan can be done at the completion of the procedure to confirm acceptable catheter placement. In one embodiment, the distal tip of the ultrasonic catheter 10 is generally positioned long the longitudinal center (measured along the axis of the catheter) of the hemorrhage. As described above, in other embodiments, an ultrasonic core can be place through a lumen in the catheter (see e.g., FIGS. 1A-F). In other embodiments, the ultrasonic catheter can be placed along side the catheter.


Ultrasound energy can be delivered for a duration sufficient to enable adequate drug distribution in and/or around the target tissue. This can be accomplished by either intermittent or continuous delivery of ultrasound energy. For example, ultrasound energy can be delivered for a set time period to adequately distribute the drug to the target tissue, and then turned off to allow the drug to act on the target tissue. Alternatively, ultrasound energy can be delivered substantially continuously after the drug has been delivered to the target tissue to continuously redistribute the drug into the target tissue and continuously enhance the drug penetration into such tissue. In addition, ultrasound energy can be delivered intermittently to reduce heating. Also, as described in U.S. application Ser. No. 11/971,172, filed Jan. 8, 2008, which is hereby incorporated by reference herein in its entirety, the power parameters controlling the delivery of ultrasound energy can be randomized or varied according to complex non-linear algorithms in order to enhance the efficacy of the ultrasound treatment.


Drug delivery can be controlled by monitoring, for example, byproducts of the metabolized drug. For example, in the treatment of blood clots with lytic compounds, lysis byproducts such as D-dimer in the effluent evacuated from the blood clot can be monitored. A high and/or increasing concentration of D-dimer in the effluent can indicate that lysis of the blood clot is proceeding adequately, and therefore drug delivery can be maintained, reduced or stopped. A low or decreasing concentration of D-dimer in the effluent can indicate that lysis of the blood clot is inadequate or slowing or that the clot is nearly dissolved, and therefore drug delivery can be increased if the clot is not nearly dissolved, and reduced or stopped if lysis is almost complete. Alternatively, the concentration of the drug can be monitored to determine whether more drug should be delivered and whether treatment is complete. In some embodiments involving treatment of blood clots, as lysis of the blood clot proceeds, lytic is freed from the lysed clot, thereby increasing the concentration of lytic in the effluent. Therefore, increased lytic concentration can correlate to lysis completion. One way of determining the concentration of lytic and/or D-dimer in the effluent is to measure the color of the effluent that is evacuated from the blood clot. The redder the effluent, the greater the concentration of lytic and/or D-dimer in the effluent.


In some embodiments, neuroprotective drugs or agents that assist in the functional recovery and/or the reduction of cell and tissue damage in the brain can also be delivered to the brain and blood clot with the methods and apparatus described above. These neuroprotective drugs or agents can be delivered before, with, or after the delivery of the thrombolytic drugs. Delivery of these drugs using the methods and apparatus described above is particularly useful where the drug delivery through the blood brain barrier is enhanced with ultrasound treatment, or where ultrasound enhances cell penetration by the drug, or where the drug is sonodynamic.


Another embodiment of an ultrasonic catheter is shown in FIGS. 16A-E. Similar to the embodiments described above with respect to FIGS. 2A-D, the catheter includes wires 38 embedded within the wall of the tubular body 16. The wires 38 are connected to and may control ultrasonic radiating elements 36 located within the distal region 12 of the catheter 10. The wires extend from the proximal end of the tubular body 16. In certain embodiments, the wires extend more than six inches from the proximal end, so as to facilitate electrical connection with external devices. Drainage holes 20 are positioned in the distal region 12 of the catheter 10, near the ultrasonic radiating elements 36. In other embodiments, thermocouples, pressure sensors, or other elements may also be disposed within the distal region 12. The distal region 12 may be composed of silicone or other suitable material, designed with drainage holes 20 as discussed above. Ultrasonic radiating elements 36 may be embedded within the wall of the distal region 12, surrounded by the silicone or other material. In various embodiments, there may be as few as one and as many as 10 ultrasonic radiating elements 36 can be embedded with the distal region 12 of the device. The elements 36 can be equally spaced in the treatment zone. In other embodiments, the elements 36 can be grouped such that the spacing is not uniform between them. In an exemplary embodiment illustrated in FIGS. 16B-D, the catheter 10 includes four ultrasonic radiating elements 36. In this four-element configuration, the elements can be spaced apart as pairs, with each pair located at a similar longitudinal position, but separated by 180 degrees circumferentially. The pairs of offset from one another both by 90 degrees circumferentially and by a longitudinal distance along the length of the catheter 10. As will be apparent to the skilled artisan, various other combinations of ultrasonic radiating elements are possible.



