Analyte detection in physiological fluids, e.g. blood or blood-derived products, is of ever increasing importance to today's society. Analyte detection assays find use in a variety of applications, including clinical laboratory testing, home testing, etc., where the results of such testing play a prominent role in diagnosis and management in a variety of disease conditions. Analytes of interest include glucose for diabetes management, cholesterol, and the like. In response to this growing importance of analyte detection, a variety of analyte detection protocols and devices for both clinical and home use have been developed.
One type of system that allows people to conveniently monitor their blood glucose levels includes a sensor (e.g., a disposable test strip), for receiving a blood sample from a user, and a meter that delivers an electrical impulse to the test strip and collects data during an electrochemical reaction to determine the glucose level in the blood sample. The test strip typically includes an electrical contact area at one end for electrically communicating with the meter and a sample chamber at the other end that contains reagents (e.g., glucose oxidase and a mediator) and electrodes. To begin the test, one end of the test strip is inserted into the meter and the user applies a blood sample to the sample chamber at the other end of the test strip. The meter then applies a voltage to the electrodes to cause a redox reaction and the meter measures the resulting current and calculates the glucose level based on the current. After the test, the test strip can be disposed.
It should be emphasized that frequent measurements of blood glucose levels may be critical to the long-term health of many users. As a result, there is a need for blood glucose measuring systems that are easy to use. However, as sample sizes become smaller, the dimensions of the sample chamber and electrodes in the test strip also become smaller. This, in turn, may make test strips become more difficult to handle.
One solution has been the use of cassettes that hold a series of test strips (e.g., a dozen) that can be mechanically fed into a meter without handling by a user. For example, one such cassette has a circular configuration with axially positioned test strips. Through a complicated mechanized procedure, the cassette is rotated into position and a test strip is fed into the meter. Unfortunately, such systems can require complex mechanical structures that result in added expense and unwanted bulk.
Accordingly, there is a need to provide blood glucose measuring systems and methods with features for measuring blood glucose levels conveniently and reliably, and in particular, a need for test strips that can facilitate such testing.
Disclosed herein, are electrochemical systems and devices suited for use in the determination of a wide variety of analytes in a wide variety of samples, and are particularly suited for use in the determination of analytes in whole blood or derivatives thereof, where an analyte of particular interest is glucose. As described, the system can comprise individual sensors electrically connectable to a meter, the sensors having a reaction chamber for receiving a sample and spaced apart electrodes for performing an electrochemical analysis. The sensors can be adapted for mating with the meter during analysis such that the meter can send and receive electrical signals to/from the electrodes during analysis.
The individual sensors can include a longitudinally extending reaction chamber for receiving a sample and laterally positioned electrical contact areas for mating with a meter. For example, in one embodiment, a sensor includes a first electrically conductive layer including a first electrode area, an opposing second electrically conductive layer including a second electrode area, and an insulating spacer layer positioned therebetween. The reaction cell is defined by a longitudinally extending opening in the spacer layer and the first and second electrically conductive layers. Spaced laterally from the longitudinal reaction cells, are first and second electrical contact areas.
In one aspect, the reaction cell extends from a proximal end of the spacer layer to a distal end of the spacer layer. For example, the reaction cell can extend the full length of the sensor from a proximal sample ingress port in a proximal sidewall to a distal vent in a distal sidewall. The reaction cell can further be positioned along a central longitudinal axis of the sensor.
Spaced laterally from the longitudinal reaction cell are electrical contact areas which allow the sensor to electrically communicate with a meter. In one aspect, the first electrical contact area is positioned on the first electrically conductive layer and the second electrical contact area is positioned on the second electrically conductive layer. The electrical contact areas can also be positioned on the distal portion of the sensor such that they are spaced from the proximal end of the sensor and/or the reaction cell.
In another aspect, the sensor includes at least one connective flap for mating with an adjacent sensor in an array of sensors. In one exemplary embodiment, the connective flap is a portion of a connective link that mates adjacent sensors and is formed by a portion of the spacer layer that extends beyond the first and second electrically conductive layers. The sensor can include connective flaps positioned at the proximal end for mating with a proximally positioned sensor and at the distal end for mating with a distally positioned sensor.
Further described herein is an array of sensors held together by connective flaps. In one aspect, the flaps are flexible such that individual sensors can pivot with respect to one another. In another aspect, connective flaps allows for storage of the array in a folded configuration. In use, the subject sensors can be positioned within a sensor dispenser in a folded configuration and individually dispensed for use in determining an analyte concentration value in a physiological sample.
