This disclosure relates to methods and apparatuses for wireless data transfer, data storage, printing services, and applications running on a Potential Customer/Client (PCC) device, such as a mobile device, and more particularly to data extraction inputting, and autofill of business related forms, labels, or other material, in place of hand writing on a paper or to facilitate data entry on PCC devices.
Paper filing of business documentation, forms, etc., can use a significant amount of physical storage space, especially in larger organizations or when accumulated over a long period. Electronic files on the other hand, use little physical space and can be conveniently accessed, reviewed, edited, aggregated, or integrated into different systems in a fast and convenient way.
As the computer industry experiences exponential growth and concurrently electronic storage gets cheaper and cheaper, a majority of businesses and enterprises have switched to electronic filing systems in place of the old file cabinet systems. In addition, businesses that use various enterprise software tools to provide service and enhance their performance, use some form of electronic user data collection and storage to incorporate data into their software tools.
The convenience and efficiency of various new enterprise software platforms is significantly enhanced by the rate of growth in the Internet, networking and wireless communication technologies, which in turn triggers integration of various applications and end-to-end enterprise services. With these advancements enabling various provisioning scenarios, new service models are constantly evolving in home and enterprise to enhance “the user experience”, increase the revenue and enable more efficient business execution.
One sector that is highly impacted by the above advancements in enterprise software platforms is healthcare. In fact, in the US alone, the e-health market has evolved as one of the fastest growing industries. This unprecedented growth can be partially attributed to numerous federal policies and acts that are expected to drive further market development in the near future. This includes the EMR (Electronic Medical Records), EHR (Electronic Health Records), e-prescription, tele-healthcare, and care practice management sectors.
This disclosure provides a platform and apparatus for assisting in the filing of e-forms. The disclosed method and apparatus includes methods for: (1) collecting user data; (2) automated and semi-automated form fillings; (3) transferring of user data from a Potential Customer/Client (PCC) Device, such as a mobile device (which may be a phone, tablet, etc.) to an enterprise electronic storage system or to enterprise software; (4) collecting and representing information requested by select businesses in various ways; and (5) providing services to customers or users. The disclosed method and apparatus consists of various embodiments summarized below.
An embodiment of a system including at least a processor and a memory residing on user device includes memory employed for storing instructions configured to instruct the processor to identify different contextual information associated with orchestration of data delivery between a user device and a destination business device over a radio access technology. An ongoing connection may be maintained and reestablished as necessary for control and management purposes.
An embodiment of a method may include algorithms for smart extraction of pre-stored user data that the user desires to fetch from a PCC device (such as a mobile device) or cloud memory and store in various fields of an electronic document, such as e-forms, files, etc. This smart extraction can be direct or facilitated by an ID or code related to a specific target form that needs to be filled.
A system in accordance with one embodiment of the disclosed method and apparatus may include at least a computer readable, Near Field Communication (NFC) device and apparatus that can facilitate transfer of a context aware set of user data between a PCC (such as a user's phone or mobile device) and the enterprise/service provider. Instructions are provided for identifying contextual information associated with sending or receiving special data entry tables, such as e-forms in a medical office or address labels in a post office, as well as, executing certain tasks such as printing or data storage for the purpose of generating a data that facilitates a service (e.g. medical records of a patient or forms and address labels for a package needs to be mailed).
The above NFC mechanism can be enabled by a standalone read/write device, and an NFC platform integrated in another PCC device (such as a mobile phone, a tablet, a computer, or other NFC enabled devices). Alternatively, a barcode or QR code may facilitate the form filling and submission process.
In some embodiments, a “context”, such as a number, code, or an ID, can uniquely identify forms or labels to be filled by a user as requested by a service provider (e.g. doctors office, paramedics, post office, etc.).
In one embodiment, a subset of a patient's profile can be extracted from the user device, by paramedics, or the ER staff, given patient's prior consent. Such a subset can include patient health history, list of allergies, surgeries, and provide the patient's primary care provider's info. This information can be beneficial to emergency treatment.
