The present invention relates to image producing machines that include a fusing apparatus such as solid inkjet printing machines and electrostatographic image producing machines and, more particularly, to such a machine including a method and apparatus for enhanced sheet stripping from the fusing apparatus.
One type of electrostatographic reproducing machine is a xerographic copier or printer. In a typical xerographic copier or printer, a photoreceptor surface, for example that of a drum, is generally arranged to move in an endless path through the various processing stations of the xerographic process. As in most xerographic machines, a light image of an original document is projected or scanned onto a uniformly charged surface of a photoreceptor to form an electrostatic latent image thereon. Thereafter, the latent image is developed with an oppositely charged powdered developing material called toner to form a toner image corresponding to the latent image on the photoreceptor surface. When the photoreceptor surface is reusable, the toner image is then electrostatically transferred to a recording medium, such as a sheet of paper, and the surface of the photoreceptor is cleaned and prepared to be used once again for the reproduction of a copy of an original. The sheet of paper with the powdered toner thereon in imagewise configuration is separated from the photoreceptor and moved through a fusing apparatus including a heated fusing member where the toner image thereon is heated and permanently fixed or fused to the sheet of paper.
As is well known, after the toner image is fixed or fused as such, the sheet carrying the fused image must be carefully stripped from the heated fusing member (without damaging the surface of the heated fusing member) for feeding to a subsequent processing station, such as an inverter, collator, stapler, or booklet maker. It is known to use solid rigid fingers alone that either slide away from the surface of the heated fusing member or include expensive articulating assemblies for attempting to avoid damaging the surface of the heated fusing member. Additionally, it also known to use a sufficiently high pressure and high volume of compressed air in the form of an air knife either alone or in combination, to attempt to strip the sheet of paper from the surface of the heated fusing member without damaging it.
In solid inkjet color image printing, multi-colored images are formed on an intermediate member such as a drum, using different colored crayon-like inks that are solid at room temperature but are melted and image-wise applied to the intermediate member using moving printheads. Special ink formulations have been developed that allow the ink to melt at very precise temperatures, and that solidify very quickly when their temperature drops below such melting temperature. In a solid inkjet printer, the image-wise pattern of solid ink on the intermediate member is then transferred and fused or transfused onto a copy sheet. The fusing or transfusing smoothens out the sheet surface and strengthens the bond between the ink and the sheet.
Prior art that may be relevant in reviewing the patentability of the present disclosure include for example U.S. Pat. No. 4,475,896 issued Oct. 9, 1984 to Bains and entitled “Curling/decurling method and mechanism” discloses a sheet curling/decurling mechanism is disclosed as having a compliant roller with a soft, pliable material therearound, a curling roller forming a penetration nip with the compliant roller, the penetration nip being adapted to curl sheets of paper passing through the nip, and movable plates arranged adjacent the sheet exiting side of the nip for controlling the angle of exiting of the sheets from the nip.
U.S. Pat. No. 4,876,576 issued Oct. 24, 1989 to Itaya et al. and entitled “Device for changing sheet shape before entry into fuser nip” discloses a fixing device is provided in an image forming apparatus. The fixing device has first and second rollers to form a nip portion therebetween. An image forming medium having a flat shape and a leading edge, on which an unfixed image is formed. The image forming medium is conveyed and approaches the nip portion between the first and second rollers. The fixing device also has a changing unit for changing the shape of the vicinity of the leading edge of the image forming medium from the flat shape to a convex shape while the image forming medium is being conveyed to approach the nip portion.
U.S. Pat. No. 4,632,533 issued Dec. 30, 1986 to Young and entitled “Off-set nip roll decurler” discloses an apparatus in which sheet material is decurled. The apparatus includes off-set nips for reverse bending a sheet. As the sheet leaves a fuser, it is directed into one of two channels toward an off-set nip depending on the curl in the sheet. The off-set nip in conjunction with an output baffle reverse bends the sheet.