For example, the array of sensors can include at least a first and second sensor, each sensor including a first electrically conductive layer, a second electrically conductive layer, and a spacer layer positioned therebetween, the spacer layer including a longitudinal reaction cell. First and second electrical contact areas, positioned on each sensor, are laterally spaced from the longitudinal reaction cell. Connective flaps extend beyond the first and second conductive layers of the first and second sensors to connect the sensors.
Yet further described herein is a method of manufacturing the sensors and sensor arrays. In a first step, a first conductive layer, a second conductive layer and a spacer layer are provided and each layer is cut to form a desired pattern. In one aspect, the patterning step includes forming extension portions in the first and second conductive layers that will define electrical contact areas when the sensor is assembled. In addition, a portion of the first and second conductive layers can be cut away so that a portion of the spacer layer is exposed in the finished sensor. The exposed portions of the spacer layer can form the connective flaps. The patterning step can also include forming longitudinal apertures in the spacer layer that will define the reaction cell in the finished sensor.
A reagent can then be applied to one of the conductive layers and the layers can be combined to form a laminate. Individual sensors are then defined by singulating the laminate. In one aspect, the singulation step includes cutting through the combined layers to separate individual sensor from each other with the exception of the connective flaps. The connective flaps (e.g., a portion of the spacer layer) can remain after the singulation step to flexibly join adjacent sensors.
Described herein are sensors that can include a longitudinally extending reaction chamber for receiving a sample and laterally positioned electrical contact areas for mating with a meter. Further described herein is an array of such sensors, the array including a link between individual sensors that allows for storage of the array in a folded configuration. In use, the subject sensors can be positioned within a sensor dispenser and individually dispensed for use in determining an analyte concentration value in a physiological sample. Yet further described herein is a method of manufacturing the sensors and sensor arrays.
In a first embodiment illustrated
Positioned between top and bottom surfaces 12, 14, sensor 10 includes an electrochemical reaction cell 24, having electrodes 26, 28 (
Physiological fluid can be delivered to reaction cell 24 through a sample ingress port 46. In one aspect, the proximal sidewall 20 of sensor 10 includes sample ingress port 46 for delivery of a sample into reaction cell 24. For example, the proximal end 24a of reaction cell 24 can be open to the atmosphere. In another aspect, the reaction cell can include a second opening 48 that allows for the entrance of a sample and/or the egress of gas. For example, second opening 48 can act as a vent that allows air within the reaction cell to escape as a sample is delivered through sample ingress port 46. Second opening 48 can be positioned at the distal end 24b of reaction cell 24. In one aspect, second opening 48 is at the distal sidewall 22 of sensor 10 and reaction cell 24 extends the full length of sensor 10 from proximal sidewall 20 to distal sidewall 22.
In an alternative embodiment, reaction cell 24 extends less than the full length of the sensor and second reaction cell opening 48 is positioned proximally to the distal end 18 of the sensor (
Spaced laterally from the central longitudinal axis L are a first electrical contact area 30 and a second electrical contact area 32 that allow for electrical communication between a meter (e.g., blood glucose meter) and the reaction cell 24. In use, a meter can mate with sensor 10 such that the contact areas 30, 32 are electrically connected to a circuit within the meter. The first and second electrical contact areas, which are electrically connected to the electrodes 26, 28 within reaction cell 24, allow the circuit to deliver an electric potential to the electrodes.
The first and second electrical contact areas 30, 32, in one aspect, define a portion of the sensor surface that is spaced laterally with respect to the longitudinal axis L of sensor 10.
The first and second electrical contact areas are, in one embodiment, positioned on opposite surfaces of sensor 10. For example, the first electrical contact area 30 can be positioned on bottom surface 14 and the second electrical contact area 32 can be positioned on the top surface 12 (
To facilitate mating with a meter, the first and second electrical contact area can be positioned distally. For example, contact areas 30, 32 in
In one embodiment, electrical contact areas 30, 32 have a tapered proximal end as shown in
Sensor 10 can further include linking features that allow sensor 10 to mate with an adjacent sensor to create an array of sensors. In one embodiment, the linking features include connective flaps 34 that extend from the edge of the sensor. Each connective flap represents one half of a link that can mate two adjacent sensors. Sensor 10 can include multiple flaps 34 to provide multiple links to an adjacent sensor, and in one embodiment sensor 10 includes two pairs of spaced apart flaps. As shown in
Sensor 10, in one embodiment, has a generally “V” shape as illustrated in
Regardless of the sensor's geometric configuration, sensor 10 can include mating features that facilitate mating sensor 10 with a meter and/or a sensor dispenser. For example, the sensor disclosed in
Sensor 10, in one embodiment, comprises a multi-layer laminate including a first electrically conductive layer 40, a spacer layer 42, and a second electrically conductive layer 44 as shown in
The first and second electrically conductive layers can provide the conductive surface required for the first and second electrodes 26, 28 and the contact areas 30, 32. In one aspect, first electrode 26 and first contact 30 are positioned on the first electrically conductive layer 40, and the second electrode 28 and second contact area 32 are positioned on the second electrically conductive layer 44. The first and second electrically conductive layers can further provide an electrically conductive track between the first and second electrodes 26, 28 and the first and second contact areas 30, 32, respectively, to electrically connect the electrodes to the electrical contact areas 30, 32.