A cloud server can complement the above NFC mechanism to facilitate data transfer and tasks, such as automated form filling and data storage administrated by the service.
Many other features and embodiments of the invention will be apparent from the accompanying drawings and from the following detailed description.
The accompanying drawings show one or more embodiments; however, the accompanying drawings should not be taken to limit the claimed invention to only the embodiments shown. Various aspects and advantages will become apparent upon review of the following detailed description and upon reference to the following drawings in which:
As it becomes more prevalent to deployment of various new applications and services in various enterprises, the existing network infrastructure has failed to keep up with the needs of users in various private and public service sectors. It can be seen that enterprises are moving from “service provider centric” to “user centric” architectures, as users gain greater control of the services they receive.
Although the following description uses examples taken from the healthcare industry to provide examples of problems and solutions, healthcare systems are merely one example of an industry to which the disclosed concepts are relevant. The examples and combinations of the examples disclosed also apply to many other use industries and scenarios in which requests are made for some form of manual user input or interaction before service can be provided. Examples include postal service offices, law offices, and financial institutions, to name a few.
EMR (Electronic Medical Record)/EHR (Electronic Health Record) systems have seen an unpresented growth within healthcare industry creating powerful e-Health platforms. This fast growth could be attributed to many factors including the growth in computer software industries, and recent computer networking architectural evolutions, such Software as Service (SaaS), that can run on remote servers on the cloud.
In contrast to such advancement in e-heath platforms, patients (who are a key part of the healthcare proverb service), are still using pen and paper methods from the 20th century to fill in their forms. This manual form filling can use either a manual data entry to the EMR/HER (or other e-Health platforms), by an office associate, or a scanning (and shredding) to have an electronic copy of the paper forms within their e-Health system. This not only consumes significant amount of the patient's time, but also dedicated time from office associate (e.g. medical assistant) to enter the data, and store or shred the paper forms. In addition, patient data entry errors made by a doctor's office or a hospital can have very heavy health costs for that patient, and legal consequences for the care provider.
In one embodiment, usage of the service provider's WLAN network and/or cloud to transfer the office forms to user, and send the filled forms from a Potential Customer/Client (PCC) device (such as a user's mobile device) back to the provider's computer network uses Near Field Communication or NFC technology to facilitate transfer data requested to complete form filling, or other user data entry, between the provider network, cloud and/or the NFC device.
In one embodiment, an NFC device can be directly connected to the healthcare provider's ICC module 101c as shown in
The platform that enables the data exchange for form completion and other tasks in a healthcare provider office or other offices, constitutes of three major components: namely, (1) “The Infrastructure”, which enables device to network connectivity (e.g. WiFi, 3G, LTE) and includes hardware, equipment, and devices used in each use case (such as PCC devices that may in some embodiments be a Mobile device, PC, printer, server, NFC devices); (2) “The Software”; which includes different software constituents designed to enable facilitation of a service running on the infrastructure devices; and (3) “The Algorithms” designed to facilitate the service such as algorithms for matching the user profile data to the forms requested by the enterprise service, algorithms to convert a scanned hard copy of a form to an electronic editable copy, and other algorithms that are relevant to optimization of the said service and may run on device or cloud.
A) The Infrastructure: which includes a combination of networking protocols and data communication media (e.g., Internet, Ethernet, WiFi, Bluetooth, 3G/4G cellular, 60 GHz, etc.), as well as Near Filed Communication (NFC) devices and tools that enables the physical and logical exchange of data between the user device and the business network.
B) The Software: which include “User Device Software” component or “UDS” (e.g. Android application, Windows/Mac application, iOS application and/or middleware), The “Business Network Software” component or “BNS” (including the business application software and software for storage mechanisms such as local data bases, caches, etc.), and the “Cloud Sever Software” component or “CSS” (e.g. massive data bases and parallel processing; like Hadoop, Cassandra; data retrieval and processing mechanism; such as HIVE, MapReduce, and SQOOP; and an “Analytics Engine” or (AE)).
