The subject invention relates to the field of medical technology and can provide for an improved method of creating composite images from a plurality of individual signals. The subject invention is particularly advantageous in the field of magnetic resonance imaging (MRI) where many individual images can be used to create a single composite image.
In the early stages of MRI development, typical MRI systems utilized a single receiver channel and radio frequency (RF) coil. In order to improve performance, multi-coil systems employing multiple RF coils and receivers can now be utilized. During operation of these multi-receiver systems, each receiver can be used to produce an individual image of the subject such that if there is n receivers there will be n images. The n images can then be processed to produce a single composite image.
Many current systems incorporate a sum-of-squares (SOS) algorithm, where the value of each pixel in the composite image is the square-root of the sum of the squares of the corresponding values of the pixels from each of the n individual images. Where the pixel values are complex, the value of each pixel in the composite image is the square-root of the sum of the magnitude squared of the corresponding pixels from each of the individual images. In mathematical terms, if n coils produce n signals S=[s1,s2, . . . ,sn] corresponding to the pixel values from a given location, the composite signal pixel is given by the following equation:
where S• is the conjugate row-column transpose of the column vector, S. Some systems also incorporate measurement and use of the noise variances of each coil. Define the n×n noise covariance matrix, N, in terms of noise expectation ●, by the formula:
Ni.j=(si−sj)·(sj−sj)
The diagonal entries of N are the noise variances of each coil. Each of the n individual channel gains can then be adjusted after acquisition to produce equal noise variance individual images. Following this procedure, the SOS algorithm can then be applied. This additional procedure tends to improve the signal-to-noise ratio (SNR) of the process but may still fail to optimize the SNR of the resultant composite image. This results in an equation:
√{square root over (S500 ·[Diag(N)]−1·S)}
It can be shown that the SOS algorithm is optimal if the noise covariance matrix is the identity matrix. In order to further optimize the SNR of the resultant composite image, it would be helpful to have knowledge of the noise covariance matrix. Optimal SNR reconstruction in the presence of noise covariance can be summarized by the following simple equation:
√{square root over (S•·[N]−1·S)}
U.S. Pat. Nos. 4,885,541 and 4,946,121 discuss algorithms relating to equations which are similar in form. Typically this method is applied in the image domain, after acquisition and Fourier transformation into separate images.
The subject invention pertains to a method and apparatus for improved processing of electrical signals. A specific embodiment of the subject invention can be used with MRI devices. The subject method and apparatus can be used to combine a plurality of individual images into a single composite image. The composite image can have reduced distortion and/or increased signal to noise ratio. In one embodiment, the subject method and apparatus can be installed as an aftermarket addition to existing MRI devices in order to take advantages of the method herein described. In another embodiment, the subject invention can be incorporated into new MRI devices and/or systems.
The subject invention pertains to a method and apparatus for enhanced multiple coil imaging. The subject invention is advantageous for use in imaging devices, such as MRIs where multiple images can be combined to form a single composite image. In one specific embodiment, the subject method and apparatus utilize a novel process of converting from the original signal vector in the time domain to allow the subject invention to be installed in-line with current MRI devices.
An MRI device, which could be used with the subject invention, typically has multiple RF coils and receivers where each coil can produce an image of the subject. Thus, a preferred first step in the use of a multi-receiver MRI system is to produce n data sets which could be used to produce n images, one from each of the n receivers employed by the device. In typical MRI devices, a next step can be to produce a single composite image using the n individual images. This composite imaging is commonly formed through the manipulation of the n individual images in a sum-of-squares (SOS) algorithm. In this process, the value of each pixel in the composite image is the square-root of the sum of the squares of the corresponding values of the pixels from each of the n individual images. Where the pixel values are complex, the value of each pixel in the composite image is the square-root of the sum of the magnitude squared of the corresponding pixels from each of the individual images. In mathematical terms, if n coils produce n signals S=[s1,s2, . . ,sn] corresponding to the pixel values from a given location, the composite signal pixel is given by the following equation:
√{square root over (S•·S)}
Some systems also incorporate measurement and use of the noise variances of each coil. Define the n×n noise covariance matrix, N, in terms of noise expectation ●, by the formula:
Ni.j=(si−sj)·(si−sj)
The diagonal entries of N are the noise variances of each coil. Each of the n individual channel gains can then be adjusted after acquisition to produce equal noise variance individual images. Following this procedure, the SOS algorithm can then be applied. This additional procedure tends to improve the signal-to-noise ratio (SNR) of the process but may still fail to optimize the SNR of the resultant composite image. This results in an equation:
√{square root over (S•·[Diag(N)]−1·S)}
It can be shown that the SOS algorithm is optimal if noise covariance matrix is the identity matrix. In order to further optimize the SNR of the resultant composite image, it would be helpful to have knowledge of the relative receiver profiles of all the coils and knowledge of the noise covariance matrix. For illustrative purposes, the noise covariance matrix can be referred to as N, a n×n Hermitian symmetric matrix. One can also consider optimal given no a priori knowledge (i.e. no information about the coil receive profiles). Optimal then considers only the knowledge of the noise covariance matrix and assumes that the relative pixel value at each location is approximately the relative reception ability of each coil. It can be shown that the SOS algorithm is optimal if the noise covariance matrix is the identity matrix. This method can be summarized by the following simple equation:
√{square root over (S•·[N]−1·S)}
U.S. Pat. Nos. 4,885,541 and 4,946,121, which are hereby incorporated herein by reference, discuss algorithms relating to equations which are similar in form. Typically this method is applied in the image domain, after acquisition and Fourier transformation into separate images. In order to further optimize the SNR of the resultant composite image, it would be helpful to have knowledge of the relative receiver profiles of all the coils and knowledge of the noise covariance matrix. As the matrix N−1 is Hermitian symmetric, N−1 can therefore be expressed in an alternate form as N=K*K.
