This invention relates to medical methods and apparatus in general, and more particularly to methods and apparatus for correlating anatomical parameters to one another and for diagnosing and treating patients, and/or otherwise preventing medical disorders, using the same.
During the past several decades, and particularly since the introduction of high-speed, high-precision analog-to-digital conversion techniques, there have been substantial developments in methods and apparatus for measuring and/or imaging specific neurological parameters and also for measuring and/or imaging specific cardiovascular parameters. In general, researchers and/or medical practitioners, depending on their individual fields of interest, have utilized relatively individualized (i.e., singular) methodologies to measure or image specific anatomical parameters. For imaging purposes, these methodologies have utilized the imaging capabilities of X-ray computer-assisted tomography (CT), magnetic resonance imaging (MRI), ultrasound, positron emission tomography (PET), single photon emission computed tomography (SPECT), nuclear medicine, cryogenic magnetic phenomena, etc. Other measuring systems have utilized heart rate monitors, ultrasonic Doppler systems, optical measuring systems, electrocardiographs, electroencephalographs, electrical tomography, etc. The literature is replete with various studies which have been made utilizing these available techniques.
However, it appears that there have not heretofore existed methods or apparatus capable of simultaneously recording various neurological and cardiovascular parameters and dynamically identifying interrelationships between such neurological and cardiovascular parameters, in order to diagnose and treat patients, and/or otherwise prevent medical disorders, based on the same. Among other things, there does not appear to have heretofore existed methods or apparatus for simultaneously determining various electrical, chemical, electro-chemical and/or mechanical parameters of both the neurological and cardiovascular systems, and for dynamically correlating the same, so as to identify interrelationships between the neurological and cardiovascular systems, whereby to diagnose and treat patients, and/or otherwise prevent medical disorders, using the same.
As a result, one objective of the present invention is to provide a novel system for simultaneously determining both the neurological and cardiovascular parameters of a patient, and for dynamically identifying interrelationships between the neurological and cardiovascular systems, so as to provide hitherto unavailable data and information to medical practioners, whereby to enhance the diagnosis and treatment of patients, and/or otherwise prevent medical disorders. Among other things, identifying interrelationships between neurological and cardiovascular parameters can permit a better understanding of the possible causes and effects of anxiety, depression, compulsive behavior, sleep apnea, post-traumatic stress disorder, and other medical conditions, and can permit improved diagnosis and treatment of the same, and/or otherwise prevent medical disorders.
To this end, there is provided a novel method and apparatus for dynamically correlating neurological and cardiovascular parameters and for diagnosing and treating patients, and/or otherwise preventing medical disorders, using the same.
More particularly, in one form of the invention, there is provided a novel method for dynamically correlating neurological and cardiovascular parameters and for diagnosing and treating patients, and/or otherwise preventing medical disorders, using the same.
In another form of the invention, there is provided a novel apparatus for dynamically correlating neurological and cardiovascular parameters and for diagnosing and treating patients, and/or otherwise preventing medical disorders, using the same.
In another form of the invention, there is provided a method for identifying an interrelationship between the neurological and cardiovascular systems of a patient, comprising:
detecting at least one neurological parameter of the patient;
detecting at least one cardiovascular parameter of the patient; and
dynamically correlating at least one of the detected neurological parameters and at least one of the detected cardiovascular parameters, and using the same so as to identify an interrelationship between the neurological and cardiovascular systems of the patient.
In another form of the invention, there is provided a method for identifying an interrelationship between the neurological system and biological bearing of a patient, comprising:
detecting at least one neurological parameter of the patient;
detecting at least one biological parameter of the patient; and
dynamically correlating at least one of the detected neurological parameters and at least one of the detected biological parameters, and using the same so as to identify an interrelationship between the neurological system and biological bearing of the patient.
In another form of the invention, there is provided a method for identifying an interrelationship between the cardiovascular system and biological bearing of a patient, comprising:
detecting at least one cardiovascular parameter of the patient;
detecting at least one biological parameter of the patient; and
dynamically correlating at least one of the detected cardiovascular parameters and at least one of the detected biological parameters, and using the same so as to identify an interrelationship between the cardiovascular system and biological bearing of the patient.
In another form of the invention, there is provided an apparatus for identifying an interrelationship between the neurological and cardiovascular systems of a patient, comprising:
neurological apparatus for detecting at least one neurological parameter of the patient;
cardiovascular apparatus for detecting at least one cardiovascular parameter of the patient; and
computing apparatus for dynamically correlating at least one of the detected neurological parameters and at least one of the detected cardiovascular parameters, and using the same so as to identify an interrelationship between the neurological and cardiovascular systems of the patient.
In another form of the invention, there is provided a method for identifying an interrelationship between first and second anatomical systems of a patient, comprising:
detecting at least one parameter of the first anatomical system of the patient;
detecting at least one parameter of the second anatomical system of the patient; and
dynamically correlating at least one of the detected parameters of the first anatomical system and at least one of the detected parameters of the second anatomical system, and using the same so as to identify an interrelationship between the first and second anatomical systems of the patient.