FIGS. 17A-D illustrates potential sequencing and synchronization of activation of ultrasonic radiating elements within an ultrasound catheter 1700 placed within a cavity 1701. In an exemplary embodiment, the sequencing and synchronization can be performed by the processing unit 94 (as shown in FIG. 14) which may additionally include logic configured to allow the processing unit 94 to selectively activate ultrasonic radiating elements in an embodiment of the ultrasound catheter. In the illustrated embodiment, the ultrasound catheter 1700 includes ultrasound radiating elements 1702, 1704, 1706, 1708, 1710, and 1712 and drainage holes 1714, 1718, 1722, and 1726. Drainage holes 1714, 1718, 1722, and 1726 are in fluid communication with lumen 1716, 1720, 1724, and 1728 respectively with each lumen being in fluid communication with a separate port at a proximal end of the catheter. Some or all of the drainage holes can be configured to allow therapeutic compounds, input into ports at the proximal end of the device, to pass through and out of these holes. Alternatively, some or all of the drainage holes can be configured to remove fluid from the implantation location, through the corresponding lumen, and out of the ports at a proximal end of the catheter. As such, some drainage holes can be used to deliver drugs to the target location while others can be used to remove fluids from the target location. In other embodiments, fewer or greater numbers of radiating elements and/or drainage holes can be used. Furthermore, in other embodiments, the radiating elements may be placed closer to or at the center of the ultrasound catheter 1700. In some embodiments, the drainage holes can be coupled to a common or single lumen.


In one embodiment, the ultrasound radiating elements 1702, 1704, 1706, 1708, 1710, and 1712 are activated in sequence such that the pattern of pressure waves created by activation of individual elements creates a flow throughout the target area. For example, in one embodiment as shown in FIG. 17B, a first pair of ultrasound radiating elements 1702 and 1704 are activated for a first interval at a first point in time which create a first pressure wave 1730b. This pressure wave causes fluid to flow in the directions shown by arrows 1732b and 1734b. Fluid to the left of element 1702 and 1704 moves in the direction of arrow 1732b while fluid to the right of element 1702 and 1704 moves in the direction of arrow 1734b. Subsequently, as shown in FIG. 17C, a second pair of ultrasound radiating elements 1706 and 1708 are activated for a second interval at a second point in time causing a second pressure wave 1730c. This causes fluid to flow in the direction of arrows 1732c and 1734c. Finally, as shown in FIG. 17D, a third pair of ultrasound radiating elements 1710 and 1712 are activated for a third interval at a third point in time causing third pressure wave 1730d. This causes fluid to flow in the direction of arrows 1732d and 1734d. So long as the elements are activated for a sufficient interval, fluid containing the drugs can flow distal the subsequent pair of elements. Therefore, activation of a subsequent pair of elements causes the fluid containing the drugs to flow even further distal the second pair of elements.


It should be apparent to one of skill in the art that the length of the intervals and the delay between the points in time can be configured based on the desired flow rate and the characteristics of the fluid. Therefore, in some embodiments, the intervals are such that there is no overlap in activation between subsequent pairs of ultrasound radiating elements. In other embodiments, the intervals are such that there is some overlap in activation between subsequent pairs of ultrasound radiating elements such that, at least during one point in time, two pairs are simultaneously activated. By activating the ultrasound radiating elements in this sequence, pressure waves can cause fluid to flow from the location of the first pair of ultrasound radiating elements 1702 and 1704 to a distal end of the ultrasound catheter 1700. This flow path can potentially reduce the likelihood of fluid containing the drugs to travel against the desired flow path (i.e., backflow) thereby delivering a more substantial amount of the drugs to the target area and reducing the amount of drugs entering areas not targeted for treatment. It should be appreciated by one of skill in the art that increasing the number of ultrasound radiating elements around the circumference of the ultrasound catheter 1700 can likely provide a more advantageous safeguard against backflow.


In another embodiment, the activation of ultrasound radiating elements 1702, 1704, 1706, 1708, 1710, and 1712 may be differed to change flow patterns around the ultrasound catheter. For example, the ultrasound radiating elements may be activated in sequence in the following order—1702, 1706, 1710, 1712, 1708, and 1704—to create a flow path in which fluid along the top of the ultrasound catheter 1700 flows in a direction from the proximal end to the distal end whereas fluid along the bottom of the ultrasound catheter 1700 flows in a direction from the distal end to the proximal end. Such a flow pattern can be advantageous, for example, when the top drainage holes 1714 and 1722 are configured to deliver drugs to the target area and bottom drainage holes 1718 and 1726 are configured to remove fluid, such as toxic product, from the target area. Fluid flow across the top drainage holes 1714 and 1722 can cause drugs to pass through and out of the top drainage holes 1714 and 1722. Other activation sequences are contemplated which can alter the flow characteristics around the ultrasound catheter 1700. As such, the amount of positive pressure used at the top drainage holes 1714 and 1722 can be advantageously reduced while still being delivered fully to the target area and the amount of negative pressure used at the bottom drainage holes 1718 and 1726 can also be advantageously reduced while still removing the same amount of fluid. This can reduce the likelihood of injuries being sustained by brain tissue caused either by positive pressure or by negative pressure.