In one embodiment, first and/or second electrically conductive layers may be a conductive material such as gold, palladium, carbon, silver, platinum, iridium, doped tin oxide, and stainless steel. In addition, the electrically conductive layers can be formed by disposing a conductive material onto an insulating sheet (not shown) by a sputtering or a screen-printing process. In one exemplary embodiment, one electrically conductive material may be sputtered gold and the other conductive material can be sputtered palladium. Suitable materials that may be employed as the insulating sheet on which the electrically conductive material is deposited include plastic (e.g. PET, PETG, polyimide, polycarbonate, and/or polystyrene), silicon, ceramic, glass, and combinations thereof.
Spacer layer 42 can comprise a variety of insulting (non-electrically conductive or minimally electrically conductive) materials. Exemplary spacer materials can include, for example, plastics (e.g. PET, PETG, polyimide, polycarbonate, and/or polystyrene), silicon, ceramic, glass, and combinations thereof. Spacer layer 42 can also include, or be formed substantially of, an adhesive.
An opening in spacer layer 42 provides an area for reaction cell 24. In one aspect, a longitudinal aperture 66 in spacer layer 42 defines the sidewalls of the reaction cell. The opposed first and second electrically conductive layers, positioned on either side of spacer layer 42, can define the top and bottom walls of reaction cell 24. The area of first electrically conductive layer 40 exposed within reaction cell 24 can define the first electrode 26 and the area of the second electrically conductive layer 44 exposed within reaction cell 24 can define second electrode 28. In one aspect, the first and second electrodes are in a non-planer configuration, and preferably, are in an opposed configuration.
A reagent layer 72 can be disposed within reaction cell 24 using a process such as, for example, slot coating, coating by dispensing liquid from the end of a tube, ink jetting, and screen printing. Such processes are described, for example, in the following U.S. Pat. Nos. 6,749,887; 6,689,411; 6,676,995; and 6,830,934, which are hereby incorporated by reference in their entirety. In one embodiment, reagent layer 72 is deposited onto the first electrode and includes at least a mediator and/or an enzyme. A mediator can be in either of two redox states which can be referred to as an oxidizable substance or a reducible substance. Examples of suitable mediators include ferricyanide, ferrocene, ferrocene derivatives, osmium bipyridyl complexes, and quinone derivatives. Examples of suitable enzymes include glucose oxidase, glucose dehydrogenase (GDH) based on a pyrroloquinoline quinone co-factor, and GDH based on a nicotinamide adenine dinucleotide co-factor. One exemplary reagent formulation, which would be suitable for making reagent layer 72, is described in pending U.S. application Ser. No. 10/242,951 which is hereby incorporated by reference in its entirety.
A sample (e.g., whole blood) can be delivered to reaction cell 24 in spacer layer 42 via sample ingress port 46. In one aspect, sample ingress port 46 is formed by longitudinal aperture 66 in spacer layer 42 that extends to the proximal sidewall of sensor 10. For example, the proximal end 24a of reaction cell 24 can be open to the atmosphere. The second opening 48 can similarly be formed by extending longitudinal aperture 66 to the distal sidewall of sensor 10, and in one embodiment, second opening 48 is at the distal end 18 of sensor 10 and aperture 66 extends the full length of sensor 10 from proximal sidewall 20 to distal sidewall 22.
In an alternative embodiment, reaction cell 24 extends less than the full length of the sensor and second reaction cell opening 48 is positioned proximally to the distal end 18 of the sensor (
In one embodiment, sensor 10 is adapted to draw a sample into reaction cell 24 via capillary action. For example, the height of the reaction cell can be sized such that when a liquid sample is brought into contact with sample ingress port 46, capillary action draws the sample into reaction cell 24. One skilled in the art will appreciate that the dimensions of reaction cell 24, sample ingress port 46, and second opening 48, as well as, the surface properties of reaction cell 24, can be adjusted to provide the desired capillary effect.
