The present invention relates to the harvesting of blood vessels and, more particularly, to methods and apparatus for endoscopic dissection of sections of blood vessels, such as saphenous veins, for use as a coronary artery bypass graft.
It is common during various surgical procedures, and most particularly during coronary artery bypass grafting (CABG), to remove or “harvest” 0 a blood vessel or vessel section, such as an artery or vein, from its natural location in a patient's body and to use it elsewhere in the body. In CABG surgery, the blood vessel is used to form a bypass between an arterial blood source and the coronary artery that is to be bypassed. Often an artery proximate the heart, such as one of the internal mammary arteries, can be used as the bypass graft, although the saphenous veins in the legs, or a radial artery in an arm can also be used as well.
The conventional surgical procedure used to harvest a section of the saphenous vein, or the like, for use in the CABG surgery involves making a continuous incision in the leg for the full length of the desired vein section in order to provide adequate exposure for visualizing the vein and for introducing surgical instruments to sever, cauterize and ligate the tissue and side branches of the vein. The incision must then be closed by suturing or stapling along its length.
Less-invasive techniques for harvesting blood vessels have also been developed which employ only two small incisions, generally one at each end of the section of vessel to be removed. Primary dissection occurs by introduction of one or more surgical instruments through a first incision to create a working space and separate the vein from the surrounding tissue. Then further instruments are introduced into the generally limited working space to dissect the blood vessel from the connective tissue surrounding the section to be harvested. The side branches of the blood vessel are also clipped and/or cauterized. In order to remove the desired section of the blood vessel, a second small incision, or stab wound, is made at the distal end thereof and the distal end of the blood vessel section is ligated. The proximal end of the blood vessel section is then also ligated, thereby allowing the desired section to be completely removed through the first incision. An endoscopic instrument is generally required for such a procedure to enhance visualization of the vessel and the surrounding tissue and to properly position the surgical instrument. Example of such endoscopic instruments for harvesting blood vessels are shown in U.S. Pat. No. 6,193,653 to Evans et al. and U.S. Pat. No. 6,019,771 to Bennett et al.
These types of less invasive techniques reduce the overall length of the incision, as well as the trauma to the blood vessel section and the surrounding tissue. The introduction of a plurality of surgical instruments through the incision, however, may still cause some irritation or damage to the vessel which must then be repaired before it can be used as a graft.
Accordingly, it would be desirable to have a vessel harvesting device and procedure that minimizes the number of surgical instruments that must be inserted into the patient's body and that provides for more precise manipulation of the blood vessel by a surgeon.
The present invention provides an endoscopic apparatus for harvesting blood vessels which has an endoscopic barrel including a plurality of lumens, one of the lumens being dimensioned for receiving an endoscope. A handle is disposed at a proximal end of the endoscopic barrel and a cone portion is extendable from a distal end of the endoscopic barrel to expose two finger elements for dissecting and cauterizing a blood vessel.
In a preferred embodiment, the two fingers preferably have distally curved ends defining hooks with a radius of curvature compatible with the endoscopic barrel. More particularly, one of the fingers defines an inner finger and the other finger defines an outer finger such that, when the fingers are axially aligned, the inner and outer fingers form a shear plane therebetween for severing and cauterizing tissue, such as a blood vessel.
The rotational movement of the fingers is controlled such that the inner and outer fingers rotate together. The longitudinal movement of the fingers is controlled by a control mechanism within the handle such that the fingers can be extended and retracted independently or together, and one of the fingers is also independently controlled such that it can close a space defined between the fingers, thereby pinching and severing the tissue therebetween. The control mechanism includes, amongst other components, a control rod extending from the handle to each respective finger such that movement of the control mechanism between a first position and a second position produces a predetermined longitudinal movement of the respective finger.
These, and other objects, features, and advantages of the present invention will become more readily apparent to those skilled in the art upon reading the following detailed description, in conjunction with the appended drawings in which:
An endoscopic vein dissector and cauterizing apparatus according to the present invention is shown generally by reference numeral 10 in
The endoscopic tube 12 preferably includes a flexible outer sheath 14, and a coaxial inner member 16 which forms at least two passages or lumens 18, 20 extending the length thereof. Lumen 18 is generally the largest of the two lumens so as to accommodate the insertion of a conventional imaging system, or endoscope, having an optical lens arrangement 62 (
After performing the primary dissection and without removing the apparatus 10 from the first incision, the cone portion 36 may be extended away from the distal end portion 42 through movement of the push tab 48. The sheath 38 is preferably secured about the tube 12 on a track system 50 extending the length thereof. Accordingly, forward movement of the push tab 48 correspondingly moves the sheath 38 and cone tip 40 in a forward, or distal, direction, thereby exposing the inner and outer fingers 28, 30, as shown in
Although the use of two fingers, as described below is a preferred embodiment of the present invention for dissecting, severing and cauterizing a blood vessel, one skilled in the art will recognize that other possible means may utilize only one or more than two dissecting and cauterizing elements. Each of the fingers 28, 30 is preferably a bipolar electrode, although a monopolar electrode could of course also be used. More preferably, each finger includes a bipolar insulator and an electrical conductor. As illustrated, each of the fingers 28, 30 may have a generally curved configuration generally resembling a hook portion on the terminal end thereof. The hook-shaped configuration, in combination with the rotational and longitudinal movement of the fingers 28, 30, enable the fingers to be used in removing connective tissue from the blood vessel. The hook-shaped configuration is also preferred to allow the fingers to be compactly arranged about the endoscope lens 62, as shown in
Referring also to
By manipulation of the control rings 44, 46, a user can control the movement and position of each of the fingers 28, 30, thus allowing the fingers to be rotated, extended and/or retracted to form a spaced opening therebetween for tissue dissection, as shown in
The above description of the relative movement between the control rings, the finger pinch tabs, and the respective fingers is preferred for the illustrated embodiment; however, other arrangements would of course also be possible.