This allows the equation above to be rewritten as:
√{square root over (S•·[K*K]−1·S)}=√{square root over ((S•K−1)((K•)−1S))}{square root over ((S•K−1)((K•)−1S))}=√{square root over (((K•)−1S)•·((K•)−1S))}{square root over (((K•)−1S)•·((K•)−1S))}
This is now in the form:
√ŝ•·ŝ
Therefore, it is as if the conventional SOS algorithm is performed on a new vector, ŝ=(K•)−1·S. Viewed another way, this optimal equation is equivalent to a Sum of Squares operation after a basis transformation to an uncorrelated basis. The new basis can be considered channels that are noise eigenmodes of the original coil. In a specific embodiment of the subject invention, the process of converting from the original signal vector to a new signal vector can be a linear process corresponding to, for example, multiplication by constant values and addition of vector elements, as shown in the following set of equations:
ŝ1=a1.1s1+a1.2s2+. . . +a1.nsn
ŝ2=a2.1s1+a2.2s2+. . . +a2.nsn
ŝn=an.1s1+an.2s2+. . . +an.nsn
wherein a1.1,a1.2, . . . ,a1.n,a2.1,a2.2, . . . ,a2.n, . . . ,an.1,an.2, . . . ,an.n are constants. When only multiplication by constant values and addition of vector elements are used, the process can occur before or after Fourier Transformation. That is, the process can occur in the time domain or in the image domain.
Accordingly, the subject method and apparatus can operate in the time domain to convert an original signal vector, which is typically in a correlated noise basis, to a new signal vector, which can be in an uncorrelated noise basis. In a specific embodiment of the subject invention, standard reconstruction algorithms for producing composite images can be used. These algorithms are already in place on many multi-channel MRI systems. In addition, it may be possible to apply other algorithms for spatial encoding such as SMASH and SENSE with better efficiency.
In a specific embodiment, the subject method and apparatus can incorporate the processing of each signal with the coil so that the processing does not show to a user, such as to create the effect of “pseudo coils” having 0 noise covariance. The subject invention can be implemented via software and/or hardware.
The subject method can allow for a reduction in the number of channels and, in a specific embodiment, be generalized to an optimal reduction in the number of channels. In some embodiments, a coil array can have some degree of symmetry. With respect to coil arrays having some degree of symmetry, there can exist eigenvalues with degenerate eigenvectors. Generally, two eigenvectors with the same (or similar) eigenvalue can represent similar effective imaging profiles, often having some shift or rotation in the patterns, where two eigenvectors with similar but not identical eigen-values can be considered substantially degenerate eigenvectors. Accordingly, channels with the same eigenvalues can be added with some particular phase, resulting in little loss in SNR and partially parallel acquisition (PPA) capability. This can allow for maximizing the information content per channel. In a specific embodiment, adding the signals from channels with identical (or similar) eigenvalues, the number of channels may be reduced from n to m, where m<n, channels with little loss in performance. In a specific embodiment, such a reduction in the number of channels can be implemented with respect to quadrature volume coil channels. For example, if two volume coils or modes have fields which are uniform and perpendicular, then the circularly polarized addition of these fields, for example by adding the fields 90 degrees out of phase, can allow all of the signal into one channel and no signal into the other channel. In this example, the use of a phased addition associated with the uniform modes both having the same eigenvalves and being related through a rotation of 90 degrees allows the conversion of two coils to one channel to be accomplished.
Referring to FIGS. 4A—4B, a comparison of the standard method for producing a single composite image from the output signals of N coils to an embodiment of the subject invention which incorporates a decorrelator into which N signals are inputted and M signals are outputted, where M≦N, such that a single composite image is produced from the M outputted signals after processing.