In another form of the invention, there is provided an apparatus for identifying an interrelationship between first and second anatomical systems of a patient, comprising:
apparatus for detecting at least one parameter of the first anatomical system of the patient;
apparatus for detecting at least one parameter of the second anatomical system of the patient; and
computing apparatus for dynamically correlating at least one of the detected parameters of the first anatomical system and at least one of the detected parameters of the second anatomical system, and using the same so as to identify an interrelationship between the first and second anatomical systems of the patient.
These and other objects and features of the present invention will be more fully disclosed or rendered obvious by the following detailed description of exemplary embodiments of the invention, which are to be considered together with the accompanying drawings wherein like numbers refer to like parts and further wherein:
Looking first at
Looking next at
Looking next at
More particularly, system 100 preferably comprises a neurological imaging device 105 which is adapted to acquire image data about the neurological parameters of a patient P, a stimulus generator 115 which is adapted to provide a stimulus to the patient, and a cardiovascular imaging device 120 which is adapted to acquire image data about the cardiovascular parameters of the patient. By way of example but not limitation, neurological imaging device 105 and/or cardiovascular imaging device 120 may comprise X-ray computer-assisted tomography (CT) scanners, magnetic resonance imaging (MRI) scanners, ultrasound devices, positron emission tomography (PET) scanners, single photon emission computed tomography (SPECT) scanners, nuclear medicine devices, cryogenic magnetic phenomena devices, etc.; and stimulus generator 115 may comprise apparatus configured to stimulate the patient with various lights, sounds, smells, tastes, temperature, physical contacts, images and visualized situations (including, but not limited to, emotion-inducing images and visualized situations), etc.
System 100 may also comprise other neurological parametric measuring devices 123 (e.g., an EEG device, an electrical tomography system, etc.) and/or other cardiovascular parametric measuring devices 125 (e.g., a heart rate monitor, an ultrasonic Doppler system, an optical measuring system, an electrocardiograph, etc.).
The data outputs of neurological imaging device 105, cardiovascular imaging device 120, other neurological parametric measuring devices 123 and other cardiovascular parametric measuring devices 125 are connected to a data conversion device 130, where the data is regularized into a useful digital format, before being passed to a data correlating computer 135.
System 100 also comprises a precision clock apparatus 140 connected to neurological imaging device 105, stimulus generator 115, cardiovascular imaging device 120, other neurological parametric measuring devices 123 and other cardiovascular parametric measuring devices 125, data conversion device 130 and data correlating computer 135. Furthermore, system 100 comprises a control computer 145 for operating system 100.
In accordance with the present invention, control computer 145 is used to simultaneously operate neurological imaging device 105, stimulus generator 115, cardiovascular imaging device 120, other neurological parametric measuring devices 123 and/or other cardiovascular parametric measuring devices 125 so as to obtain data regarding the patient's neurological and cardiovascular parameters. This data is passed through data conversion device 130 to correlating computer 135, where correlations are identified between the patient's neurological and cardiovascular parameters and conclusions drawn regarding interrelationships between the patient's neurological and cardiovascular systems. This knowledge may then be used to diagnose and/or treat the patient, and/or otherwise prevent medical disorders.
Looking next at
Looking next at
Looking next at
Looking next at
In the foregoing description, the present invention is discussed in the context of identifying interrelationships between the neurological and cardiovascular systems of a patient. However, it should also be appreciated that the present invention may be applied to additional anatomical systems, such as the digestive system, the lymphatic system, the respiratory system, the reproductive system, the muscular system, the urinary system, etc.
It should be appreciated that the present invention may be applied to non-humans (i.e., household pets such as dogs and cats, large animals such as horses and cows, other intelligent animal life such as chimpanzees, whales, dolphins and the like, etc.) as well as to humans. To this end, the term “patient” as used herein is intended to have the broadest possible meaning consistent with the present invention.
Diagnosis, Treatment and/or Otherwise Preventing Medical Disorders
The present invention makes it possible to identify interrelationships between the patient's neurological and cardiovascular systems, and/or between other systems. This information may then be used to diagnosis, treat and/or otherwise prevent medical disorders. Such treatment or prevention may constitute medical treatment, including a dynamic combination of dosage, regime or protocol. Furthermore, such treatment or prevention may constitute holistic methodologies, either individually or in combination with others. Such holistic methodologies may consist of spiritual conditioning, acupuncture or stimulation of senses.
It is to be understood that the present invention is by no means limited to the particular constructions herein disclosed and/or shown in the drawings, but also comprises any modifications or equivalents within the scope of the invention.
This patent application claims benefit of pending prior U.S. Provisional Patent Application Ser. No. 60/765,834, filed Feb. 7, 2006 by Bernard Gordon et al. for METHOD AND APPARATUS FOR DYNAMICALLY CORRELATING NEUROLOGICAL AND CARDIOVASCULAR PARAMETERS AND FOR DIAGNOSING AND TREATING PATIENTS USING THE SAME (Attorney's Docket No. NEUROLOGICA-22 PROV), which patent application is hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60765834 | Feb 2006 | US |