U.S. Pat. No. 5,123,895 issued Jun. 23, 1992 to Mandel and entitled “Passive, intelligent, sheet decurling system” discloses an apparatus in which sheet material is decurled. The apparatus includes a baffle type decurler in which a sheet moving therethrough chooses one of three paths and baffles, depending on the direction and amount of curl. Triangular shaped baffles prevent sheet stubbing and a decurling system reverse bends the sheets in two of the three paths.
U.S. Pat. No. 5,153,662 issued Oct. 6, 1992 to Foos and entitled “Sheet decurling apparatus” discloses an apparatus for decurling an advancing sheet is disclosed. The apparatus includes a first belt and a second belt spaced apart from the first belt so as to define a space adapted to receive the advancing sheet. The apparatus further includes a roller positioned between the first belt and the second belt, the roller being in contact with the first belt in a first mode of operation so as to define a first nip and being in contact with the second belt in a second mode of operation so as to define a second nip.
U.S. Pat. No. 5,201,514 issued Apr. 13, 1993 to Rebres and entitled “Apparatus for decurling a sheet” discloses an apparatus for decurling a sheet is disclosed. The apparatus includes a decurler shaft and a first belt positionable to contact an arcuate portion of the decurler shaft. The apparatus further includes a second belt positionable to contact the first belt and to bend around the arcuate portion of the decurler shaft. Moreover, the apparatus includes a mechanism for advancing the sheet between the first belt and the second belt so as to bend the sheet around the arcuate portion of the decurler shaft.
Unfortunately, conventional rigid stripper fingers have a tendency for attracting toner particles that had just been heated and melted within the fusing nip, but now starting to cool, which then buildup on and contaminate the stripper fingers. This is a problem and can be critical in that it affects both (a) subsequent copy quality (when toner contamination from the fingers dislodge and get on or smudge a subsequent copy) and (b) stripping reliability (when toner contamination n the fingers interferes with the controlled contact with the fuser roller by lifting the a finger off the fuser roll usually causing jams and resulting in costly unscheduled maintenance calls. High pressure, high volume air knives besides being costly, are undesirable because they are near un-fused toner images within the machine.
In accordance with the present disclosure, there has been provided an enhanced sheet stripping method and apparatus for stripping toner image carrying copy sheets from a surface of a moving heated fusing member forming a fusing nip. The apparatus includes (a) a moving assembly for moving a cut sheet towards the fusing nip; (b) a sheet curling device positioned upstream of the fusing nip relative to movement of the cut sheet for inducing a desired pre-curl in the cut sheet before the cut sheet enters the fusing nip; and (c) a sheet stripping device positioned downstream of the fusing nip for stripping the cut sheet from contact with the surface of the moving heated fusing member as the cut sheet exits the fusing nip. The method includes inducing a desired curl in the cut sheet before the cut sheet enters the fusing nip and enhanced stripping the cut sheet from contact with the surface of the fuser roll as the cut sheet exits the fusing nip.
Referring first to
Initially, a portion of the photoconductive belt surface passes through charging station AA. At charging station AA, a corona-generating device indicated generally by the reference numeral 22 charges the photoconductive belt 10 to a relatively high, substantially uniform potential.
As also shown, the reproduction machine 8 includes a controller or electronic control subsystem (ESS) 29 that is preferably a self-contained, dedicated minicomputer having a central processor unit (CPU), electronic storage, and a display or user interface (UI). The ESS 29, with the help of sensors and connections, can read, capture, prepare and process image data and machine status information.
Still referring to
ROS 30 includes a laser with rotating polygon mirror blocks. Preferably a nine-facet polygon is used. At exposure station BB, the ROS 30 illuminates the charged portion on the surface of photoconductive belt 10 at a resolution of about 300 or more pixels per inch. The ROS will expose the photoconductive belt 10 to record an electrostatic latent image thereon corresponding to the continuous tone image received from ESS 29. As an alternative, ROS 30 may employ a linear array of light emitting diodes (LEDs) arranged to illuminate the charged portion of photoconductive belt 10 on a raster-by-raster basis.