In yet another embodiment, the activation of ultrasound radiating elements 1702, 1704, 1706, 1708, 1710, and 1712 can be synchronized with delivery of drugs through drainage holes 1714, 1718, 1722, and 1726. In one embodiment, no pumps are attached to the separate lumen 1716, 1720, 1724, and 1728. Rather, activation of the ultrasound radiating elements can be used to generate a flow pattern which could subsequently cause drugs to pass through the lumen and out of the corresponding drainage holes. In another embodiment, pumps are attached to the separate lumen and are used to eject drugs out of the drainage holes. Activation of ultrasound radiating elements can be synchronized with the activation of pumps such that drugs delivered through different drainage holes can be delivered to different target locations. In one non-limiting embodiment, a pump can cause a first drug to pass out of drainage hole 1714. Subsequent to this, ultrasound radiating element 1702 can then be activated. In sequence, element 1706 can then be activated followed by element 1710 such that the first drug is delivered to a location that is distal of element 1710. In this embodiment, a pump can also cause a second drug to pass out of drainage hole 1722. In this embodiment, only element 1706 is activated such that the second drug is delivered to a location proximal the delivery location of the first drug. As should be apparent to one of skill in the art, a greater number of radiating elements along the length of the ultrasound catheter can be used to provide greater control over the final location of the drug.


While the foregoing detailed description has set forth several exemplary embodiments of the apparatus and methods of the present invention, it should be understood that the above description is illustrative only and is not limiting of the disclosed invention. It will be appreciated that the specific dimensions and configurations disclosed can differ from those described above, and that the methods described can be used within any biological conduit within the body.

Claims
  • 1. A method of delivering compounds to a target region, comprising the steps of: advancing an ultrasound catheter to the target region, the ultrasound catheter comprising a plurality of ultrasound radiating elements along a first side of the ultrasound catheter, a plurality of ultrasound radiating elements along a second side of the ultrasound catheter, and a first hole, wherein the two or more ultrasound radiating elements are spaced apart longitudinally along the ultrasound catheter;introducing a first therapeutic compound to the target location via the first hole; andsequentially activating the plurality of ultrasound radiating elements wherein: the plurality of ultrasound radiating elements along the first side of the ultrasound catheter can be activated in a first direction such that the first therapeutic compound is directed to a first target area, andthe plurality of ultrasound radiating elements along the second side of the ultrasound catheter can be activated in a second direction such that the ultrasound catheter can be configured to remove fluid from a second target area.
  • 2. The method of claim 1, wherein the step of sequentially activating the two or more ultrasound radiating elements comprises alternately activating adjacent ultrasound radiating elements such that at least a portion of the fluid proximate a proximal-most ultrasound radiating element flows distal the activated ultrasound radiating elements.
  • 3. The method of claim 1, wherein the step of sequentially activating the two or more ultrasound radiating elements comprises alternately activating adjacent ultrasound radiating elements such that at least a portion of the fluid proximate a distal-most radiating element flows proximal the activated ultrasound radiating elements.
  • 4. The method of claim 1, wherein the step of sequentially activating the two or more ultrasound radiating elements comprises activating two or more ultrasound radiating elements such that at least a portion of the fluid remains between the activated ultrasound radiating elements.
  • 5. The method of claim 1, wherein step of introducing a first therapeutic compound into the target region comprises activating a first pump in fluid communication with the first passage.
  • 6. The method of claim 5, further comprising synchronizing the activation of the two or more ultrasound radiating elements with the activation of the first pump such that the first therapeutic compound is directed to the first target area.
  • 7. The method of claim 1, wherein the ultrasound catheter further comprises a second hole.
  • 8. The method of claim 7, further comprising draining fluid from the cavity through the second hole.
  • 9. The method of claim 8, further comprising introducing a second therapeutic compound into the cavity via the second hole and sequentially activating the two or more ultrasound radiating elements such that the second therapeutic compound is directed to the second target area.
  • 10. The method of claim 1, further comprising increasing the permeability of the target region using at least one of the first and second ultrasound radiating elements.
PRIORITY INFORMATION

The present application claims priority to U.S. Provisional Application No. 61/781,750 filed Mar. 14, 2013, the entire contents of which is hereby expressly incorporated by reference.

STATEMENT REGARDING FEDERALLY SPONSORED R&D

The invention was made with government support under Grant No. 1RC3NS070623-01 awarded by the National Institutes of Health and the National Institute of Neurological Disorders and Stroke. The government has certain rights to the invention.

