This application is related to co-pending application Ser. No. 11/422,414, filed on Jun. 6, 2006; Ser. No. 11/422,417, filed on Jun. 6, 2006; Ser. No. 11/422,418, filed on Jun. 6, 2006; Ser. No. 11/422,421, filed on Jun. 6, 2006 and Ser. No. 11/422,423, filed on Jun. 6, 2006, the disclosures of which are hereby incorporated by reference.
This invention pertains to methods and systems for treating disease with implantable devices.
The lymphatic system and the cardiovascular system are closely related structures that are indirectly joined by a capillary system. The lymphatic system is important to the body's defense mechanisms by filtering out organisms that cause disease and by producing lymphocytes that attack foreign organisms and generate antibodies. It is also important for the distribution of fluids and nutrients in the body, because it drains excess fluids and protein from interstitial tissues. Fluid that seeps out of the blood vessels into the interstitial spaces of body tissues and other interstitial components are then absorbed by lymphatic capillaries to form lymph that flows back into the bloodstream through the lymphatic vessels. The terminal structures of the lymphatic vessels include the right lymphatic duct, which drains lymph fluid from the upper right quarter of the body above the diaphragm and down the midline, and the thoracic duct, located in the mediastinum of the pleural cavity which drains the rest of the body. Through the flow of blood in and out of arteries, into the veins, and through the lymph vessels and nodes, the body is able to eliminate the products of cellular breakdown and foreign body invasion.
Described herein are a method and apparatus for delivering a drug to internal body locations via the lymphatic system. In one embodiment, an implantable device containing a drug reservoir and control circuitry therefore is connected to a drug delivery catheter that is adapted to be disposed within a lymphatic vessel. The implantable device may also be configured, by means of leads or wirelessly, to receive sensor signals for controlling the delivery of the therapy. The implantable device may also communicate with an external system or external control device via a telemetry link.
FIGS. 3 and 4A-B illustrate different embodiments of a drug delivery catheter.
The lymphatic vessels are part of the body's circulatory system and serve as a pathway by which fluids can flow from the interstitial spaces into blood. Lymphatic vessels also communicate with lymph nodes and facilitate the body's immune function by transporting foreign antigens to the lymph nodes from the interstitial spaces. With few exceptions, such as the brain and central nervous system, all of the body's tissues communicate with lymphatic vessels. This makes the lymphatic system a convenient conduit for delivering drugs directly to selected internal body locations. (As the term is used herein, a drug is any chemical or biological substance intended to have a therapeutic or diagnostic effect.) As described below, an implantable device may be configured with a drug delivery apparatus and a catheter adapted for disposition within a lymphatic vessel that delivers the drug to a target location that is normally drained by the lymphatic vessel. The catheter may be equipped with an inflatable balloon or other occluding structure actuated by the implantable device that blocks the normal antegrade flow of lymphatic fluid and permits the therapeutic agent to be injected into the vessel and flow distally from the balloon and then retrogradely to the target location. Other embodiments may employ no occluding structure and deliver the therapeutic agent so that it flows in an antegrade direction. The device may be further configured with one or more sensing modalities to enable delivery of therapy in accordance with the physiological monitoring and/or with a magnetically or tactilely actuated switch to enable patient control of therapy delivery. The device may also be equipped with wireless telemetry capability to allow control of drug delivery via telemetry commands.
Also interfaced to the controller in
The telemetry transceiver 1150 allows drug delivery to be initiated or stopped by commands received from an external programmer or other device. The telemetry transceiver may also be used to wirelessly receive signals from other types of physiological monitoring devices. The controller may use such signals to control the delivery of drug therapy in a manner similar to the signals received from a sensor 1137. Also interfaced to the controller in
In certain embodiments, such as that illustrated in
The catheter 1110 in one embodiment may also incorporate plurality of chambers that may be individually pressurized to effect selective stiffening of different portions of the catheter and facilitate passage of the catheter through a lymphatic vessel during implantation.