C) Algorithms: which include the algorithms running in the said Analytics Engine (AE) such as different types of Machine Learning (ML) algorithms, and may include some algorithms running both on the business network, cloud, and the user device components. For example, this includes algorithms that scan a hard copy of a form and convert it to an interactive form that can be filled electronically on user device, or algorithms that can automatically retrieve user information and autofill the electronic forms. These algorithms run on the cloud analytics engine and/or locally on a PCC device or the ICC module 101c, or a business network computer/server
Initial Data Entry: In one embodiment, it is assumed that once the patient (PCC device user) downloads the UDS application, he or she gets prompted to enter all of his/her available demographics and health-related (or other) Information once on his device, to be stored on his PCC device and/or the cloud through the CSS software cloud. Alternatively, the user can enter his/her information directly on the cloud. Once this information is stored, it can be used as a superset data, to assist with automated form filling process taking place in the PCC device or the cloud. We call this superset data and the user's e-Form Database of eFDB.
The Autofill Process: Once a new form is downloaded to the user device and in some cases in the cloud, the autofill software algorithm that can run on a PCC device (i.e., user's mobile device) or on the cloud, reads the existing fields of the downloaded form and records them in a location. Then using an algorithm, it searches the fields of eFDB for the same fields and once each field is fund, the data in that field is fetched and loaded onto the analogous new form's field. This process continues until all of the fields of the new e-form are filled, or some of the fields cannot be found in the eFDB.
User Review and Signing: In one embodiment, after completion of the autofill process for the new download form, the user is prompted to review the form and approve its transmission. In a case where some fields are left bank, after the autofill, the user/patient get promoted (by the UDS App or CSS Software), to fill in the remaining filed by typing on a PCC device (i.e., the user/patient's mobile device), sign the form either by e-signature or by signing with finger, or confirm that the form can be sent as is.
e-Form Transfer: In one embodiment, after the user approves transmission of the form the filled e-form gets transferred to the healthcare provider or other third party institutions, such as a health insurance provider, within HIPAA guidelines. This can be done directly using NFC technology, where the patient/user places his/her phone on an NFC read device connected to care provider network, resulting in a direct ultra secure file transfer (without going over Internet), or by pushing back the form back to the cloud, on the care provider's web application, or EMR/HER system, which can be accessed by the administrative staff and the doctor or nurse at the care provider's office.
The block 101 illustrates an example of the system components and storage mechanisms. The system comprises a monitor 101b, an Information Collection and Control (ICC) module 101c, a printer 101d, and filing cabinet 101f. A data storage device is shown in 101e which could be in form of a memory coupled to the processor, wherein the memory comprises instructions that cause the processor to send the data from the ICC module 101c to the memory. 101a shows an office's administrative personnel that interacts with BNS for the said data transaction.
In an embodiment, the data storage device 101e may comprise a read only memory (ROM), a random access memory (RAM), a flash memory, an external memory (e.g., a secure digital (SD) card), or any suitable type of memory device as would be appreciated by one of ordinary skill in the art upon viewing this disclosure, or combinations thereof.
In another embodiment, the data storage device 101e may comprise a disk drive, a tape drive, or any suitable type of memory device as would be appreciated by one of ordinary skill in the art upon viewing this disclosure, or combinations thereof.
As shown in
After the new e-form is downloaded to the user's PCC device, by either NFC or Internet, the UDS application initiates the autofill process, by searching, matching, and filling the new form, by searching through the eFDB database stored in the patient's phone or PCC device. After the autofill is completed, the “User Review and Signing” steps follow, and the form gets ready to be transferred back to the care provider's network.
As shown in
Once the form gets download to the PCC device, the autofill process using queries to the eFDB gets started (steps 207 and 208). After completion, the arbitrary steps of 209 and 210 cover ensures that to patient/user reviews, complete filling of the form if needed, and e-signs the form(s).
In step 211 the completed e-form(s) is transferred back to the care provider's office network using the NFC technology, by putting the user's device on the NFC read/write pad, connected to the provider's network. Step 212, describes the same transfer, using internet and cloud-based software.