After the electrostatic latent image has been recorded on photoconductive surface 12, belt 10 advances the latent image through development stations CC, that include four developer units as shown, containing CMYK color toners, in the form of dry particles. At each developer unit the toner particles are appropriately attracted electrostatically to the latent image using commonly known techniques.
With continued reference to
As described above, in solid inkjet color image printing, multi-colored images are formed on an intermediate member such as a drum, using different colored crayon-like inks that are solid at room temperature but are melted and image-wise applied to the intermediate member using moving printheads. Special ink formulations have been developed that allow the ink to melt at very precise temperatures, and that solidify very quickly when their temperature drops below such melting temperature. In the solid inkjet printer, the image-wise pattern of solid ink on the intermediate member is then transferred and fused or transfused onto a copy sheet at a fusing or transfusing station such as FF.
Fusing station FF includes the fusing apparatus of the present disclosure that is indicated generally by the reference numeral 70 for fusing and permanently affixing the transferred toner powder image 213 to the copy sheet 48. Preferably, fusing apparatus 70 includes a heated fuser roller 72 having a surface 76, and a pressure roller 74, that together form a fusing nip 75 through which the sheet 48 is passed with the powder image 213 on the copy sheet 48 contacting fuser roller 72. The pressure roller 74 is loaded against the fuser roller 72 forming the fusing nip 75 for providing the necessary pressure to fix the heated toner powder image 213 to the copy sheet. The fuser roll 72 for example is internally heated by a quartz lamp 71. The fuser roll surface 76 may be cleaned by a roll 77, and release agent, stored in a reservoir (not shown), may be pumped to a metering roll 79 for application to the surface of the fuser roll after the sheet is stripped from such surface by the enhanced sheet stripping apparatus 200 of the present disclosure, (to be described in more detail below).
After that, the sheet 48 then passes to a gate 88 that either allows the sheet to move directly via output 17 to a finisher or stacker, or deflects the sheet into the duplex path 100. Specifically, the sheet (when to be directed into the duplex path 100), is first passed through a gate 134 into a single sheet inverter 82. That is, if the second sheet is either a simplex sheet, or a completed duplexed sheet having both side one and side two images formed thereon, the sheet will be conveyed via gate 88 directly to output 17. However, if the sheet is being duplexed and is then only printed with a side one image, the gate 88 will be positioned to deflect that sheet into the inverter 82 and into the duplex loop path 100, where that sheet will be inverted and then fed to acceleration nip 102 and belt transports 110, for recirculation back through transfer station DD and fuser 70 for receiving and permanently fixing the side two image to the backside of that duplex sheet, before it exits via exit path 17.
After the print sheet is separated from photoconductive surface 12 of belt 10, the residual toner/developer and paper fiber particles still on and may be adhering to photoconductive surface 12 are then removed there from by a cleaning apparatus 150 at cleaning station EE.
Referring now to
The sheet curling device 220 includes means such as rollers 222, 224 for inducing into the cut sheet 48 the curl C3 tending away as shown by the arrow 225 in
The sheet stripping device 230 in one embodiment as shown in
In another embodiment as shown in
In general, the present disclosure is directed to a method and apparatus 200 for promoting robust or enhanced media stripping from a heated fusing member 72 such as a fuser roller or a transfix roller. The method involves inducing a slight radius (curl) C3 at the lead edge LE of a cut sheet 48 before it enters the fusing nip 75, resulting in a dramatically increased likelihood of the sheet exiting the fusing nip without a defect and without jamming. The induced curl C3 in the sheet is away 225 from the surface 76 fusing or transfix roller 72 thus enabling the lead edge LE to avoid direct contact with the tip 233 of a stripper finger 232 or blade upon exiting the fusing nip 75. Damage or jamming from such contact is thereby avoided.
The curl C3 is not meant to necessarily eliminate the need for a post fusing nip stripping device 230, but rather the curl C3 is meant to increase or enhance the stripping latitude of existing stripping devices. In accordance with the present disclosure, a standard decurler such as a hard roller 222 and soft roller 224 can be used for generating the desired curl or curvature C3. In one embodiment of the present disclosure, the curl C3 is generated only over a short distance L3 of approximately 4 mm into the sheet from the lead edge LE.
