The present invention relates generally to fuel cells, and more particularly to fuel cells substantially maintaining catalysis over the active electrode surface.
Fuel cells use an electrochemical energy conversion of a fuel and oxidant into electricity and heat. It is anticipated that fuel cells may be able to replace generators, primary and secondary batteries, etc. as a portable and/or non-portable power supply. In fuel cells, the fuel (containing a source of hydrogen or other oxidizable compound) is oxidized with a source of oxygen to produce (primarily) water and carbon dioxide. The oxidation reaction at the anode, which liberates electrons, in combination with the reduction reaction at the cathode, which consumes electrons, results in a useful electrical voltage and current through the load.
As such, fuel cells provide a direct current (DC) voltage that may be used to power motors, lights, electrical appliances, etc. A solid oxide fuel cell (SOFC) is one type of fuel cell that may be useful in portable applications, as well as in many other applications.
Improved thermal characteristics and performance are generally at the forefront of new fuel cell designs.
The present invention solves the drawbacks enumerated above by providing a fuel cell having at least one electrode operatively disposed in the fuel cell, and having a catalytically active surface. A mechanism is provided for substantially maintaining catalysis over the active surface of the electrode(s).
Objects, features and advantages of the present invention will become apparent by reference to the following detailed description and drawings, in which like reference numerals correspond to similar, though not necessarily identical components. For the sake of brevity, reference numerals having a previously described function may not necessarily be described in connection with subsequent drawings in which they appear.
As will be described further hereinbelow, in an embodiment(s) of the fuel cell system of the present invention, fuel cell architecture incorporating inwardly directed radial fuel flow integrated with centrally located exhaust combustion generally advantageously results in improved thermal management and enhanced fuel flow through the fuel cell system.
Referring now to
At least one electrode 16, 18 has a catalytically active surface 30 and is disposed in flow passage 24. The active surface 30 has an inlet end region 26 and an outlet end region 28. Without being bound to any theory, it is believed that the differential D between the inlet area A and the outlet area B results in the gas stream increasing velocity as it moves over the inlet end region 26 toward the outlet end region 28, thereby substantially maintaining catalysis on the active surface 30.
In an embodiment of the present invention, pressure at the outlet end region 28 is substantially at or higher than atmospheric pressure. It is to be understood that the pressure at outlet end region 28 may also be substantially at or lower than atmospheric pressure.
In an embodiment of the fuel cell system 10 of the present invention, heat generated by the fuel cell system 10 is substantially concentrated adjacent outlet 22 (i.e. the thermal energy moves radially inwardly). In contrast, thermal energy in known fuel cells generally tends to vector outwardly. This radial inward flow of thermal energy according to embodiments of the present invention further enables small SOFC systems by moving hot gases to the center of the system (convection moves inward while conduction and radiative moves radially outward). Still further, this feature generally reduces the temperature of the outer shell and correspondingly allows the use of lower-cost material(s).
In a further embodiment of the present invention, the fuel cell system 10 further includes a compressor 32, operatively and fluidly connected to the flow passage inlet 20, for supplying the gas stream at a predetermined pressure, as desired and/or necessitated by a particular end use.
Still further, an embodiment of the fuel cell system 10 of the present invention may include a catalytic combustor 34, operatively and fluidly connected to the outlet 22, for oxidizing reaction products of catalysis. Both the compressor 32 and catalytic combustor 34 are shown schematically in the block diagram of
In the fuel cell system 10 of embodiments of the present invention, the gas stream is at least one of reactants, oxidants, and/or mixtures thereof. In an embodiment, the reactants are fuels, and the oxidants are one of oxygen, air, and mixtures thereof. It is to be understood that any suitable fuel/reactant may be used with the fuel cell system 10 of the present invention. In an embodiment, the fuel/reactant is selected from at least one of hydrogen, methane, ethane, propane, butane, pentane, methanol, ethanol, higher straight chain or mixed hydrocarbons, for example, natural gas or gasoline (low sulfur hydrocarbons may be desirable, e.g. low sulfur gasoline, low sulfur kerosene, low sulfur diesel), and mixtures thereof. In an alternate embodiment, the fuel/reactant is selected from the group consisting of butane, propane, methane, pentane, and mixtures thereof. Suitable fuels may be chosen for their suitability for internal direct reformation, suitable vapor pressure within the operating temperature range of interest, and like parameters.
Referring now to
Referring now to
Referring back to
An embodiment of a method of using fuel cell system 10 includes the step of operatively connecting the fuel cell system 10 to electrical load L and/or to electrical storage device S. The electrical load L may include many devices, including, but not limited to any or all of computers, portable electronic appliances (e.g. portable digital assistants (PDAs), portable power tools, etc.), and communication devices, portable or otherwise, both consumer and military. The electrical storage device S may include, as non-limitative examples, any or all of capacitors, batteries, and power conditioning devices. Some exemplary power conditioning devices include uninterruptible power supplies, DC/AC converters, DC voltage converters, voltage regulators, current limiters, etc.
It is also contemplated that the fuel cell system 10 of the present invention may, in some instances, be suitable for use in the transportation industry, e.g. to power automobiles, and in the utilities industry, e.g. within power plants.