US Referenced Citations (370)
Number Name Date Kind
3352303 Delaney Nov 1967 A
3430625 McLeod, Jr. Mar 1969 A
3565062 Kuris Feb 1971 A
3827115 Bom Aug 1974 A
3861391 Antonevich et al. Jan 1975 A
3941122 Jones Mar 1976 A
4192294 Vasilevsky et al. Mar 1980 A
4309989 Fahim Jan 1982 A
4319580 Colley et al. Mar 1982 A
4354502 Colley et al. Oct 1982 A
4682596 Bales et al. Jul 1987 A
4692139 Stiles Sep 1987 A
4808153 Parisi Feb 1989 A
4870953 DonMicheal et al. Oct 1989 A
4936281 Stasz Jun 1990 A
4953565 Tachibana et al. Sep 1990 A
4971991 Umemura et al. Nov 1990 A
5058570 Idemoto et al. Oct 1991 A
5069664 Guess Dec 1991 A
5076276 Sakurai et al. Dec 1991 A
5088499 Unger Feb 1992 A
5163421 Bernstein et al. Nov 1992 A
5163436 Saitoh et al. Nov 1992 A
5197946 Tachibana Mar 1993 A
5261291 Schoch et al. Nov 1993 A
5267954 Nita Dec 1993 A
5269291 Carter Dec 1993 A
5279546 Mische et al. Jan 1994 A
5304115 Pflueger Apr 1994 A
5307816 Hashimoto May 1994 A
5315998 Tachibana et al. May 1994 A
5318014 Carter Jun 1994 A
5326342 Pflueger Jul 1994 A
5342292 Nita et al. Aug 1994 A
5344395 Whalen et al. Sep 1994 A
5345940 Seward Sep 1994 A
5362309 Carter Nov 1994 A
5368557 Nita Nov 1994 A
5368558 Nita Nov 1994 A
5380273 Dubrul et al. Jan 1995 A
5401237 Tachibana et al. Mar 1995 A
5423797 Adrian et al. Jun 1995 A
5431663 Carter Jul 1995 A
5440914 Tachibana et al. Aug 1995 A
5447509 Mills et al. Sep 1995 A
5454782 Perkins Oct 1995 A
5456259 Barlow et al. Oct 1995 A
5474530 Passafaro Dec 1995 A
5474531 Carter Dec 1995 A
5498236 Dubrul et al. Mar 1996 A
5509896 Carter Apr 1996 A
5542917 Nita et al. Aug 1996 A
5542935 Unger et al. Aug 1996 A
5558092 Unger et al. Sep 1996 A
5582586 Tachibana et al. Dec 1996 A
5603327 Eberle Feb 1997 A
5606974 Castellano Mar 1997 A
5620409 Gans et al. Apr 1997 A
5624382 Oppelt et al. Apr 1997 A
5630837 Crowley May 1997 A
5648098 Porter Jul 1997 A
5660909 Tachibana et al. Aug 1997 A
5681296 Ishida Oct 1997 A
5695460 Siegel et al. Dec 1997 A
5720710 Tachibana et al. Feb 1998 A
5724976 Hirama et al. Mar 1998 A
5725494 Brisken Mar 1998 A
5728062 Brisken Mar 1998 A
5752930 Baudino et al. May 1998 A
5772627 Acosta et al. Jun 1998 A
5823962 Lerch et al. Oct 1998 A
5827203 Nita Oct 1998 A
5834880 Lewandowski et al. Nov 1998 A
5840031 Crowley Nov 1998 A
5846218 Brisken et al. Dec 1998 A
5876345 Eaton et al. Mar 1999 A
5925016 Chornenky et al. Jul 1999 A
5928186 Homsma et al. Jul 1999 A
5934284 Plaia et al. Aug 1999 A
5957851 Hossack Sep 1999 A
5957882 Nita et al. Sep 1999 A
5971949 Levin et al. Oct 1999 A
5976120 Chow et al. Nov 1999 A
5997497 Nita et al. Dec 1999 A
6001069 Tachibana et al. Dec 1999 A
6024718 Chen et al. Feb 2000 A
6044845 Lewis et al. Apr 2000 A
6063069 Cragg et al. May 2000 A
6066123 Bednarski et al. May 2000 A
6088613 Unger Jul 2000 A
6089573 Udagawa Jul 2000 A
6113570 Siegel et al. Sep 2000 A
6117101 Diederich et al. Sep 2000 A
6135976 Tachibana et al. Oct 2000 A
6144869 Berner et al. Nov 2000 A
6149596 Bancroft Nov 2000 A
6176842 Tachibana et al. Jan 2001 B1
6206831 Suorsa et al. Mar 2001 B1
6210356 Anderson et al. Apr 2001 B1
6210393 Brisken Apr 2001 B1
6221038 Brisken Apr 2001 B1
6228046 Brisken May 2001 B1
6235024 Tu May 2001 B1
6238347 Nix et al. May 2001 B1
6270460 McCartan et al. Aug 2001 B1
6277077 Brisken et al. Aug 2001 B1
6287271 Dubrul et al. Sep 2001 B1