This example describes a 4-channel hardware RF combiner network which realizes a basis change to reduced noise correlation. The RF combiner network can realize a basis change to minimal noise correlation. Such a basis change to minimal noise correlation can optimize SNR achievable using the Sum-of-Squares reconstruction method. The network can be realized using passive RF components. A specific embodiment was tested specifically using a 4-channel head coil (
A head coil design has demonstrated greater than 20% peripheral SNR gain by using “optimal” reconstruction offline from raw data. “Optimal” can be defined as reconstructing with the highest SNR using the signal plus noise as an estimate of the true signal, but with the full noise covariance matrix taken into account. The standard Sum-of-Squares reconstruction can be optimized for SNR by employing the noise correlation matrix. However, there are practicality issues and can be a lack of any substantial gain in image quality (i.e. 10% or less). The Sum of Squares (with normalized variances) can be optimal if the noise covariance matrix is diagonal (no correlation between channels). To achieve this gain in clinical practice, a hardware combiner circuit has been developed to achieve this SNR gain for a specific coil on a typical MRI scanner without software modification.
The standard Sum-of-Squares (SoS) reconstruction from an n-channel array for each pixel is Psos=√S500 ·S where S=[s1,s2, . . . ,sn]. The optimal reconstruction using only signal data is Popt=√{square root over (S500 ·[N]−1·S)} where N is the noise correlation matrix. To yield this optimal result from a standard SoS operation, a signal basis change can be employed. Since in general N•=N , there exists a K constructed via eigenvalue/vector decomposition such that N=K*K and so Popt=√{square root over (S•·[(K*K]−1·S)}=√{square root over (((K•)−1S)•·((K•)−1S)•·((K•)−1S))}{square root over (((K•)−1S)•·((K•)−1S)•·((K•)−1S))}{square root over (((K•)−1S)•·((K•)−1S)•·((K•)−1S))}. Thus we can define Ŝ=(K•)−1·S as our new signal vector and Popt=√{square root over (Ŝ•·Ŝ)} which is just a SoS operation.
In hardware, multiplication of the 4 element signal vector s by a matrix is equivalent to using a 4-in-to-4-out network which in general is complicated by phase shifts and gain scaling, and must almost certainly be placed after preamplification. The 4-channel head coil used in this example has 4 sets of opposing parallel-combined loops and was described in King, S. B. et al. 9th ISMRM proceedings, p. 1090, 2001, which is incorporated herein by reference and includes eight domed surface coil elements (diameter=11 cm) with opposing loops combined to produce 4-channels. Adjacent elements were overlapped for zero mutual inductance. SNR dependence on coupling was estimated from loaded Q-measurements (QL) with shorts and low impedance terminations placed after a 90° matching network. Only the next nearest neighbor produced significant drop in QL when terminated in low impedance rather than direct short. Therefore, only next nearest neighbors were isolated by shared inductance. Unloaded isolations were all greater than 18 dB. In addition, all coils were placed on identical formers with diameter 23.5 cm and length 22 cm. Its symmetry yields an all-real noise correlation matrix and corresponding signal basis change matrix of the form shown below:
The basis change matrix diagonalizes N, so in the new basis there is no noise correlation, which maximizes SNR.
The ±0.7 entries in K are just 3 dB attenuations, resulting in the very simple circuit realization of
Images were made using a 1.5 T scanner.
Clearly the SNR gain is mainly in the periphery and the resulting image suffers in uniformity between the center and the periphery. Hardware results are also in close agreement with software-optimal reconstruction using normal coil data. Noise correlation is significantly decreased when using the hardware-optimal combiner, and the matrix is nearly diagonal as expected:
The results of this example illustrate that a hardware De-correlator can be used to approximate “optimal” reconstruction using software sums of squares algorithm. As the symmetry of noise covariance entries is more important than particular values, this device can show robustness across different loading conditions.
SENSE and SMASH reconstruction algorithms use the noise correlation routinely, so the use of a hardware combiner solely to achieve better SNR is limited. However, this and similar combiners may find use in reducing computational time and improving numerical stability in the various new reconstruction algorithms being developed.
It should be understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and the scope of the appended claims.
The present application claims the benefit of U.S. Provisional Application No. 60/299,012, filed Jun. 18, 2001, which is hereby incorporated by reference herein in its entirety, including any figures, tables, or drawings.
The subject invention was made with government support under a research project supported by the National Institutes of Health (NIH), Department of Health and Human Services, Grant Number 5R44 RR11034-03. The government has certain rights in this invention.
Number | Name | Date | Kind |
---|---|---|---|
4885541 | Hayes | Dec 1989 | A |
4947121 | Hayes | Aug 1990 | A |
5587656 | Van Heels-Bergen et al. | Dec 1996 | A |
6160398 | Walsh | Dec 2000 | A |
6486671 | King | Nov 2002 | B1 |
6584413 | Keenan et al. | Jun 2003 | B1 |
6675106 | Keenan et al. | Jan 2004 | B1 |
6745064 | Fuderer et al. | Jun 2004 | B1 |
6771067 | Kellman et al. | Aug 2004 | B1 |
6898582 | Lange | May 2005 | B1 |
20020167315 | Kellman et al. | Nov 2002 | A1 |
20030038632 | Duensing et al. | Feb 2003 | A1 |
20040015894 | Lange | Jan 2004 | A1 |
Number | Date | Country |
---|---|---|
WO 0173463 | Oct 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20030038632 A1 | Feb 2003 | US |
Number | Date | Country | |
---|---|---|---|
60299012 | Jun 2001 | US |