In an embodiment, fuel cell system 10 includes a plurality of the fuel cell assemblies 12 and a plurality of the interconnect members 40, wherein at least one of the plurality of interconnect members 40 is associated with each of the plurality of fuel cell assemblies 12. As can be seen in
Referring again to
It is to be understood that the interconnect members 40 may be of any suitable size, shape, and formed of any suitable material as desired and/or necessitated by a particular end use. However, in an embodiment of fuel cell system 10, each of the plurality of interconnect/current collector members 40 is substantially ring shaped and is porous, partially porous, and/or slotted (an example of a slot in interconnect member 40 is designated as 44). In an embodiment of the present invention, interconnect members 40 have as a main component thereof an electrically conductive material. Some suitable examples of such an electrically conductive material include, but are not limited to at least one of silver, palladium, platinum, gold, gold plated ceramics, titanium, tantalum, chromium, stainless steel, iron, nickel, carbon, lanthanum-strontium-chromate, and mixtures thereof. Without being bound to any theory, it is believed that gold, platinum and La0.5Sr0.5CrO4 may be better suited for use on the cathode 18 side of the fuel cell assembly 12.
In an embodiment of the fuel cell system 10 of the present invention, the gas flows radially inward in the direction of arrows F from an outer circumference of at least one of the plurality of fuel cell assemblies 12 toward the exhaust conduit 38. The exhaust gases exit the exhaust conduit 38 in an axial direction, as shown by arrows E.
It is to be understood that the hollow center regions 42 may be of any suitable size and shape as desired. In an embodiment of the present invention, each of the plurality of hollow center regions 42 is substantially circular. Further, it is to be understood that the exhaust conduit 38 may be of any suitable size and shape, as desired and/or necessitated by a particular end use. In an embodiment of the present invention, exhaust conduit 38 is substantially cylindrical, as shown in
In an embodiment, conduit 38 is formed from a material that is at least one of porous, non-porous and partially porous. (In
Referring now to
In an embodiment of the present invention, the fuel cell system 10 is a dual chamber fuel cell (
As may be seen in the embodiment of fuel cell system 10 as shown in
It is to be understood that manifold 36, 36′ may be formed from any suitable material as desired and/or necessitated by a particular end use. In embodiments of the present invention, manifold 36, 36′ walls are porous in the x and y direction, but form a gas barrier in the z direction. In an embodiment, manifold 36, 36′ is formed from a material that is at least one of porous, non-porous and partially porous. (In
Housing 36′ has an inner wall 46 with a plurality of shelf members 48 extending radially inward, wherein adjacent shelf members 48 are spaced from each other. At least some of the plurality of shelf members 48 support and space apart adjacent fuel cell assemblies 12, thereby forming at least some of the plurality of flow passages 24 therebetween. In the embodiment shown in
In the embodiment of the present invention shown in
It is to be understood that fuel cell assembly 12 may be of any suitable size and shape, provided that a differential D exists between a given area A of inlet 20 and a given area B of outlet 22. Other parameters that may be taken into consideration include, but are not limited to pressure, gas flow, temperature, and the like.
An example of an alternate suitable shape of fuel cell assembly 12 is shown in
Referring now to
A manifold 52 (shown schematically in
A method of making a fuel cell system 10 according to an embodiment of the present invention includes operatively connecting a plurality of fuel cell assemblies 12 to exhaust conduit 38.
It is to be understood that the present invention is not intended to be limited to fuel cells. For example, embodiments of the present invention may be used as a method of enhancing catalytic activity of any suitable device.
It is to be understood that any suitable materials may be used for each of the anode 16, cathode 18 and electrolyte 14 of the fuel cell assembly 12 of embodiments of the present invention.
Embodiments of the present invention provide many advantages, examples of which include, but are not limited to the following. Embodiments of the present invention may advantageously result in improved thermal management. Fuel flow in known fuel cells wherein fuel flows from the inside toward the outside may generally use much of the fuel by the time it reaches about the midpoint between the center and the outer edges, thereby potentially wasting much of the catalytic surface adjacent the outer edges. It is believed that, generally as a result of the built in catalytic combustor 34, embodiments of the fuel cell system 10 of the present invention may advantageously result in higher system power per unit volume. Further, more rapid startup of embodiments of the fuel cell system 10 of the present invention may advantageously be possible, generally due to intimate fuel cell—combustor 34 contact. Further, embodiments of the present invention may result in superior combustion of fuel as compared to fuel cells having radially outward fuel flow.
While several embodiments of the invention have been described in detail, it will be apparent to those skilled in the art that the disclosed embodiments may be modified. Therefore, the foregoing description is to be considered exemplary rather than limiting, and the true scope of the invention is that defined in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4910100 | Nakanishi et al. | Mar 1990 | A |
5149601 | Shiratori et al. | Sep 1992 | A |
5549983 | Yamanis | Aug 1996 | A |
5851689 | Chen | Dec 1998 | A |
5922485 | Enami | Jul 1999 | A |
6274258 | Chen | Aug 2001 | B1 |
6280869 | Chen | Aug 2001 | B1 |
6291089 | Piascik et al. | Sep 2001 | B1 |
6551736 | Gurau et al. | Apr 2003 | B1 |
20040081871 | Kearl et al. | Apr 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20040219403 A1 | Nov 2004 | US |