6295990 Lewis et al. Oct 2001 B1
6296619 Brisken et al. Oct 2001 B1
6312402 Hansmann Nov 2001 B1
6322513 Schregel Nov 2001 B1
6356776 Berner et al. Mar 2002 B1
6361554 Brisken Mar 2002 B1
6391042 Cimino May 2002 B1
6394956 Chandrasekaran et al. May 2002 B1
6398772 Bond et al. Jun 2002 B1
6398792 O'Connor Jun 2002 B1
6416740 Unger Jul 2002 B1
6435189 Lewis et al. Aug 2002 B1
6454737 Nita et al. Sep 2002 B1
6454757 Nita et al. Sep 2002 B1
6464680 Brisken et al. Oct 2002 B1
6471683 Drasier et al. Oct 2002 B2
6478765 Siegel et al. Nov 2002 B2
6494891 Cornish et al. Dec 2002 B1
6506584 Chandler et al. Jan 2003 B1
6524251 Rabiner et al. Feb 2003 B2
6524271 Brisken et al. Feb 2003 B2
6551337 Rabiner et al. Apr 2003 B1
6558366 Drasler et al. May 2003 B1
6562021 Derbin et al. May 2003 B1
6565552 Barbut May 2003 B1
6575956 Brisken et al. Jun 2003 B1
6579277 Rabiner et al. Jun 2003 B1
6582392 Bennett et al. Jun 2003 B1
6585678 Tachibana et al. Jul 2003 B1
6589253 Cornish et al. Jul 2003 B1
6594514 Berner et al. Jul 2003 B2
6605084 Acker et al. Aug 2003 B2
6623444 Babaev Sep 2003 B2
6635046 Barbut Oct 2003 B1
6645150 Angelsen et al. Nov 2003 B2
6647755 Rabiner et al. Nov 2003 B2
6652547 Rabiner et al. Nov 2003 B2
6660013 Rabiner Dec 2003 B2
6663613 Evans et al. Dec 2003 B1
6676626 Bennett et al. Jan 2004 B1
6682502 Bond et al. Jan 2004 B2
6689086 Nita et al. Feb 2004 B1
6695781 Rabiner et al. Feb 2004 B2
6695782 Ranucci et al. Feb 2004 B2
6695785 Brisken et al. Feb 2004 B2
6699269 Khanna Mar 2004 B2
6723063 Zhang et al. Apr 2004 B1
6723064 Babaev Apr 2004 B2
6726698 Cimino Apr 2004 B2
6730048 Hare et al. May 2004 B1
6733451 Rabiner et al. May 2004 B2
6733515 Edwards et al. May 2004 B1
6740040 Mandrusov et al. May 2004 B1
6767345 St. Germain et al. Jul 2004 B2
6796992 Barbut Sep 2004 B2
6824575 Otomo et al. Nov 2004 B1
6830577 Nash et al. Dec 2004 B2
6849062 Kantor Feb 2005 B2
6850790 Berner et al. Feb 2005 B2
6855123 Nita Feb 2005 B2
6866670 Rabiner et al. Mar 2005 B2
6905505 Dodson, Jr. et al. Jun 2005 B2
6921371 Wilson Jul 2005 B2
6929632 Nita et al. Aug 2005 B2
6929633 Evans et al. Aug 2005 B2
6942620 Nita et al. Sep 2005 B2
6942677 Nita et al. Sep 2005 B2
6945937 Culp et al. Sep 2005 B2
6958040 Oliver Oct 2005 B2
6979293 Hansmann et al. Dec 2005 B2
6985771 Fischell et al. Jan 2006 B2
7025425 Kovatchev et al. Apr 2006 B2
7084118 Armstrong et al. Aug 2006 B2
7137963 Nita et al. Nov 2006 B2
7141044 Gentsler Nov 2006 B2
7166098 Steward et al. Jan 2007 B1
7174199 Berner et al. Feb 2007 B2
7186246 Bennett et al. Mar 2007 B2
7220233 Nita et al. May 2007 B2
7220239 Wilson et al. May 2007 B2
7300414 Holland et al. Nov 2007 B1
7308303 Whitehurst et al. Dec 2007 B2
7309334 von Hoffmann Dec 2007 B2
7335180 Nita et al. Feb 2008 B2
7341569 Soltani et al. Mar 2008 B2
7384407 Rodriguez et al. Jun 2008 B2
7503895 Rabiner et al. Mar 2009 B2
7540852 Nita et al. Jun 2009 B2
7567016 Lu et al. Jul 2009 B2
7604608 Nita et al. Oct 2009 B2
7621902 Nita et al. Nov 2009 B2
7621929 Nita et al. Nov 2009 B2
7648478 Soltani et al. Jan 2010 B2
7717853 Nita May 2010 B2
7727178 Wilson Jun 2010 B2
7758509 Angelsen et al. Jul 2010 B2
7771372 Wilson Aug 2010 B2
7774933 Wilson et al. Aug 2010 B2
7789830 Fujita et al. Sep 2010 B2
7818854 Wilson Oct 2010 B2
7828754 Abe et al. Nov 2010 B2
7828762 Wilson Nov 2010 B2
