This application claims the benefit of PCT Application No. PCT/GB2005/000577, filed Feb. 18, 2005, and GB Application 0405503.04, filed Mar. 11, 2004, both of which are herein incorporated by reference.
1. Field of the Invention
The present invention relates to calibration data storage for wireless linear passive sensors.
2. Description of the Related Art
There are inherent problems with storing information on a linear passive device such as a SAW (Surface Acoustic Wave) device. The main limiting factor is the amount of data that can be stored. If a SAW resonator is used then any information encoded into the device will be within the frequency of the device or devices and this is limited due to available bandwidth. If a delay line SAW is used then the data is encoded in the length of the delay or in multiple delays and this is limited because of the additional loss of the signal due to increased delay. In addition to these problems the size of the device will increase with the number of elements within it, and therefore the cost.
This causes a problem if passive sensors are used that require calibration or product identification that needs to be accessed electronically. This information can be stored within a bar code or an RFID tag, which could be positioned with the sensor, however both of these options need additional equipment to read the information and therefore additional cost. Also, with a bar code the read range will be limited and line of sight only. Another method is to store the calibration data with the interrogation electronics of the sensor. The problem arises when the electronics are required to interrogate more than one sensor, there needs to be a simple way of letting it know which calibration data to use for which sensor.
In the case of a Tire Pressure Monitoring System (TPMS), there will be a number of sensors present, one for each wheel. Accordingly, for a vehicle such as a passenger car, there may be a dozen or more sensors, or in a sensor using a three SAW pressure and temperature sensors for a passenger car application, there will be a sensor in each of the four wheels of the car and possibly the spare. All the sensors in any application may be interrogated through an antenna adjacent to each wheel location connected to a single set of electronics via an RF switching network which monitors information on all wheels present in the particular application.
The present invention provides a passive sensor arrangement comprising at least one remote passive sensor for monitoring a parameter within an environment, an interrogation system for receiving and analysing data from the or each sensor, and storage means associated with the or each sensor for storing calibration data relating to the associated sensor, the or each storage means being removably connectable to the interrogation system for providing the calibration data thereto.
In particular, the present invention concerns the calibration data for each sensor being held in a separate memory card, these memory cards being inserted into a memory panel connected to the interrogation electronics.
The system may be configured to receive a plurality of said storage means simultaneously, one for each sensor monitored by the interrogation system. In particular, the system may have a plurality of slots for receiving the storage means, such as memory card slots for receiving memory cards, the memory cards being required to remain inserted into the relevant slot whenever the corresponding sensor is in operation. Alternatively, the system may be configured to receive just a single storage means at a time, the contents of a plurality of storage means being downloadable into separate buffers of the interrogation system for reference during operation of the or each sensor. In the first mentioned arrangement, each card slot may be associated with a particular sensor location so that the calibration information carried on the card inserted therein automatically is associated with the sensor located in that position. For example each slot may be associated with a particular wheel of the vehicle. Alternatively, each memory buffer may be similarly associated with a particular sensor position, the appropriate buffer being selected by a user when inserting a memory card to download the calibration information into the interrogation system, thereby ensuring that the information transferred from that card automatically is associated with the appropriate sensor position
Embodiments of the present invention will now be described with reference to the accompanying drawings, in which:
In order that the invention may be more fully understood, there will now be described an embodiment thereof, given by way of example, reference being made to the accompanying drawing, the sole FIGURE of which is a schematic illustration of a tire pressure mounting system according to the invention.
Referring to
The system is configured to know which wheel it is measuring through use of an RF switch 4. The memory panel 1 has a plurality of slots for receiving separate memory cards, each slot 1Blue, 1Green, 1Orange, 1Red, 1Yellow being associated with a particular wheel position 5Blue, 5Green, 5Orange, 5Red, 5Yellow thereby associating the information on that card with the particular wheel. The benefit of such a system is that if the wheels need to be changed over or swapped with the spare no special equipment is required to re-assign the calibration data to the correct wheel. All the driver will have to do is swap over the memory cards to there new positions. Likewise if a new sensor 6 is to be fitted to the vehicle it would be supplied with is own memory card and once the sensor is fitted into the wheel its card can be inserted into the relevant slot.
The benefit in having the calibration data on a memory card that is plugged into the system is that it can then connect directly to the microprocessor within the sensor interrogation electronics, without the additional cost of an another reader that would be required if the data was stored remotely. Also because the method assigning calibration data to the relevant wheel is very simple it can be carried out by the driver without the need to take the vehicle back to a dealership.
As an additional feature the sensors/memory cards could be supplied with 5 pairs of color code markers as shown in
This method may not only be of use within system utilising passive sensors it could also be used in conjunction with active sensors which still require a means of informing the vehicle that the wheel positions have changed.
Number | Date | Country | Kind |
---|---|---|---|
0405503.4 | Mar 2004 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB05/00577 | 2/18/2005 | WO | 9/8/2006 |