1. Field of the Invention
The present invention generally relates to satellite communications, and more particularly, to a method and apparatus for enabling transmission of a return channel signal in a system such as a satellite television broadcast system without requiring a telephone line connection.
2. Background of the Invention
The use of geosynchronous satellites to distribute television signals is known in the broadcasting industry and has helped revolutionize television distribution systems. As is known, there are many communications satellites encircling the earth occupying so-called “geosynchronous orbits” meaning that the satellites appear to be stationary relative to fixed points on earth. These satellites receive television signals originating from earth (i.e., “uplink” signals) and retransmit the signals back to earth (i.e., “downlink” signals). While such satellites typically employ directional antennas to transmit downlink signals, the high altitude of the satellites enables a large portion of the earth to receive the downlink signals. Thus, a single satellite can distribute television signals to entire continents or large portions of continents, and receiving antennas on such continents are capable of receiving signals from a plurality of such satellites.
Satellite television provides subscribers with a large number of channels from which to choose, including non-premium, premium, and pay-per-view (PPV) channels. Non-premium and premium channels are typically made available to subscribers for a fixed monthly charge, while pay-per-view (PPV) channels typically allow a subscriber to view a desired movie or video for a fixed charge per viewing. To accommodate automatic billing services for the viewing of such channels, a subscriber's satellite signal receiver must typically be connected to a telephone jack coupled to the local telephone exchange network. This connection creates a “return channel” through which subscriber billing information may be sent to a predetermined location for bill preparation.
The use of a telephone line return channel often creates problems for subscribers and service providers. For subscribers, a telephone line return channel is problematic since it often limits where the satellite signal receiver can be positioned as it should preferably be in close proximity to a telephone jack. Alternatively, subscribers may be forced to utilize relatively long telephone line connection wires, which often create an unaesthetic appearance. For service providers, a telephone line return channel is problematic since they typically must pay for any long distance charges associated with a return channel transmission. Accordingly, there is a need for return channel capability that does not utilize the existing telephone lines.
The use of a wireless return channel, while desirable, presents many challenges. For example, given the relatively large number of geographically distributed subscribers in a satellite television system, it is imperative to establish a time discipline for subscribers' return channel transmissions to assure that such transmissions are properly received.
The problems stated above, as well as other related problems of the prior art, are solved by the present invention, a method and apparatus for enabling transmission of a wireless return channel signal in a satellite communications system such as a satellite television broadcast system. Advantageously, the wireless return channel signal is both transmitted and received without requiring a telephone line connection.
According to an aspect of the present invention, there is provided a method for enabling wireless reception of return channel signals in a satellite communications system having at least one satellite and a plurality of subscribers. A system time reference is transmitted to the plurality of subscribers for establishing a precision frequency reference that is based on the system time reference. Return channel signals are wirelessly received from the plurality of subscribers using a carrier frequency synthesized from the precision frequency reference established from the system time reference.
According to another aspect of the present invention, there is provided a method for enabling wireless reception of return channel signals in a satellite communications system having at least one satellite and a plurality of subscribers. A system time reference is transmitted to each of the plurality of subscribers for respectively establishing time bases there from. Each of the time bases is respectively specific to one of the plurality of subscribers. The return channel signals are wirelessly received from the plurality of subscribers respectively in accordance with the time bases of the plurality of subscribers.
According to yet another aspect of the present invention, there is provided a method for enabling wireless transmission of return channel signals in a satellite communications system having at least one satellite and a plurality of subscribers. A system time reference is received from the at least one satellite for establishing a precision frequency reference that is based on the system time reference. A carrier frequency is synthesized from the precision frequency reference established from the system time reference. The return channel signal is wirelessly transmitted to the at least one satellite using the carrier frequency.
According to still yet another aspect of the present invention, there is provided a method for enabling wireless transmission of return channel signals in a satellite communications system having at least one satellite and a plurality of subscribers. A system time reference is received from the at least one satellite. A subscriber-specific time base is established from the system time reference. A return channel signal is wirelessly transmitted to the at least one satellite in accordance with the subscriber-specific time base.