7874985 Kovatchev et al. Jan 2011 B2
7901359 Mandrusov et al. Mar 2011 B2
7914509 Bennett et al. Mar 2011 B2
8012092 Powers et al. Sep 2011 B2
8062566 Nita et al. Nov 2011 B2
8123789 Khanna Feb 2012 B2
8152753 Nita et al. Apr 2012 B2
8167831 Wilson May 2012 B2
8192363 Soltani et al. Jun 2012 B2
8192391 Soltani Jun 2012 B2
8366620 Nita Feb 2013 B2
8696612 Wilson et al. Apr 2014 B2
8740835 Soltani et al. Jun 2014 B2
9044568 Wilcox et al. Jun 2015 B2
9107590 Hansmann et al. Aug 2015 B2
9192566 Soltani et al. Nov 2015 B2
20020032394 Brisken et al. Mar 2002 A1
20020045890 Celliers et al. Apr 2002 A1
20020052620 Barbut May 2002 A1
20020068869 Brisken et al. Jun 2002 A1
20020077550 Rabiner et al. Jun 2002 A1
20020082238 Newman et al. Jun 2002 A1
20020123787 Weiss Sep 2002 A1
20020133081 Ackerman et al. Sep 2002 A1
20020133111 Shadduck Sep 2002 A1
20020193708 Thompson et al. Dec 2002 A1
20020198526 Shaolian et al. Dec 2002 A1
20030036705 Hare et al. Feb 2003 A1
20030040501 Newman et al. Feb 2003 A1
20030050662 Don Michael Mar 2003 A1
20030065263 Hare et al. Apr 2003 A1
20030069525 Brisken et al. Apr 2003 A1
20030083608 Evans et al. May 2003 A1
20030083698 Whitehurst et al. May 2003 A1
20030088187 Saadat et al. May 2003 A1
20030163147 Hare et al. Aug 2003 A1
20030187320 Freyman Oct 2003 A1
20030199831 Morris et al. Oct 2003 A1
20030236539 Rabiner et al. Dec 2003 A1
20040001809 Brisken et al. Jan 2004 A1
20040019318 Wilson et al. Jan 2004 A1
20040039311 Nita et al. Feb 2004 A1
20040049148 Rodriguez et al. Mar 2004 A1
20040059313 Anderson et al. Mar 2004 A1
20040068189 Wilson et al. Apr 2004 A1
20040097996 Hare et al. May 2004 A1
20040122354 Semba Jun 2004 A1
20040138570 Nita et al. Jul 2004 A1
20040162571 Rabiner et al. Aug 2004 A1
20040171981 Buffen et al. Sep 2004 A1
20040220514 Cafferata Nov 2004 A1
20040236350 Bolduc et al. Nov 2004 A1
20040255957 Cafferata Dec 2004 A1
20040265393 Unger et al. Dec 2004 A1
20050021063 Hall et al. Jan 2005 A1
20050043629 Rabiner et al. Feb 2005 A1
20050043753 Rabiner et al. Feb 2005 A1
20050096669 Rabiner et al. May 2005 A1
20050113688 Nita et al. May 2005 A1
20050119679 Rabiner et al. Jun 2005 A1
20050124877 Nita et al. Jun 2005 A1
20050137520 Rule et al. Jun 2005 A1
20050177212 Njemanze Aug 2005 A1
20050187513 Rabiner et al. Aug 2005 A1
20050187514 Rabiner et al. Aug 2005 A1
20050197619 Rule et al. Sep 2005 A1
20050209578 Christian Evans et al. Sep 2005 A1
20050215942 Abrahamson et al. Sep 2005 A1
20050215946 Hansmann et al. Sep 2005 A1
20050216044 Hong Sep 2005 A1
20050256410 Rabiner et al. Nov 2005 A1
20060069303 Couvillon Mar 2006 A1
20060078555 Hanley et al. Apr 2006 A1
20060094947 Kovalchev et al. May 2006 A1
20060106308 Hansmann et al. May 2006 A1
20060106375 Werneth et al. May 2006 A1
20060142783 Lewis et al. Jun 2006 A1
20060173387 Hansmann et al. Aug 2006 A1
20060184070 Hansmann et al. Aug 2006 A1
20060241462 Chou et al. Oct 2006 A1
20060264758 Hossack et al. Nov 2006 A1
20070005121 Khanna Jan 2007 A1
20070016040 Nita Jan 2007 A1
20070016041 Nita Jan 2007 A1
20070037119 Pal et al. Feb 2007 A1
20070038100 Nita Feb 2007 A1
20070038158 Nita et al. Feb 2007 A1
20070066978 Schafer et al. Mar 2007 A1
20070083100 Schulz-Stubner Apr 2007 A1
20070123652 Chu et al. May 2007 A1
20070129652 Nita Jun 2007 A1
20070142721 Berner et al. Jun 2007 A1
20070225619 Rabiner et al. Sep 2007 A1