Layers 40, 42, and 44 are individually illustrated in
The first and second electrically conductive layers 40, 44 can be shaped such that when combined, sensor 10 includes laterally spaced electrical contact areas 30, 32. As shown in
In one embodiment, extension portions 60, 62 are positioned toward the distal end 18 of the first and second electrically conductive layers such that the first and second electrical contact areas 30, 32 are located distally with respect to the reaction cell 24 formed by aperture 66. As a result, when the sensor 10 is positioned within a meter, the sample ingress port 46 extends proximally from the meter while the electrical contact areas are positioned within the body of the meter.
Spacer layer 42, as illustrated in
Spacer layer 42 can also provide the connection between adjacent sensors, and in one embodiment, spacer layer 42 is shaped such that when layers 40, 42, and 44 are brought together, an area of spacer layer 42 extends beyond the first and second electrically conductive layers 40, 44. For example, connective flaps 34 can be formed by a portion (or portions) of spacer layer 42 extending beyond the first and second electrically conductive layers. The connective flaps 34 can join with connective flaps on an adjacent sensor to provide a connection between sensors. When the connective flaps of adjacent sensor are joined, the connected sensors form an array of two or more sensors. As shown in
In one aspect, connective flaps 34 allow adjacent sensors to move relative to one another by creating a pivot point (e.g., hinge) such that adjacent sensors can pivot with respect to one another. In order to provide relative movement between sensors, spacer layer 42 can be formed from a flexible or bendable material. For example, flaps (and spacer layer 42) can be formed from a polymeric material such as a polyester film. One such material is Melinex® PET polyester film from Dupont, Inc. One skilled in the art will appreciate that the spacer material and spacer layer thickness can be chosen to control the amount of flap flexibility.
In an alternative embodiment, flaps 34 are defined by a portion of a different layer. For example, electrically conductive layers 40 and 44 could include a portion that defines a connective flap. Alternatively, sensor 10 could include an additional layer, positioned for example, outside electrically conductive layers 40, 44, that forms connective flaps 34.
Connective flaps 34 preferably have enough strength to hold sensors 10 together, but can be broken or torn to allow individual sensors to be dispensed. One skilled in the art will appreciate that the cross sectional area of the flaps (i.e., thickness and/or width) and/or flap material can be adjusted to provide the desired flap strength. In addition, the flaps can be notched or perforated to facilitate tearing.
In use, an array of sensors can be dispensed from a stand alone sensor dispenser 50, such as shown in
In one embodiment, sensors 10 are manufactured in an array, such that the produced sensors are connected to one another. In use, an individual sensor can be removed (e.g., tom off) and dispensed for individual use.
After the cutting step, layers 40, 42, 44 preferably have a shape such that the resulting sensor 10 will have first and second laterally spaced electrical contact areas 30, 32. For example, the patterned first and second electrically conductive layers 40, 44 can include extension portions 62, 60, that define electrical contact areas 30, 32.
In addition, an area(s) of the first and second electrically conductive layers can be cut away to expose a portion of spacer layer 42. In one aspect, notches 64 are cut in the lateral edge(s) of the electrically conductive layer to expose a portion of space layer 42 in the finished sensor. The exposed portions of spacer layer 42 can form the connective flaps 34. One skilled in the art will appreciate that connective flaps could alternatively be formed by a portion of spacer layer 42 that has a greater width that the electrically conductive layers.
Spacer layer 42 can also be patterned, and in one aspect, a portion of spacer layer 42 is removed to form longitudinal aperture 66 that will become reaction cell 24. Additional portions of spacer layer 42 can also be removed, such as, for example, apertures 68 can be formed in the spacer layer 42 to facilitate singulation (aperatures 68 can provide connective flaps 34 shaped like those of
Prior to combining the layers, reagent 72 (as discussed above) can be added to at least one of the layers. In one embodiment, reagent 72 is positioned along the longitudinal axis of layer 40, such that reagent 72 of layer 40 and aperture 66 of layer 42 will be aligned when the layers are combined.
Once reagent 72 has been applied and the layers 40, 42, 44 of sensor 10 have been cut to the desired pattern, sensor 10 can be assembled. One skilled in the art will appreciate that the order in which the layers are combined can be varied. In one embodiment illustrated in
Once layers 40, 42, 44 have been combined, a central aperture 80 is preferably cut to form opening 23 and the individual sensors are singulated. These steps can be performed contemporaneously, as shown by path C3, or in series as illustrated by paths C1D1 and C2D2. For example, central aperture 80 can be created in the combined layers, and then the sensors can be singulated along line 82, or the sensor can be singulated first and then central aperture 80 can be cut. In yet another embodiment, central aperture 80 could be created in each individual layer prior to combining the layers. One skilled in the art will appreciate that these cutting and/or perforating steps can be performed using a variety of cutting tools.