The implantable drug delivery device 110 in this embodiment is connected to a drug delivery catheter 112, having a distal member that may incorporate a balloon or other structure for occluding a lymphatic vessel as described above. The catheter 112 passes subcutaneously from the device 110 to a point of venous access in the upper chest or neck such as the subclavian vein. As described below, the catheter may be positioned within the lymphatic system using a venous approach which involves initial entry into the venous blood system.
Catheter 112 includes a proximal end 114, a distal end 116, and an elongate catheter body 118 between proximal end 114 and distal end 116. Proximal end 114 is coupled to the implantable device 110. Distal end 116 includes at least one drug delivery port through which a drug may be injected into a lymphatic vessel. In the embodiment illustrated in
Also shown in the illustrated embodiment is an additional lead 232 that includes a proximal end 234, a distal end 236, and an elongate lead body 238 between proximal end 234 and distal end 236. The lead 232 may be configured for subcutaneous placement, external to thoracic duct 105. Proximal end 234 is coupled to implantable device 110, and, in this embodiment, distal end 236 includes an electrode 240 that may be used for sensing and/or stimulation or for use as a reference electrode with any of the other electrodes of the implantable device 110.
The system and method described above for delivering agents via the lymphatic system makes use of an implantable device to delivery therapy on a more or less chronic basis. A similar catheter system may be used to deliver agents in an acute setting as well where an external device rather than an implantable device is used to deliver the agent through the catheter. In this embodiment, a one-time use catheter is positioned strategically in a lymphatic vessel. The distal tip may be configured to occlude normal lymphatic flow by either lodging in a smaller vessel or employing a balloon structure to inflate and occlude flow. After the agents have been deployed in the lymphatic vessel(s) the catheter is removed. This acute catheter system may be used, for example, to inject embolic material into portions of the thoracic duct that are ruptured and causing chylothorax. This condition sometimes occurs following thoracic surgery. The acute catheter system may also be used to locally treat lymphomas where it is used to inject chemotherapy directly to the tumor.
In order to implant a drug delivery catheter into a selected location within lymphatic vessel, the lymphatic system may be visualized using lymphangiography. In this technique, dye is injected into the subcutaneous tissue of an extremity such as the foot, or other peripheral lymph vessel, and the lymphatic system drains the dye making the lymphatic vessels visible. A lymphatic vessel is cannulated, and radiopaque contrast is injected to illuminate major lymph vessels including the thoracic duct and its ostium into the subclavian vein. The catheter may then be guided into the thoracic duct ostium via the venous system using fluoroscopy techniques and positioned at a selected location within the lymphatic system. Initial cannulation of the lymph ostium may be achieved through the left or right subclavian vein, the left jugular veins, or the femoral veins. In order to facilitate navigation through the lymphatic vessels and position the catheter at a selected anatomical location, an overlapping technique may be employed whereby fluoroscopic images produced by the injected dye are used in conjunction with anatomical images of the patient produced by other modalities such as conventional x-ray, CAT scans, MRI scans, or ultrasonic scans. The fluoroscopic image may be overlaid with the anatomical image and the catheter then guided to the selected location.
The catheter may be introduced into the venous system and from there into the thoracic duct ostium using conventional over-the-wire techniques that employ a guide wire. The guide wire is manually or mechanically pushed and manipulated to guide its travel and upon which catheters and/or leads may be advanced. A catheter having multiple pressurizable chambers such as described above may also be used to selectively stiffen portions of the catheter during implantation. A stereotaxis technique in which external magnets or other means are used to guide the catheter may also be used to improve maneuverability and precision as well as provide increased safety. An example of this technique is described in U.S. Pat. No. 6,475,223, hereby incorporated by reference. Once the catheter is in the lymphatic system, it must also traverse valves in the lymphatic vessels whose function is to allow flow of lymphatic fluid in only one direction to the thoracic duct. As the catheter is guided through a vessel to one of these valves, the catheter may incorporate a vacuum system to open the valves. When the vacuum system is actuated, it draws negative pressure to create a pressure gradient that opens the valve. An alternative technique for opening lymphatic valves involves using a catheter incorporating a compliant balloon on its distal tip. When the catheter reaches a lymphatic valve, the balloon is inflated to mechanically dilate the vessel which opens the valve and allows a wire or the catheter to pass through. This may be the same balloon used to occlude lymphatic flow during drug delivery as described above. In still another technique, the catheter incorporates an electrode at its tip (which may or may not be a lymphatic instrument intended to be left in the lymphatic vessel) that is used to cause smooth muscle contraction of the lymphatic vessel. Such smooth muscle contraction can create a pressure gradient that opens the valve and allows the catheter to advance past the valve.
