1. Field of the Invention
The present invention generally relates to switches, and more particularly, to push button switches.
2. Description of the Related Art
Switch assemblies are commonly used to control a variety of electrical or hydraulic systems, for example in a vehicle such as an airplane or helicopter. Such switches are commonly mounted in a control panel provided in the cockpit of the vehicle, to be selectively actuated by a user, for example by pushing a button provided on the switch. Such push button switches are typically toggled between a first state and a second state by the user selectively pushing the button provided on the switch. Applicant believes that in many applications, it would be desirable to provide an alternate method for cycling the switch from one state to the other. While applicant is aware of one such attempt in the prior art, namely, U.S. Pat. No. 5,294,900, applicant believes that it is possible and desirable to produce a switch that is more reliable and that provides improved results over previous attempts to provide a dual mode switch assembly.
Briefly, the present invention provides a dual mode switch assembly, that is selectively and mechanically cycled by a user between a first state and a second state, the switch being selectively cycled from the second state to the first state mechanically or electrically. This provides several advantages over prior art switches that are only mechanically activated and deactivated. For example, if the switch is provided in a helicopter, while a pilot may choose to cycle the switch to an “off” position mechanically, he may also rely on the fact that when the helicopter is powered down, the switch is reset. Compared to relatively complex attempts in the prior art to provide a switch that may be deactivated electronically, the present invention provides a switch that is simple and robust, thereby improving the reliability of the switch.
More particularly, in one embodiment of the invention, power is supplied to a biasing element to enable an actuation assembly coupled to a switch mechanism. The actuation assembly is mechanically engaged to selectively cycle the switch between a first state and a second state while maintaining the supply of power to the biasing element. When the supply of power to the biasing element is stopped, the switch is cycled from the second state to the first state.
In one embodiment, a translating cam is selectively movable between a first position and a second position adjacent a stationary cam. A biasing member is selectively movable between a first deactivated position and a second activated position. The biasing member holds the translating cam in the second position adjacent the stationary cam to form a sleeve, when the biasing member is in the second activated position. In one embodiment, the biasing member is a solenoid, a plunger of the solenoid seating against the translating cam and holding it in position adjacent the stationary cam when power is provided to the solenoid. When the supply of power to the solenoid is stopped, the plunger of the solenoid is released from engagement with the translating cam, and a spring coupled to the translating cam assists the return of the translating cam to its first position.
A plurality of teeth are provided in an inner region of the translating cam, the teeth being in an operable position when the translating cam is held in its second position adjacent the stationary cam. A cam assembly is-coupled to the sleeve and to a switch mechanism. Teeth provided on the cam assembly selectively engage the teeth in the sleeve to cycle the switch between a first state and a second state, as is known in the art.
In the following description, certain specific details are set forth in order to provide a thorough understanding of various embodiments of the invention. However, one skilled in the relevant art will recognize that the invention may be practiced without one or more of these specific details, or with other methods, components, materials, etc.
Unless the context requires otherwise, throughout the specification and claims which follow, the word “comprise” and variations thereof, such as, “comprises” and “comprising” are to be construed in an open, inclusive sense, that is as “including, but not limited to.”
Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
A dual mode switch is provided in accordance with the present invention. In one embodiment, as illustrated in
The switch 10 is a push button switch, which may be mechanically cycled between a first state and a second state, similar to conventional push button switches. However, unlike conventional switches, the switch 10 may also be cycled from the second state to the first state by deactivation of a biasing member, for example a solenoid.
As illustrated in
More particularly, as illustrated in
As the plunger 17 of solenoid 16 is seated from the first position 18 to the second position 19, the plunger 17 exerts a downward force on the translating cam 21, thereby moving the translating cam 21 by a distance X from a first position 22 to a second position 23, as best seen in
While the translating cam 21 is held in position adjacent the stationary cam 24, the translating cam and stationary cam form a sleeve 25, in which a cam assembly 28 is positioned, as illustrated in
More particularly, as illustrated in
When a user depresses button 12, shaft 13 extends through a continuous bore formed through the various elements of the actuation assembly illustrated in
Cycling of the button 12 provided in the cap assembly 11 therefore mechanically moves the actuating cam 30 between a first position 31 and a second position 32, as illustrated in
When the supply of power ceases to the solenoid 16, the teeth 33 provided in the translating cam 21 retract to their first position 36 as the translating cam 21 is returned to its first position 22. As such, the teeth 33 no longer serve to block motion of the external teeth 48 of actuating cam 30, such that actuating cam 30 rotates and retracts to its first position 31, thereby resetting the switch 10 to its first state 44.
As illustrated in
In one embodiment, as illustrated in
All of the above U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet, are incorporated herein by reference, in their entirety.
The above description of illustrated embodiments, including what is described in the Abstract, is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Although specific embodiments of and examples are described herein for illustrative purposes, various equivalent modifications can be made without departing from the spirit and scope of the invention, as will be recognized by those skilled in the relevant art.
Number | Name | Date | Kind |
---|---|---|---|
5294900 | Mohabbatizadeh et al. | Mar 1994 | A |
5641060 | Tracey | Jun 1997 | A |
5752764 | Shiau | May 1998 | A |
6069545 | Van Zeeland | May 2000 | A |
6097272 | Grover et al. | Aug 2000 | A |
6693248 | Schultz | Feb 2004 | B1 |
Number | Date | Country | |
---|---|---|---|
20060237298 A1 | Oct 2006 | US |