The singulation step includes cutting and/or perforating the combined layers to define individual, connected sensors. In one embodiment, the singulation process leaves only a portion of the spacer layer 42 connecting adjacent sensors. For example, the combined layers can be cut along line 82 which extend from aperture 80 to aperture 68. The remaining, uncut portion of spacer layer 42 holds the adjacent sensors together and allows them to flex or pivot relative to one another. The intact portions of layer 42 can define connective flaps 34.
One skilled in the art will appreciate further features and advantages of the invention based on the above-described embodiments. Accordingly, the invention is not to be limited by what has been particularly shown and described, except as indicated by the appended claims. All publications and references cited herein are expressly incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4088448 | Lilja et al. | May 1978 | A |
4426451 | Columbus | Jan 1984 | A |
4554064 | McClintock et al. | Nov 1985 | A |
4927502 | Reading et al. | May 1990 | A |
5108564 | Szuminsky et al. | Apr 1992 | A |
5120420 | Nankai et al. | Jun 1992 | A |
5171689 | Kawaguri et al. | Dec 1992 | A |
5312590 | Gunasingham | May 1994 | A |
5395504 | Saurer et al. | Mar 1995 | A |
5399256 | Bohs et al. | Mar 1995 | A |
5437999 | Diebold et al. | Aug 1995 | A |
5525297 | Dinger et al. | Jun 1996 | A |
5609823 | Harttig et al. | Mar 1997 | A |
5679311 | Harttig et al. | Oct 1997 | A |
5741634 | Nozoe et al. | Apr 1998 | A |
5797693 | Jaeger | Aug 1998 | A |
5904898 | Markart | May 1999 | A |
5942102 | Hodges et al. | Aug 1999 | A |
6027689 | Markart | Feb 2000 | A |
6180063 | Markart | Jan 2001 | B1 |
6193873 | Ohara et al. | Feb 2001 | B1 |
6251260 | Heller et al. | Jun 2001 | B1 |
6284125 | Hodges et al. | Sep 2001 | B1 |
6299757 | Feldman et al. | Oct 2001 | B1 |
6379513 | Chambers et al. | Apr 2002 | B1 |
6413410 | Hodges et al. | Jul 2002 | B1 |
6447657 | Bhullar et al. | Sep 2002 | B1 |
6461496 | Feldman et al. | Oct 2002 | B1 |
6475372 | Ohara et al. | Nov 2002 | B1 |
6676995 | Dick et al. | Jan 2004 | B2 |
6689411 | Dick et al. | Feb 2004 | B2 |
6716577 | Yu et al. | Apr 2004 | B1 |
6749887 | Dick et al. | Jun 2004 | B1 |
6780645 | Hayter et al. | Aug 2004 | B2 |
6830934 | Harding et al. | Dec 2004 | B1 |
6969450 | Taniike et al. | Nov 2005 | B2 |
20020053523 | Liamos et al. | May 2002 | A1 |
20020084184 | Chambers et al. | Jul 2002 | A1 |
20020150501 | Robertson et al. | Oct 2002 | A1 |
20030150724 | Kawanaka et al. | Aug 2003 | A1 |
20030180814 | Hodges et al. | Sep 2003 | A1 |
20040040866 | Miyashita et al. | Mar 2004 | A1 |
20040050717 | Teodorczyk et al. | Mar 2004 | A1 |
20040203137 | Hodges | Oct 2004 | A1 |
20050013731 | Burke et al. | Jan 2005 | A1 |
20060134713 | Rylatt et al. | Jun 2006 | A1 |
20100006452 | Hodges et al. | Jan 2010 | A1 |
Number | Date | Country |
---|---|---|
5487394 | Aug 1994 | AU |
3103484 | Aug 1982 | DE |
3708031 | Nov 1987 | DE |
0290770 | Nov 1988 | EP |
0400918 | Dec 1990 | EP |
0-735363 | Oct 1996 | EP |
0-609760 | Jul 1998 | EP |
0-928967 | Mar 2004 | EP |
1-081490 | Sep 2004 | EP |
04343065 | Nov 1992 | JP |
05002007 | Jan 1993 | JP |
6-222874 | Aug 1994 | JP |
3167464 | Mar 2001 | JP |
1351627 | Mar 1986 | SU |
WO-9419684 | Sep 1994 | WO |
WO 9429731 | Dec 1994 | WO |
WO 9932881 | Jul 1999 | WO |
WO-9960391 | Nov 1999 | WO |
WO-0226129 | Apr 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20060266644 A1 | Nov 2006 | US |