Method and apparatus for electromagnetically producing a disturbance in a medium with simultaneous resonance of acoustic waves created by the disturbance

Abstract
A method for promoting chemical changes in a medium comprising the steps of placing a medium within an electromagnetically resonant structure that permits initiating a spark or a discharge in the medium by means of applying pulsed microwave energy in an electromagnetically resonant structure, the electromagnetically resonant structure being simultaneously mechanically resonant for acoustic or shock waves generated by the spark or discharge caused by the pulsed resonant microwave electromagnetic field; and providing a means to feed material into a reaction chamber within the electromagnetically resonant structure and collecting products of a reaction inside the reaction chamber.
Description

This invention relates generally to processing of materials. The invention has particular utility in the use of electromagnetic energy at resonance frequencies of the material being processed to promote a chemical process or reaction, such as the breaking of chemical bonds in large molecules and will be described in connection with such utility, although other utilities are contemplated. An example of this is to break molecular bonds in long hydrocarbon chains so that shorter chain and lower weight hydrocarbons are created. Such a process could, for example, reduce heavy, viscous oil to a less viscous consistency so that it can be more easily transported through a pipe.


Petroleum-based materials are integral to the world's economy and demand for petroleum based fuels and petroleum based products is increasing. As the demand rises, there is a need to efficiently and economically process petroleum-based materials to fulfill that demand. As such, it would be advantageous to not only be able to process raw petroleum-based materials from the earth, but to recycle consumer products to recapture those petroleum-based materials.


Worldwide oil consumption is estimated at in excess of seventy million barrels per day and growing. Thus, there is a need for sufficient oil supplies. Tar sands, oil sands and oil shales, contain large quantities of oil; however, extraction of oil from these materials is costly and time-consuming.


Pumping heavy oil from oil sands is difficult. Typically, up to 30% by volume of a solvent or diluent must be added to such oil to make it thin enough to pump through pipelines. This adds a cost of as much as 15% to a barrel of oil at current prices. Thus, the ability to economically break some of the molecular bonds to make the oil less viscous could have a significant impact on the recovery of useful products from oil sands. Another problem that is becoming increasingly important is the disposal of toxic wastes. Generally to render wastes harmless requires breaking chemical bonds in the waste and possibly then adding other substances to form new bonds.


It is known that shock waves can cause various effects in matter. An extreme case is that of nuclear fusion, where a shock wave produced by nuclear fission creates pressures and temperatures high enough to initiate nuclear fusion. On a less energetic scale, sparks or detonations inside a medium can create shock waves and attendant high pressures and temperatures to cause various chemical changes in material being reacted upon.


Various means have been used to produce sparks or breakdowns in media. A common example is the shock tube, where the sudden rupturing of a diaphragm between a high pressure gas and a low pressure gas causes a shock wave to be produced in the low pressure gas. Explosions within a liquid can cause intense shock waves, for example depth charges to damage submarines. Sparks also have been observed in microwave ovens, for example in some frozen foods. Shock waves have been generated in the medical field to fragment kidney stones. Various means have also been used to focus acoustic waves in a medium, for example in lithotripsy various arrangements of transducers or reflectors have been used to focus sound waves in tissue.


The present disclosure provides a system, i.e. method and apparatus, for producing a spark or discharge in an electrodeless chamber that is excited by a pulsed electromagnetic source, where the chamber design is such that it has an appropriate chamber resonant electromagnetic mode and also the chamber is mechanically resonant with the included medium at the repetition rate of the pulsed electromagnetic source. The combined effects of the resonant electromagnetic and acoustic fields promote various chemical reactions.


The present disclosure uses microwaves in an electromagnetically resonant structure to generate electromagnetic fields sufficiently intense to cause a breakdown or spark in the enclosed medium. The resonant structure is designed so that the created acoustic or shock wave generated by the electromagnetic pulse is also resonant in the same device. This is arranged by having the mechanical resonant frequency of the resonant structure with the enclosed medium the same as the pulse repetition frequency of the electromagnetic source. In this way, the intensity of the acoustic energy is built up due to resonance. There may be one or more additional electromagnetic fields, such as, for example, continuous and/or pulsed, also present in the resonant structure to further facilitate changes to the material being reacted upon. These additional electromagnetic fields may or may not also be resonant in the resonant structure. Co-pending patent application 61/169,227 commonly-owned and incorporated herein by reference, teaches how even fields of different frequencies can be simultaneously resonant in the same resonant structure. Also, additional acoustic energy of various frequencies can be added to the resonant structure by conventional means, such as transducers, spark gaps, or other means known in the art. These additional acoustic fields may or may not be resonant within the reaction vessel.