The implantation of a drug delivery catheter may be performed using the same techniques and apparatus as described in co-pending application Ser. No. 11/422,423 for implanting endolymphatic instrumentation.
Although the invention has been described in conjunction with the foregoing specific embodiments, many alternatives, variations, and modifications will be apparent to those of ordinary skill in the art. Such alternatives, variations, and modifications are intended to fall within the scope of the following appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3814080 | Norman | Jun 1974 | A |
3916875 | Toch | Nov 1975 | A |
4650467 | Bonello et al. | Mar 1987 | A |
4792330 | Lazarus et al. | Dec 1988 | A |
4909787 | Danforth | Mar 1990 | A |
4957484 | Murtfeldt | Sep 1990 | A |
5112303 | Pudenz et al. | May 1992 | A |
5231988 | Wernicke et al. | Aug 1993 | A |
5284153 | Raymond et al. | Feb 1994 | A |
5305745 | Zacouto | Apr 1994 | A |
5333609 | Bedingham et al. | Aug 1994 | A |
5387231 | Sporer | Feb 1995 | A |
5391143 | Kensey | Feb 1995 | A |
5423872 | Cigaina | Jun 1995 | A |
5596988 | Markle et al. | Jan 1997 | A |
5655548 | Nelson et al. | Aug 1997 | A |
5658318 | Stroetmann et al. | Aug 1997 | A |
5817138 | Suzuki | Oct 1998 | A |
5865744 | Lemelson | Feb 1999 | A |
5891084 | Lee | Apr 1999 | A |
6024704 | Meador et al. | Feb 2000 | A |
6106477 | Miesel et al. | Aug 2000 | A |
6115637 | Lennox et al. | Sep 2000 | A |
6238423 | Bardy | May 2001 | B1 |
6272370 | Gillies et al. | Aug 2001 | B1 |
6292695 | Webster, Jr. et al. | Sep 2001 | B1 |
6321109 | Ben-Haim et al. | Nov 2001 | B2 |
6347247 | Dev et al. | Feb 2002 | B1 |
6368274 | Van Antwerp et al. | Apr 2002 | B1 |
6370417 | Horbaschek et al. | Apr 2002 | B1 |
6475223 | Werp et al. | Nov 2002 | B1 |
6535764 | Imran et al. | Mar 2003 | B2 |
6542776 | Gordon et al. | Apr 2003 | B1 |
6584362 | Scheiner et al. | Jun 2003 | B1 |
6587719 | Barrett et al. | Jul 2003 | B1 |
6606523 | Jenkins | Aug 2003 | B1 |
6609025 | Barrett et al. | Aug 2003 | B2 |
6611715 | Boveja | Aug 2003 | B1 |
6615084 | Cigaina | Sep 2003 | B1 |
6629534 | St. Goar et al. | Oct 2003 | B1 |
6676686 | Naganuma | Jan 2004 | B2 |
6678557 | Tumey | Jan 2004 | B1 |
6684104 | Gordon et al. | Jan 2004 | B2 |
6692490 | Edwards | Feb 2004 | B1 |
6735477 | Levine | May 2004 | B2 |
6741882 | Schaffter et al. | May 2004 | B2 |
6804558 | Haller et al. | Oct 2004 | B2 |
6826428 | Chen et al. | Nov 2004 | B1 |
6835194 | Johnson et al. | Dec 2004 | B2 |
6865416 | Dev et al. | Mar 2005 | B2 |
6879859 | Boveja | Apr 2005 | B1 |
6889076 | Cigaina | May 2005 | B2 |
6893429 | Petersen | May 2005 | B2 |
6895278 | Gordon | May 2005 | B1 |
6918873 | Millar et al. | Jul 2005 | B1 |
6950707 | Whitehurst | Sep 2005 | B2 |
6970741 | Whitehurst | Nov 2005 | B1 |
6974448 | Petersen | Dec 2005 | B2 |