20070239027 Nita Oct 2007 A1
20070265560 Soltani et al. Nov 2007 A1
20080045865 Kislev Feb 2008 A1
20080065014 McCrystle et al. Mar 2008 A1
20080146918 Magnin et al. Jun 2008 A1
20080154181 Khanna Jun 2008 A1
20080167602 Nita et al. Jul 2008 A1
20080171965 Soltani et al. Jul 2008 A1
20080172067 Nita et al. Jul 2008 A1
20080194954 Matsunaga et al. Aug 2008 A1
20080221506 Rodriguez et al. Sep 2008 A1
20080249501 Yamasaki Oct 2008 A1
20080262350 Unger Oct 2008 A1
20080306499 Katoh et al. Dec 2008 A1
20080312536 Dala-Krishna Dec 2008 A1
20080319355 Nita Dec 2008 A1
20080319376 Wilcox et al. Dec 2008 A1
20090018472 Soltani et al. Jan 2009 A1
20090099482 Furuhata et al. Apr 2009 A1
20090112150 Unger et al. Apr 2009 A1
20090209900 Carmeli et al. Aug 2009 A1
20090216246 Nita et al. Aug 2009 A1
20100010393 Duffy et al. Jan 2010 A1
20100022920 Nita et al. Jan 2010 A1
20100022944 Wilcox Jan 2010 A1
20100023036 Nita et al. Jan 2010 A1
20100023037 Nita et al. Jan 2010 A1
20100049209 Nita et al. Feb 2010 A1
20100063413 Volz Mar 2010 A1
20100063414 Volz Mar 2010 A1
20100081934 Hansmann et al. Apr 2010 A1
20100125193 Zadicario May 2010 A1
20100143325 Gurewich Jun 2010 A1
20100160779 Browning et al. Jun 2010 A1
20100160780 Swan et al. Jun 2010 A1
20100196348 Armstrong et al. Aug 2010 A1
20100204582 Lu Aug 2010 A1
20100210940 Bradley et al. Aug 2010 A1
20100217276 Garrison et al. Aug 2010 A1
20100222715 Nita Sep 2010 A1
20100256616 Katoh et al. Oct 2010 A1
20100262215 Gertner Oct 2010 A1
20100292685 Katoh et al. Nov 2010 A1
20100317952 Budiman et al. Dec 2010 A1
20100331645 Simpson et al. Dec 2010 A1
20100332142 Shadforth et al. Dec 2010 A1
20110009720 Kunjan et al. Jan 2011 A1
20110009739 Phillips et al. Jan 2011 A1
20110034791 Moerman Feb 2011 A1
20110160621 Nita Jun 2011 A1
20110200578 Hanley et al. Aug 2011 A1
20110201974 Hansmann et al. Aug 2011 A1
20110288449 Schenkengel Nov 2011 A1
20110313328 Nita Dec 2011 A1
20110319927 Nita Dec 2011 A1
20120016272 Nita et al. Jan 2012 A1
20120041307 Patel et al. Feb 2012 A1
20120059285 Soltani et al. Mar 2012 A1
20120078140 Nita Mar 2012 A1
20120123273 Okuno et al. May 2012 A1
20120179073 Nita Jul 2012 A1
20120197277 Stinis Aug 2012 A1
20120209116 Hossack et al. Aug 2012 A1
20120265123 Khanna Oct 2012 A1
20120271223 Khanna Oct 2012 A1
20120330196 Nita Dec 2012 A1
20130211316 Wilcox et al. Aug 2013 A1
20160030725 Kersten et al. Feb 2016 A1
Foreign Referenced Citations (33)
Number Date Country
1083040 Aug 1980 CA
0 617 913 Oct 1994 EP
0 744 189 Nov 1996 EP
1 090 658 Apr 2001 EP
1 145 731 Oct 2001 EP
2 494 932 Sep 2012 EP
0 608 730 Jul 2013 EP
06-233779 Aug 1994 JP
2005-512630 May 2005 JP
2006-055649 Mar 2006 JP
WO 9417734 Aug 1994 WO
WO 9627341 Sep 1996 WO
WO 9629935 Oct 1996 WO
WO 9636286 Nov 1996 WO
WO 9840016 Sep 1998 WO
WO 9848711 Nov 1998 WO
WO 9933500 Jul 1999 WO
WO 9939647 Aug 1999 WO
WO 0000095 Jan 2000 WO
WO 0012004 Mar 2000 WO
WO 0038580 Jul 2000 WO
WO 0213678 Feb 2002 WO
WO 0215803 Feb 2002 WO
WO 0215804 Feb 2002 WO
WO 03051208 Jun 2003 WO
WO 2004058045 Jul 2004 WO
WO 2005027756 Mar 2005 WO
WO 2005084552 Sep 2005 WO
WO 2005084553 Sep 2005 WO
WO 2008052186 May 2008 WO
WO 2009002881 Dec 2008 WO
WO 2012027722 Mar 2012 WO
WO 2014159274 Oct 2014 WO
Non-Patent Literature Citations (17)
Entry