The essential teaching of this application is that of simultaneous resonance of electromagnetic and acoustic fields in the same medium to produce a spark or discharge and resonance of the acoustic waves produced to promote chemical changes.





Further features and advantages of the present invention will be seen from the following detailed description taken in conjunction with the accompanying drawings, and wherein:



FIG. 1 shows one embodiment of the present invention.





A medium 1 either is static in or flows along a cylindrical waveguide 2. Other waveguide shapes also can be used. Two hollow electrically conducting cylinders 3 are located one half guide wavelength apart, equally separated from the point where microwaves are injected. These conducting metal cylinders serve to confine a resonant electromagnetic resonator mode that is generated by the input microwaves to the region between the metal cylinders. The metal cylinders are supported in the waveguide by insulating dielectric supports 4. The metal cylinders serve to form the ends of the resonator for the resonant electromagnetic mode. By having the length of the cylinders equal to one fourth of a guide wavelength, the open end facing the center of the structure appears as a short. For the configuration shown, the conducting rings are one half guide wavelengths apart. Thus the walls of the cylindrical waveguide 2 and the hollow metal cylinders 3 form a resonator for a Homn-mode oscillations. This mode has cylindrical symmetry and is zero at the walls of the waveguide and at the end of the hollow metal electrodes facing the center of the device, with the electromagnetic field being greatest in the volume between the metal rings.


Microwave radiation 5 of the appropriate wavelength is injected into the waveguide through a window 6 that is transparent to the microwaves and can withstand very high pressures that are generated by a spark or plasma formed between the metal rings. If the medium is a liquid, extremely high pressures can be generated, forming shock waves. Microwaves are conducted to the resonant structure by appropriate means. Waveguides 7 are shown in FIG. 1, but other means such as transmission lines can be used where appropriate.


High power microwave pulses are fed into the cylindrical reaction volume through the input windows 6, and a spark and also possibly a plasma 8 is generated in the medium within the reaction device. Acoustic or shock waves 9 propagate out from the initial spark. The resonant structure is designed so that it is mechanically resonant at the repetition frequency of the input microwave pulses, so that a large, resonant acoustic field is built up in the medium being reacted upon. One means for accomplishing this for example is by having the transit time of a generated acoustic wave from the spark or discharge region to the waveguide wall and back equal to the time between successive input electromagnetic pulses. The combination of the large electromagnetic and acoustic fields causes chemical changes in the medium being reacted upon.


The medium being reacted upon can be gasses, liquids, powders, solids, or a mixture of these. The discharge in the medium causes a sharp increase in hydraulic and hydrodynamic effects, multiple ionization of compounds and elements, intensive chemical synthesis, polymerization, and breaking of chemical bonds. A means is provided to suitably collect products 10 from the reaction.


Additionally, other continuous or pulsed microwave sources can be coupled into the reaction volume to further promote chemical changes. Additional acoustic sources also can be coupled to the volume by appropriate means known to those in the art. Some of these means are for example mechanical transducers, shock tubes, spark gaps, and other mechanical means.


Although the invention has been explained with regard to a cylindrical waveguide with internal confining metal cylinders one half guide wavelength apart, it will be understood that these cylinders can be any odd number of guide wavelengths apart. In the case of a cylindrical waveguide, this would support an Hlmn mode rather than a Homn mode. In this case, additional microwave inputs would be present at appropriate electromagnetic field maxima to couple to this mode. Additionally, different waveguide shapes can be used. Also, the conducting cylinders can be any odd number of guide wavelengths long.


It will be understood that multiple resonant structures also can be used in series. For example, in the case of a flowing liquid, various structures with different electromagnetic and/or acoustic resonant frequencies can be used to cause sequential changes in the material being reacted upon. In this case, the waveguide must be sized appropriately for the resonant frequencies involved. The reaction chamber must be designed to withstand very high pressures and temperatures that may be generated by the electromagnetic and acoustic fields.


While the invention has been explained with regard to a particular embodiment, many combinations of the electromagnetic and acoustic resonant fields and auxiliary electromagnetic and acoustic inputs, both pulsed and continuous will be appreciated by those skilled in the art.