7167751 | Whitehurst et al. | Jan 2007 | B1 |
7250041 | Chiu et al. | Jul 2007 | B2 |
7295877 | Govari | Nov 2007 | B2 |
7526337 | Shuros et al. | Apr 2009 | B2 |
7606622 | Reeve | Oct 2009 | B2 |
7616991 | Mann et al. | Nov 2009 | B2 |
7620454 | Dinsmoor et al. | Nov 2009 | B2 |
7734341 | Shuros | Jun 2010 | B2 |
7769427 | Shachar | Aug 2010 | B2 |
7774055 | Min | Aug 2010 | B1 |
7873401 | Shachar | Jan 2011 | B2 |
7894906 | Shuros | Feb 2011 | B2 |
7966057 | Macaulay | Jun 2011 | B2 |
8116883 | Williams et al. | Feb 2012 | B2 |
8126538 | Shuros et al. | Feb 2012 | B2 |
20010007924 | Kamada et al. | Jul 2001 | A1 |
20010037061 | Eckmiller et al. | Nov 2001 | A1 |
20010041870 | Gillis et al. | Nov 2001 | A1 |
20020016615 | Dev et al. | Feb 2002 | A1 |
20020029037 | Kim | Mar 2002 | A1 |
20020072780 | Foley | Jun 2002 | A1 |
20020087192 | Barrett et al. | Jul 2002 | A1 |
20020123674 | Plicchi et al. | Sep 2002 | A1 |
20020156462 | Stultz | Oct 2002 | A1 |
20020188253 | Gordon et al. | Dec 2002 | A1 |
20030009202 | Levine | Jan 2003 | A1 |
20030018247 | Gonzalez | Jan 2003 | A1 |
20030036773 | Whitehurst et al. | Feb 2003 | A1 |
20030055463 | Gordon et al. | Mar 2003 | A1 |
20030078623 | Weinberg et al. | Apr 2003 | A1 |
20030105506 | Krishnan et al. | Jun 2003 | A1 |
20030113303 | Schwartz | Jun 2003 | A1 |
20030114895 | Gordon et al. | Jun 2003 | A1 |
20030144708 | Starkebaum | Jul 2003 | A1 |
20030204185 | Sherman et al. | Oct 2003 | A1 |
20040015201 | Greenstein | Jan 2004 | A1 |
20040024428 | Barrett et al. | Feb 2004 | A1 |
20040039427 | Barrett et al. | Feb 2004 | A1 |
20040088022 | Chen | May 2004 | A1 |
20040102804 | Chin | May 2004 | A1 |
20040106953 | Yomtov et al. | Jun 2004 | A1 |
20040147976 | Gordon et al. | Jul 2004 | A1 |
20040158297 | Gonzalez | Aug 2004 | A1 |
20040162595 | Foley | Aug 2004 | A1 |
20040172080 | Stadler et al. | Sep 2004 | A1 |
20040172088 | Knudson | Sep 2004 | A1 |
20040172102 | Leysieffer | Sep 2004 | A1 |
20040193229 | Starkebaum et al. | Sep 2004 | A1 |
20040210118 | Letort | Oct 2004 | A1 |
20040230255 | Dobak, III | Nov 2004 | A1 |
20040243182 | Cohen et al. | Dec 2004 | A1 |
20050033376 | Whitehurst | Feb 2005 | A1 |
20050043675 | Pastore et al. | Feb 2005 | A1 |
20050043894 | Fernandez | Feb 2005 | A1 |
20050049472 | Manda | Mar 2005 | A1 |
20050065575 | Dobak | Mar 2005 | A1 |
20050070974 | Knudson et al. | Mar 2005 | A1 |
20050075678 | Faul | Apr 2005 | A1 |
20050075701 | Shafer | Apr 2005 | A1 |
20050075702 | Shafer | Apr 2005 | A1 |
20050080346 | Gianchandani et al. | Apr 2005 | A1 |
20050090873 | Imran | Apr 2005 | A1 |
20051008046 | Jenkins et al. | Apr 2005 | |
20050131486 | Boveja et al. | Jun 2005 | A1 |
20050143765 | Bachmann et al. | Jun 2005 | A1 |
20050149014 | Hauck et al. | Jul 2005 | A1 |
20050149157 | Hunter et al. | Jul 2005 | A1 |