Although quantitative empirical and numerical data was developed suggesting that pre-curling of the media as per this disclosure does not significantly affect the post fusing sheet flatness, as shown in
On the other hand,
A direct comparison between the results of these simulations of
As can clearly be seen, the pre-curl resultant force F6 at 38.5 N is more than 50% greater than the conventional resultant force F5 at 24.6 N. This is because in
As can be seen, there has been provided an enhanced sheet stripping method and apparatus for stripping toner image carrying copy sheets from a surface of a moving heated fusing member forming a fusing nip. The apparatus includes (a) a moving assembly for moving a cut sheet towards the fusing nip; (b) a sheet curling device positioned upstream of the fusing nip relative to movement of the cut sheet for inducing a desired pre-curl in the cut sheet before the cut sheet enters the fusing nip; and (c) a sheet stripping device positioned downstream of the fusing nip for stripping the cut sheet from contact with the surface of the moving heated fusing member as the cut sheet exits the fusing nip. The method includes inducing a desired curl in the cut sheet before the cut sheet enters the fusing nip and enhanced stripping the cut sheet from contact with the surface of the fuser roll as the cut sheet exits the fusing nip.
The claims, as originally presented and as they may be amended, encompass variations, alternatives, modifications, improvements, equivalents, and substantial equivalents of the embodiments and teachings disclosed herein, including those that are presently unforeseen or unappreciated, and that, for example, may arise from applicants/patentees and others.
Number | Name | Date | Kind |
---|---|---|---|
4475896 | Bains | Oct 1984 | A |
4505695 | Billings | Mar 1985 | A |
4591259 | Kuo et al. | May 1986 | A |
4632533 | Young | Dec 1986 | A |
4876576 | Itaya et al. | Oct 1989 | A |
4926358 | Tani et al. | May 1990 | A |
5059988 | Hisada | Oct 1991 | A |
5123895 | Mandel | Jun 1992 | A |
5153662 | Foos | Oct 1992 | A |
5201514 | Rebres | Apr 1993 | A |
5337128 | Hashizume et al. | Aug 1994 | A |
5572308 | Suda et al. | Nov 1996 | A |
5617193 | Ban et al. | Apr 1997 | A |
5787330 | Funato | Jul 1998 | A |
5812923 | Yamauchi et al. | Sep 1998 | A |
5933697 | Onodera et al. | Aug 1999 | A |
6112048 | Westhoff | Aug 2000 | A |
6185403 | Toyoshima et al. | Feb 2001 | B1 |
6189173 | Saito et al. | Feb 2001 | B1 |
6661994 | Ohuchi et al. | Dec 2003 | B2 |
7280798 | Yuminamochi | Oct 2007 | B2 |
7941086 | Kurita | May 2011 | B2 |
20030016971 | Kikuchi et al. | Jan 2003 | A1 |
20030039491 | Bogoshian | Feb 2003 | A1 |
20040120735 | Baba et al. | Jun 2004 | A1 |
20040156659 | Ando et al. | Aug 2004 | A1 |
20060291917 | Fujisawa et al. | Dec 2006 | A1 |
20070059058 | Ito et al. | Mar 2007 | A1 |
20070140752 | Yamamoto et al. | Jun 2007 | A1 |
20070147911 | Hirota | Jun 2007 | A1 |
20070172278 | Yamamoto | Jul 2007 | A1 |
20070212131 | Nakayama | Sep 2007 | A1 |
20070223975 | Yoshida | Sep 2007 | A1 |
20090154976 | Castillo et al. | Jun 2009 | A1 |
20110142517 | Kanai et al. | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
57111550 | Jul 1982 | JP |
09152802 | Jun 1997 | JP |
Number | Date | Country | |
---|---|---|---|
20090003896 A1 | Jan 2009 | US |