These and other aspects, features and advantages of the present invention will become apparent from the following detailed description of preferred embodiments, which is to be read in connection with the accompanying drawings.
The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
The exemplifications set out herein illustrate preferred embodiments of the invention, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
Referring now to the drawings, and more particularly to
Referring now to
The bit stream assembler 23 assembles its received inputs to generate return channel control data, which may be embodied as one or more packets of digital data. As indicated, the return channel control data includes the system time reference value, the satellite parameter (SP) data, and may also include other data such as global or addressed messages. The return channel control data is transmitted by the earth station 11 as uplink data to the satellite 10, and retransmitted by the satellite 10 as downlink data to the plurality of subscribers 12. As will be explained hereinafter, the return channel control data is utilized by a satellite television signal receiver to enable generation of a wireless return channel signal in accordance with principles of the present invention.
Referring now to
Given the relatively large number of geographically distributed subscribers, the present invention advantageously establishes a time discipline for subscribers return channel transmissions to assure that such transmissions are properly received. To this end and in accordance with an embodiment of the present invention, orthogonal codes such as spread spectrum signals may be employed to eliminate crosstalk among subscribers' return channel transmissions. However, to utilize such orthogonal codes for return channel transmissions, the time alignment among subscribers' return channel transmissions must be closely controlled, as is achieved by the present invention.
In
A serial to parallel converter 31 receives a first control signal from the packet state machine 30 that enables the serial to parallel converter 31 to extract the system time reference value portion of the return channel control data from the incoming bit stream. A subtract latch 32 receives the extracted system time reference value from the serial to parallel converter 31, and also receives a count value from a free running local time counter 33. The subtract latch 32 calculates and latches a difference value between the system time reference value and the count value provided from the local time counter 33. A filter 34 receives the difference value from the subtract latch 32 and performs a looping process to maintain the received difference value as a constant. That is, the filter 34 operates to maintain a constant difference between the received system time reference value and the count value provided from the local time counter 33. A voltage-controlled oscillator (VCO) 35 generates a signal having a frequency based on a voltage provided by the filter 34. As indicated in
A frequency synthesizer 36 also receives outputs from the voltage-controlled oscillator (VCO) 35, and synthesizes a carrier frequency for a wireless return channel signal in dependence upon those outputs. According to an exemplary embodiment, the carrier frequency generated by the frequency synthesizer 36 is approximately 17 GHz. In this manner, the present invention advantageously utilizes a time reference to create a frequency reference suitable for enabling wireless transmission of a return channel signal. A second local time counter 37 is utilized to provide a stable time reference for scheduling return channel transmissions and framing data packets of the return channel signal. The second local time counter 37 is initialized each time a system time reference value is received, and is clocked by outputs from the voltage-controlled oscillator (VCO) 35.
A return channel control unit 38 receives a second control signal from the packet state machine 30 that enables the return channel control unit 38 to extract the return channel control data from the incoming bit stream. A delay calculation unit 39 receives the extracted return channel control data from the return channel control unit 38 and uses that data to calculate another delay value corresponding to the particular subscriber 12. In particular, the delay value calculated by the delay calculation unit 39 is equal to: (the signal propagation delay time from the counter 21 of
Each of the foregoing delay times is the same for all subscribers 12, except for the signal propagation delay time from a transmitting antenna of the satellite 10 to a receiving antenna of a particular subscriber 12. Accordingly, the delay time calculated by the delay calculation unit 39 is different for each subscriber 12 due to differences in the signal propagation delay time from a transmitting antenna of the satellite 10 to a receiving antenna of a particular subscriber 12. The signal propagation delay time from a transmitting antenna of the satellite 10 to a receiving antenna of a particular subscriber 12 can be estimated from the distance between the two antennas. This distance can be calculated from the respective three-dimensional positions of the satellite 10 and the particular subscriber 12. A three-dimensional position for the satellite 10 can be calculated from the satellite parameter (SP) data included in the return channel control data. A three-dimensional position for the particular subscriber 12 can be calculated from subscriber information such as peak signal antenna pointing data, satellite data upon installation, address, zip code, telephone number, etc.