20050187584 | Denker et al. | Aug 2005 | A1 |
20050222637 | Chen | Oct 2005 | A1 |
20050222638 | Foley et al. | Oct 2005 | A1 |
20050246006 | Daniels | Nov 2005 | A1 |
20050267440 | Herman et al. | Dec 2005 | A1 |
20050273060 | Levy et al. | Dec 2005 | A1 |
20050288729 | Libbus et al. | Dec 2005 | A1 |
20050288730 | Deem et al. | Dec 2005 | A1 |
20060020333 | Lashinski et al. | Jan 2006 | A1 |
20060030837 | McKenna et al. | Feb 2006 | A1 |
20060074453 | Kieval et al. | Apr 2006 | A1 |
20060149331 | Mann et al. | Jul 2006 | A1 |
20060259077 | Pardo et al. | Nov 2006 | A1 |
20070021731 | Garibaldi et al. | Jan 2007 | A1 |
20070027460 | Case et al. | Feb 2007 | A1 |
20070027484 | Guzman et al. | Feb 2007 | A1 |
20070027500 | Maschino et al. | Feb 2007 | A1 |
20070244520 | Ferren et al. | Oct 2007 | A1 |
20070255340 | Giftakis et al. | Nov 2007 | A1 |
20070270675 | Kane et al. | Nov 2007 | A1 |
20070282376 | Shuros | Dec 2007 | A1 |
20070282382 | Shuros et al. | Dec 2007 | A1 |
20070282386 | Shuros | Dec 2007 | A1 |
20070282390 | Shuros | Dec 2007 | A1 |
20080009719 | Shuros et al. | Jan 2008 | A1 |
20080058887 | Griffin et al. | Mar 2008 | A1 |
20080086185 | Amurthur et al. | Apr 2008 | A1 |
20090228059 | Shuros | Sep 2009 | A1 |
20100042170 | Shuros et al. | Feb 2010 | A1 |
20100217346 | Shuros | Aug 2010 | A1 |
20100227807 | Stossel et al. | Sep 2010 | A1 |
20110106202 | Ding et al. | May 2011 | A1 |
Number | Date | Country |
---|---|---|
1504778 | Feb 2005 | EP |
3-55032 | Mar 1991 | JP |
6-113998 | Apr 1994 | JP |
2004-065529 | Mar 2004 | JP |
2004-524893 | Aug 2004 | JP |
2005-532878 | Nov 2005 | JP |
1074527 | Feb 1984 | SU |
WO-03028542 | Apr 2003 | WO |
WO-9314694 | Aug 2003 | WO |
WO-03098177 | Nov 2003 | WO |
WO-2004006795 | Jan 2004 | WO |
WO-2004032791 | Apr 2004 | WO |
WO-2005089863 | Sep 2005 | WO |
WO-2005089863 | Sep 2005 | WO |
WO-2005-107862 | Nov 2005 | WO |
WO-2007067690 | Jun 2007 | WO |
WO-2007146489 | Dec 2007 | WO |
WO-2007146493 | Dec 2007 | WO |
WO-2007146517 | Dec 2007 | WO |
WO-2008030344 | Mar 2008 | WO |
Entry |
---|
U.S. Appl. No. 11/422,414, filed Jun. 6, 2006, Amelioration of Chronic Pain by Endolymphatic Stimulation. |
U.S. Appl. No. 11/422,417, filed Jun. 6, 2006, Method and Device for Lymphatic System Monitoring. |
U.S. Appl. No. 11/422,418, filed Jun. 6, 2006, Method and Apparatus for Gastrointestinal Stimulation via the Lymphatic System. |
U.S. Appl. No. 11/422,421, filed Jun. 6, 2006, Method and Apparatus for Neural Stimulation via the Lymphatic System. |
U.S. Appl. No. 11/422,423, filed Jun. 6, 2006, Method and Apparatus for Introducing Endolymphatic Instrumentation. |
Pulley, M. S., et al., “Intravenous, intralesional and endolymphatic administration of lymphokines in human cancer.”, Lymphokine Res., 5 Suppl 1, (1986), S157-63. |