Akdemir et al., “Treatment of Severe Intraventricular Hemorrhage by Intraventricular Infusion of Urokinase”, Neurosurgical Review, 1995, vol. 18, No. 2, pp. 95-100.
Broderick et al., “Guidelines for the Management of Spontaneous Intracerebral Hemorrhage: A Statement for Healthcare Professionals From a Special Writing Group of the Stroke Council, American Heart Association”, Stroke, Journal of the American Heart Association, 1999, pp. 905-915.
Chamsuddin et al., “Catheter-directed Thrombolysis with the Endowave System in the Treatment of Acute Massive Pulmonary Embolism: A Retrospective Multicenter Case Series,” Journal of Vascular and Interventional Radiology, Mar. 2008, vol. 19, No. 3, pp. 372-376.
Deinsberger et al., “Stereotactic Aspiration and Fibrinolysis of Spontaneous Supratentorial Intracerebral Hematomas versus Conservative Treatment: A Matched-Pair Study”, Zentralblatt für Neurochirurgie, Dec. 18, 2003, vol. 64, No. 4, pp. 145-150.
Findlay et al., “Lysis of Intraventricular Hematoma with Tissue Plasminogen Activator”, Journal of Neurosurgery, 1991, vol. 74, pp. 803-807.
International Search Report and Written Opinion in Application No. PCT/US2014/022797, dated Jun. 16, 2014.
International Preliminary Report on Patentability in Application No. PCT/US2014/022797, dated Sep. 24, 2015.
Lin et al., “Comparison of Percutaneous Ultrasound-Accelerated Thrombolysis versus Catheter-Directed Thrombolysis in Patients with Acute Massive Pulmonary Embolism,” Vascular, 2009, vol. 17, No. 3, pp. S137-S147.
Matsumoto et al., “CT-Guided Stereotaxic Evacuation of Hypertensive Intracerebral Hematomas”, Journal of Neurosurgery, Sep. 1984, vol. 61, No. 3, pp. 440-448.
Mayfrank et al., “Fibrinolytic Treatment of Intraventricular Haemorrhage Preceding Surgical Repair of Ruptured Aneurysms and Arteriovenous Malformations”, British Journal of Neurosurgery, 1999, vol. 13, No. 2, pp. 128-131.
Mohadjer et al., “CT-Guided Stereotactic Fibrinolysis of Spontaneous and Hypertensive Cerebellar Hemorrhage: Long-Term Results”, Journal of Neurosurgery, Aug. 1990, vol. 73, No. 2, pp. 217-222.
Niizuma et al., “CT-Guided Stereotactic Aspiration of Intracerebral Hematoma—Result of a Hematoma-Lysis Method Using Urokinase”, Applied Neurophysiology, Proceedings of the Ninth Meeting of the World Society, Jul. 4-7, 1985, pp. 4.
Niizuma et al., “Results of Stereotactic Aspiration in 175 Cases of Putaminal Hemorrhage”, Neurosurgery, Jun. 1989, vol. 24, No. 6, pp. 814-819.
Pang et al., “Lysis of Intraventricular Blood Clot with Urokinase in a Canine Model: Part 1”, Neurosurgery, 1986, vol. 19, No. 4, pp. 540-546.
Rohde et al., “Intraventricular Recombinant Tissue Plasminogen Activator for Lysis of Intraventricular Haemorrhage”, Journal of Neurology and Neurosurgery Psychiatry, 1995, vol. 58, pp. 447-451.
Schaller et al., “Stereotactic Puncture and Lysis of Spontaneous Intracerebral Hemorrhage Using Recombinant Tissue-Plasminogen Activator”, Neurosurgery, Feb. 1995, vol. 36, No. 2, pp. 328-335.
Teernstra et al., “Stereotactic Treatment of Intracerebral Hematoma by Means of a Plasminogen Activator. A Multicenter Randomized Controlled Trial (SICHPA”, Stroke, Journal of the American Heart Association, Mar. 20, 2003, pp. 968-974.
Related Publications (1)
Number Date Country
20140276367 A1 Sep 2014 US
Provisional Applications (1)
Number Date Country
61781750 Mar 2013 US