An adder 40 adds the delay value calculated by the delay calculation unit 39 to a count value provided by the local time counter 37 to produce a sum value. This addition operation functions to synchronize each subscriber's 12 transmission of the wireless return channel signal. A transmission data frame generator 41 receives this sum value and enables transmission of the wireless return channel signal using the carrier frequency generated by the frequency synthesizer 36 in accordance with a time base represented by the received sum value. According to a preferred embodiment, the transmission data frame generator 41 enables transmission of the wireless return channel signal in accordance with a time base corresponding to the particular subscriber 12. This time base is such that if all of the subscribers 12 in the system 100 transmit their wireless return channel signal in accordance with the time base, all of the return channel signals will arrive at the satellite 10 at the same real time or within as narrow a time window as possible. In other words, the transmissions from the subscribers 12 will be time aligned (e.g., symbol boundaries are aligned) at the satellite 10 to the extent possible. This time base takes into account the different propagation delay times between the satellite 10 and each of the respective subscribers 12. According to a preferred embodiment, the wireless return channel signal is transmitted from each of the subscribers 12 to the satellite 10 as a spread spectrum signal. The satellite 10 retransmits the return channel signal to earth for reception by a predetermined receiving entity such as a satellite television billing entity. This entity may be represented by the earth stations 11 in
An earth station 11 generates a digital bit stream that includes a system time reference value and satellite parameter (SP) data, and transmits the same in an uplink signal to the satellite 10 (step 405). The earth station 11 may employ a circuit configuration such as that shown in
A satellite television signal receiver of the subscribers 12 generates a precision frequency reference and a precision local clock from the received system time reference (step 415). The satellite television signal receiver may employ a circuit configuration such as that shown in
The wireless return channel signal is transmitted from each of the subscribers 12 to the satellite 10, respectively in accordance with the time base particular to each of the subscribers and using the carrier frequency synthesized from the precision frequency reference (step 435).
The wireless return channel signals are preferably transmitted using orthogonal spread spectrum codes. Since the subscribers 12 are geographically distributed, the subscribers 12 have to start their transmissions into the same time slot at different times (in accordance with their time base) to arrive at the satellite in time alignment. Each of the subscribers 12, in transmitting in the same time slot, will use a different orthogonal spread spectrum code.
In this way, all of the wireless return channel signals will arrive at the satellite 10 in a time-aligned sequence. If the frequency of distribution of the independently generated uplink carriers is relatively narrow and the time alignment relatively close, then multi-subscriber interference will be negligible and the full processing gain of the spread spectrum code will be realized.
As described herein, the present invention advantageously utilizes system time reference data to enable transmission of a return channel signal without requiring a telephone line connection. Moreover, a time base is established which enables a time division multiplex transmission scheme (i.e., different subscribers are assigned different transmission time slots) sufficient to support return channel transmissions from a geographically distributed subscriber base using orthogonal codes.
Although the present invention has been described in relation to a television signal receiver, the invention is applicable to various systems, either with or without display devices, and phrases such as “satellite television signal receiver” or “television signal receiver” as used herein are intended to encompass various types of apparatuses and systems including, but not limited to, television sets or monitors that include a display device, and systems or apparatuses such as a set-top box, video tape recorder (VTR), digital versatile disk (DVD) player, video game box, or personal video recorder (PVR) that may not include display devices. While this invention has been described as having a preferred design, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, of adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US03/16740 | 5/28/2003 | WO |
Number | Date | Country | |
---|---|---|---|
60383879 | May 2002 | US |