In operation a section of a desired blood vessel, such as the saphenous vein, may be harvested using the integrated apparatus 10 of the present invention in the following manner. A small incision is formed at an appropriate location in a patient's leg adjacent the saphenous vein. With the cone portion 36 in position on the endoscopic tube 12, a distal end of the apparatus 10 may be inserted through the incision and advanced forward to perform the primary dissection, so as to separate the tissue from the vein and create a working space therearound. As known in the art, gas insufflation, such as with carbon dioxide, may be used to maintain the working space in its expanded form.
After the primary dissection, the apparatus 10 preferably remains in place and the cone portion 36 is moved distally so as to expose the fingers 28, 30. Thus, the present invention eliminates the necessity of removing and then reinserting an apparatus through the incision in order to proceed with the branch dissection. The inner fingers 28 and 30 are preferably extended distally away from the lens 62 and may be separated, for example, with the outer finger disposed further distally than the inner finger so as to enable the vein to be disposed therebetween. Because the endoscope is preferably positioned above and to the rear of the fingers 28, 30, the optical lens 62 of the endoscope can clearly view the fingers 28, 30 and the tissue to be dissected; thereby providing optimal observation for guiding and operating the apparatus 10. In this manner the fingers 28, 30 can dissect the vein from the connective tissue and cut any side branches along the vein simply by movement of the fingers to the axially adjacent position shown in
The pinch tabs 66 and control rings 44, 46 of the present invention allow the apparatus 10 to be used with only one hand of the surgeon, thereby freeing a second hand, for example, to hold and reposition the patient's leg, which is frequently necessary in order to obtain the best angle for harvesting of the saphenous vein. Further, while slidable and rotatable control rings are shown as the preferred mechanism for obtaining the desired movement of the fingers, it should be apparent to one skilled in the art that other control mechanisms can of course also be used. Possible variations would include a thumb control for rotating pulleys to move cables and thereby operate the fingers. Further possible control mechanisms would include independent rack and pinion mechanisms which are again preferably controlled by the thumb of the user so as to enable single hand operation.
The present invention has now been described with reference to a preferred embodiment thereof. The foregoing detailed description has been given for clarity and understanding only. No unnecessary limitations are to be understood therefrom. It will be apparent to those skilled in the art that many changes can be made in the embodiment described without departing from the scope of the invention. Thus, the scope of the present invention should not be limited to the exact details and structures described herein, but rather by the structures described by the language of the claims, and the equivalents of those structures.
Number | Name | Date | Kind |
---|---|---|---|
5207691 | Nardella | May 1993 | A |
5527319 | Green et al. | Jun 1996 | A |
5569291 | Privitera et al. | Oct 1996 | A |
5655545 | Johnson et al. | Aug 1997 | A |
5695514 | Chin | Dec 1997 | A |
5792135 | Madhani et al. | Aug 1998 | A |
5855583 | Wang et al. | Jan 1999 | A |
5873889 | Chin | Feb 1999 | A |
5908420 | Parins et al. | Jun 1999 | A |
5913866 | Ginn et al. | Jun 1999 | A |
5916233 | Chin | Jun 1999 | A |
5980549 | Chin | Nov 1999 | A |
6004335 | Vaitekunas et al. | Dec 1999 | A |
6019771 | Bennett et al. | Feb 2000 | A |
6022313 | Ginn et al. | Feb 2000 | A |
6030406 | Davis et al. | Feb 2000 | A |
6132441 | Grace | Oct 2000 | A |
6143008 | Eaves, III | Nov 2000 | A |
6179854 | Nash et al. | Jan 2001 | B1 |
6193653 | Evans et al. | Feb 2001 | B1 |
6203559 | Davis et al. | Mar 2001 | B1 |
6206823 | Kolata et al. | Mar 2001 | B1 |
6206877 | Kese et al. | Mar 2001 | B1 |
6206903 | Ramans | Mar 2001 | B1 |
6264670 | Chin | Jul 2001 | B1 |
6309397 | Julian et al. | Oct 2001 | B1 |
6312435 | Wallace et al. | Nov 2001 | B1 |
6352544 | Spitz | Mar 2002 | B1 |
6375635 | Moutafis et al. | Apr 2002 | B1 |
6527771 | Weadock et al. | Mar 2003 | B1 |
6660016 | Lindsay | Dec 2003 | B2 |
20030212420 | Gruhl et al. | Nov 2003 | A1 |
20040133228 | Bayer | Jul 2004 | A1 |
Number | Date | Country |
---|---|---|
WO 03000139 | Jan 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20050192613 A1 | Sep 2005 | US |