Claims
  • 1. A method for promoting chemical changes in a medium comprising the steps of: providing a medium to an electromagnetically resonant structure and initiating a spark or a discharge in the medium by applying pulsed microwave energy from a plurality of microwave sources to the electromagnetically resonant structure, the electromagnetically resonant structure being simultaneously mechanically resonant for acoustic or shock waves generated by the spark or discharge caused by the pulsed microwave energy;providing additional medium into a reaction chamber within the electromagnetically resonant structure; andcollecting products of a reaction of the provided medium.
  • 2. The method of claim 1, wherein the medium is static in the reaction chamber.
  • 3. The method of claim 1, wherein the medium flows through the reaction chamber.
  • 4. The method of claim 1, wherein the pulsed microwave energy generates an electromagnetic field, and wherein the reaction chamber is formed so that the electromagnetic field is confined by at least two conducting cylinders that are spaced an odd number of guide wavelengths apart.
  • 5. The method of claim 4, wherein the conducting cylinders are an odd number of guide wavelengths long.
  • 6. The method of claim 1, wherein the pulsed microwave energy comprises pulsed microwave radiation in a frequency range from 300 MHz to 300 GHz.
  • 7. The method of claim 1, comprising coupling additional microwave sources to the electromagnetically resonant structure containing the medium being reacted.
  • 8. The method of claim 1, including adding additional acoustic energy to the electromagnetically resonant structure by one or more of a plurality of shock tubes, a plurality of transducers, a plurality of spark gaps, and wherein the additional acoustic energy is at same or different frequencies as a repetition rate of the applied pulsed microwave energy.
  • 9. The method of claim 1, wherein the medium is a liquid, a gas, a powder, a solid or a mixture of these.
  • 10. The method of claim 1, including adding additional energy to the method from both microwave and acoustic sources.
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2011/028810 3/17/2011 WO 00 11/27/2012
Publishing Document Publishing Date Country Kind
WO2011/116187 9/22/2011 WO A
US Referenced Citations (101)
Number Name Date Kind
2676257 Hebenstreit Apr 1954 A
2714661 Norton Aug 1955 A
3170519 Haagensen Feb 1965 A
3442758 Penfold et al. May 1969 A
3588594 Matsuno et al. Jun 1971 A
3882424 Debois et al. May 1975 A
4004122 Hallier Jan 1977 A
4077870 Horowitz Mar 1978 A
4153533 Kirkbride May 1979 A
4279722 Kirkbride Jul 1981 A
4309259 Sarma et al. Jan 1982 A
4336434 Miller Jun 1982 A
4435260 Koichi et al. Mar 1984 A
4565670 Miyazaki et al. Jan 1986 A
4631380 Tran Dec 1986 A
4728368 Pedziwiatr Mar 1988 A
4792732 O'Loughlin Dec 1988 A
4855695 Samardzija Aug 1989 A
4883570 Efthimion et al. Nov 1989 A
4913928 Sugita et al. Apr 1990 A
4922180 Saffer et al. May 1990 A
4934561 Ness et al. Jun 1990 A
4946537 Hijikata Aug 1990 A
4957606 Juvan Sep 1990 A
4968403 Herbst et al. Nov 1990 A
5063329 Okamoto Nov 1991 A
5079507 Ishida et al. Jan 1992 A
5114684 Walker May 1992 A
5200043 Ooe et al. Apr 1993 A
5262610 Huang et al. Nov 1993 A
5273609 Moslehi Dec 1993 A
5279669 Lee Jan 1994 A
5349154 Harker et al. Sep 1994 A
5362451 Cha Nov 1994 A
5389153 Paranjpe et al. Feb 1995 A
5447052 Delaune et al. Sep 1995 A
5471037 Goethel et al. Nov 1995 A
5507927 Emery Apr 1996 A
5521605 Koike May 1996 A
5539209 Maarschalkerweerd Jul 1996 A
5540886 Warmbier et al. Jul 1996 A
5770982 Moore Jun 1998 A
5834744 Risman Nov 1998 A