Finally, arbitrary steps 213 and 214, gives the provider's office an opportunity to review and determine whether a printed signature is needed, print the form, while step 2015 completes the form transfer and storage into the provider's network or its EMR/EHR. It is noted that if case of cloud-based e-Health system, the filled form may be to be transferred back to the cloud, to get integrated with EMR/EHR, or a web application that maintains user/patient profiles. It is noted that in
In the example, an NFC read/write device called NFC launch pad 302c, is connected to the provider's network 301, in a setup similar to
The above code 302a is received by the UDS application and through user's device access network (e.g. WiFi, Cellular) is transferred to the Internet to a cloud location, wherein a web application managed by CSS, reads it into a file and translate the code to search and fetch the appropriate e-form(s) it stores in a database called “Doctors' Office Blank e-Form Database”, 306a. The CSS then transfers the fetched form 311 through internet, back to the user's device that is received and processed by UDS application. Alternatively, the barcode can be read directly by a camera in the UDS. A barcode reader application may then interpret the image to attain data that gets loaded into a blank form.
It is noted that the file containing the code for blank form(s) 302a may, or may not be further processed by the UDS application, based on the need for preparation of the code for the right format for the cloud web application. As such, the code 310 can have different representation format or value, compared to 302a.
Once the blank e-from 311 is received by user device, it will be processed by the UDS, and go through the autofill process using the eFDB database as described above. Once the form is filled and ready to transfer to the provider's ICC module 101c, the user/patient uses the NFC launch pad to transmit the completed form 302b, back to the provider's network for storage or integration in EMR/EHR.
First, the patient starts the e-form transfer process from care provider's network to his/her PCC device/phone by placing it on the NFC launch pad. Through the interaction between UDS office software BNS the UDS receives a code in specific form such as a number, a bar code, or a QR code in step 403. During step 404, the UDS app interacts with the CSS in cloud to send the code to a location include, wherein a web app can transfer the code to an address for extraction of the e-form(s) requested by the doctor's office. As mentioned prior to transfer to the web application, the UDS may postprocess the number or change its format.
The steps 405 through 408, is similar to steps 207 through 210, in
More specifically, similar to the scenario in
In the next step the user sends the bank form, to the correct cloud location in cloud, wherein using CSS the form gets auto-filled by accessing a cloud-based eFDB that maintains all of the patient's health and demographic related information, called User Health Records Database 506a.
It is assumed that the database 506a, has been established earlier on through interaction of UDS with the user, to fill the super data for eFDB and then through interaction with CSS, the UDS sends the data to the cloud to be stored in 506a.
Alternatively, in another embodiment, the eFDB can be established by a web application managed by CSS, so that the patient fills all of the content of eFDB in an online method, with the engagement of UDS.
Once the blank form gets auto filled in cloud it (511) is sent back to the user's PCC device to fill any ramming blank fields and/or e-sign the form if needed. After user's approval the completed form 512 gets back to the cloud to be stored in “Doctors' Office Patient Database” 506c. and or the doctor's cloud-based EMR/HER system.
Finally, the filled form 513 can be accessed for different purposes by the office admin or the Doctor/Nurse immediately after it is storage in 506c.
Steps 609 and 610 consider the cases where the doctor's office has a local e-health system and when the doctor's office has a cloud-based e-health system, respectively. In 609, the BNC and UDS app work closes to establish transfer of the completed e-From to the doctor's office network, using Internet and the user and office access networks as described in
Finally, as mentioned before, steps 611 through 613 complete the e-form
It is noted that the steps described herein may warry according to the type of care provider's network setup, user device, the access network requirements, the implementation of applications and software, as well as, the Internet and cloud-based infrastructure. As such, the mentioned steps are solely for as an example and any feasible combination of the above steps may be exercised based on the use case and user/service provider preferences.
This application claims the benefit of priority to provisional Application No. 62/451,515 filed Jan. 27, 2017, entitled “Method and Apparatus for Efficient Creation and Secure Transfer of User Data Including E-Forms”, the disclosure of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62451515 | Jan 2017 | US |