Shuros, Allan C., “Amelioration of Chronic Pain by Endolymphatic Stimulation”, U.S. Appl. No. 11/422,414, filed Jun. 6, 2006, 15 Pages. |
Shuros, Allan C., “Method and Apparatus for Gastrointestinal Stimulation Via the Lymphatic System”, U.S. Appl. No. 11/422,418, filed Jun. 6, 2006, 35 Pages. |
Shuros, Allan C., et al., “Method and Apparatus for Introducing Endolymphatic Instrumentation”, U.S. Appl. No. 11/422,423, filed Jun. 6 2006, 23 Pages. |
Shuros, Allan C., et al., “Method and Apparatus for Neural Stimulation Via the Lymphatic System”, U.S. Appl. No. 11/422,421, filed Jun. 6, 2006, 35. |
Shuros, Allan C., et al., “Method and Device for Lymphatic System Monitoring”, U.S. Appl. No. 11/422,417, filed Jun. 6, 2006, 15 Pages. |
“U.S. Appl. No. 11/422,417, Non-Final Office Action mailed Sep. 25, 2007”, 7 pgs. |
“U.S. Appl. No. 11/422,417, Non-Final Office Action mailed Apr. 21, 2008”, 7 pgs. |
“U.S. Appl. No. 11/422,417, Notice of Allowance mailed Dec. 12, 2008”, 4 pgs. |
“U.S. Appl. No. 11/422,417, Response filed Aug. 21, 2008 to Non Final Office Action mailed Apr. 21, 2008”, 6 pgs. |
“U.S. Appl. No. 11/422,417, Response filed Aug. 27, 2007 to Restriction Requirement mailed Jul. 25, 2007”, 4 pgs. |
“U.S. Appl. No. 11/422,417, Restriction Requirement mailed Jul. 25, 2007”, 5 pgs. |
“U.S. Appl. No. 11/422,417, Response filed Jan. 25, 2008 to Non-Final Office Action mailed Sep. 25, 2007”, 7 pgs. |
“U.S. Appl. No. 11/422,418, Non-Final Office Action mailed Sep. 15, 2008”, 11 pgs. |
“U.S. Appl. No. 11/422,418, Response filed Dec. 15, 2008 to Non-Final Office Action mailed Sep. 15, 2008”, 12 pgs. |
“U.S. Appl. No. 11/422,418, Response filed Apr. 27, 2009 to Restriction Requirement mailed Mar. 25, 2009”, 6 pgs. |
“U.S. Appl. No. 11/422,418, Restriction Requirement mailed Mar. 25, 2009”, 7 pgs. |
“U.S. Appl. No. 11/422,421, Non-Final Office Action mailed Dec. 10, 2008”, 16 pgs. |
“U.S. Appl. No. 11/422,421, Response filed Apr. 9, 2009 to Non Final Office Action mailed Dec. 10, 2008”, 12 pgs. |
“U.S. Appl. No. 11/422,423, Response filed Feb. 9, 2009 to Non-Final Office Action mailed Oct. 8, 2008”, 8 pgs. |
“U.S. Appl. No. 11/422,423, Non-Final Office Action mailed Jan. 10, 2008”, 10 pgs. |
“U.S. Appl. No. 11/422,423, Non-Final Office Action mailed Oct. 8, 2008”, 9 pgs. |
“U.S. Appl. No. 11/422,423, Response filed May 12, 2008 to Non-Final Office Action mailed Jan. 10, 2008”, 12 pgs. |
“U.S. Appl. No. 11/422,423, Non-Final Office Action mailed Jun. 1, 2009”, 7 pgs. |
“European Application No. 07797400.4, Office Action mailed Apr. 21, 2009”, 3 pgs. |
International Application No. PCT/US2007/018631, International Search Report mailed Mar. 25, 2008, 4 pgs. |
International Application No. PCT/US2007/018631, Written Opinion mailed Mar. 25, 2008, 7 pgs. |
“International Application No. PCT/US2007/068617, International Search Report mailed Mar. 10, 2008”, 4 pgs. |