5902404 Fong et al. May 1999 A
5907221 Sato et al. May 1999 A
5911885 Owens Jun 1999 A
5914014 Kartchner Jun 1999 A
5929570 Shinohara et al. Jul 1999 A
6027698 Cha Feb 2000 A
6034346 Yoshioka Mar 2000 A
6040547 Antonova et al. Mar 2000 A
6057645 Srivastava et al. May 2000 A
6077400 Kartchner Jun 2000 A
6187206 Bernier et al. Feb 2001 B1
6187988 Cha Feb 2001 B1
6192318 Yogo et al. Feb 2001 B1
6193878 Morse et al. Feb 2001 B1
6207023 Cha Mar 2001 B1
6259334 Howald Jul 2001 B1
6261525 Minaee Jul 2001 B1
6409975 Seyed-Yagoobi et al. Jun 2002 B1
6419799 Cha Jul 2002 B1
6572737 Dalton Jun 2003 B2
6576127 Ohkawa Jun 2003 B1
6592723 Cha Jul 2003 B2
6605750 Bessho et al. Aug 2003 B1
6621525 Ueda et al. Sep 2003 B1
6677828 Harnett et al. Jan 2004 B1
6683272 Hammer Jan 2004 B2
6686557 Chancey et al. Feb 2004 B1
6689252 Shamouiloa et al. Feb 2004 B1
6693253 Boulos et al. Feb 2004 B2
6696662 Jewett et al. Feb 2004 B2
6740858 Tracy et al. May 2004 B2
6783633 Babchin et al. Aug 2004 B2
6809310 Chen Oct 2004 B2
6817388 Tsangaris et al. Nov 2004 B2
6888116 Dalton May 2005 B2
6933482 Fagrell et al. Aug 2005 B2
6960747 Risman Nov 2005 B2
7210424 Tolmachev May 2007 B2
7227097 Kumar et al. Jun 2007 B2
7495443 Leussler et al. Feb 2009 B2
7518466 Sorensen et al. Apr 2009 B2
7629497 Pringle Dec 2009 B2
8236144 Proudkii Aug 2012 B2
20040074760 Portnoff et al. Apr 2004 A1
20040175294 Ellison Sep 2004 A1
20050106873 Hoffman et al. May 2005 A1
20050155854 Shufflebotham et al. Jul 2005 A1
20060060464 Chang Mar 2006 A1
20060073084 Burkitbayev Apr 2006 A1
20060102622 Gregoire et al. May 2006 A1
20070102279 Novak May 2007 A1
20070131591 Pringle Jun 2007 A1
20070240975 Foret Oct 2007 A1
20080202982 Tooley Aug 2008 A1
20080233020 Purta et al. Sep 2008 A1
20090078559 Proudkii et al. Mar 2009 A1
20090173619 Banks Jul 2009 A1
20090260973 Proudkii et al. Oct 2009 A1
Foreign Referenced Citations (2)
Number Date Country
H1116675 Jan 1999 JP
2006512189 Apr 2006 JP
Non-Patent Literature Citations (14)
Entry
International Preliminary Report on Patentability issued for application No. PCT/US2011/028810, dated Sep. 18, 2012 (7 pgs).
International Search Report and the Written Opinion issued for PCT/US2011/028810, dated May 20, 2011 (10 pgs).
Office Action issued in related U.S. Appl. No. 13/264,727, dated Apr. 15, 2014 (11 pgs).
Grundmann, M. et al. (2008). Handbook of Self Assembled Semiconductor Nanostructures for Novel Devices in Photonics and Electronics, Elsevier, 864 pgs (Office action cites p. 304) (31 pgs).
Office Action issued in U.S. Appl. No. 14/488,094, dated Aug. 28, 2015, (16 pgs).
Chinese Office Action issued in related application No. 201010149789.9, dated Jul. 3, 2014 (9 pgs).
European Office Action issued in related application No. 10 159 231.9, dated Jan. 3, 2013 (4 pgs).
International Preliminary Report on Patentability issued in related application No. PCT/US2008/077276, dated Mar. 24, 2010 (11 pgs).
International Search Report and Written Opinion issued in related application No. PCT/US2008/077276, dated Dec. 5, 2008 (16 pgs).
Korean Office Action (with translation) issued in application No. 10-2010-7007487, dated May 13, 2015 (12 pgs).
Notice of Allowance issued in related U.S. Appl. No. 12/234,503, dated Apr. 2, 2012 (10 pgs).
Notice of Allowance issued in related U.S. Appl. No. 12/420,770, dated Oct. 17, 2011 (12 pgs).
Notice of Allowance issued in related U.S. Appl. No. 13/264,727, dated May 12, 2014 (6 pgs).
Office Action issued in related U.S. Appl. No. 13/264,727, dated Nov. 25, 2013 (39 pgs).
Related Publications (1)
Number Date Country
20130062193 A1 Mar 2013 US
Provisional Applications (1)
Number Date Country
61314921 Mar 2010 US