“International Application No. PCT/US2007/068617, Written Opinion mailed Mar. 10, 2008”, 8 pgs. |
“Physician's Manual—VNS Therapy™ Lead Model 302”, Copyright 2003, 2004, 2005 Cyberonics, Inc., Houston, TX, (Jul. 2005), 35 pgs. |
“U.S. Appl. No. 11/422,423, Decision on Pre-Appeal Brief Request mailed May 24, 2011”, 2 pgs. |
“U.S. Appl. No. 11/422,423, Notice of Allowance mailed Oct. 18, 2011”, 5 pgs. |
“U.S. Appl. No. 11/422,423, Pre-Appeal Brief Request filed Apr. 11, 2011”, 5 pgs. |
“U.S. Appl. No. 12/430,211, Appeal Brief flied Aug. 8, 2012”, 9 pgs. |
“U.S. Appl. No. 12/430,211, Final Office Action mailed Dec. 9, 2011”, 6 pgs. |
“U.S. Appl. No. 12/430,211, Response filed Oct. 21, 2011 to Non Final Office Action mailed Jun. 23, 2011”, 8 pgs. |
“U.S. Appl. No. 12/604,233 , Response filed Jul. 9, 2012 to Non Final Office Action mailed Apr. 10, 2012”, 14 pgs. |
“U.S. Appl. No. 12/604,233, Non Final Office Action mailed Apr. 10, 2012”, 14 pgs. |
“U.S. Appl. No. 12/604,233, Notice of Allowance mailed Oct. 3, 2012”, 11 pgs. |
“U.S. Appl. No. 12/775,223, Non Final Office Action mailed Apr. 23, 2012”, 11 pgs. |
“U.S. Appl. No. 12/775,223, Response filed Sep. 18, 2012 to Non Final Office Action mailed Apr. 23, 2012”, 13 pgs. |
“Australian Application Serial No. 2007293445, First Examiners Report mailed Apr. 11, 2012”, 1 pg. |
“Japanese Application Serial No. 2009-514438, Office Action mailed Feb. 27, 2012”, (w/ English Translation), 5 pgs. |
“Japanese Application Serial No. 2009-514438, Response filed May 25, 2012 to Office Action mailed Feb. 27, 2012”, (w. Engiish Translation of Amended Claims), 10 pgs. |
“Japanese Application Serial No. 2009-514441, Office Action mailed Feb. 29, 2012”, (w/ English Translation), 6 pgs. |
“U.S. Appl. No. 11/422,423, Notice of Allowance mailed Jul. 6, 2011”, 9 pgs. |
“U.S. Appl. No. 12/430,2011, Non Final Office Action mailed Jun. 23, 2011”, 16 pgs. |
“U.S. Appl. No. 12/430,211, Final Office Action mailed Feb. 1, 2011”, 13 pgs. |
“U.S. Appl. No. 12/430,211, Response filed Jan. 3, 2011 to Non Final Office Action mailed Sep. 1, 2010”, 10 pgs. |
“U.S. Appl. No. 12/430,211, Response filed Jun. 1, 2011 to Final Office Action mailed Feb. 1, 2011”, 7 pgs. |
“U.S. Appl. No. 12/604,233, Advisory Action mailed May 3, 2011”, 8 pgs. |
“U.S. Appl. No. 12/604,233, Final Office Action mailed Feb. 15, 2011”, 9 pgs. |
“U.S. Appl. No. 12/604,233, Response filed Apr. 12, 2011 to Final Office Action mailed Feb. 15, 2011”, 11 pgs. |
“U.S. Appl. No. 12/604,233, Response filed Jun. 15, 2011 to Advisory Action mailed May 3, 2011 and Final Office Action mailed Feb. 15, 2011”, 13 pgs. |
“European Application Serial No. 07782375.5, Response filed May 11, 2011 to Office Action mailed Nov. 22, 2010”, 6 pgs. |
Number | Date | Country | |
---|---|---|---|
20080097412 A1 | Apr 2008 | US |